

A Simulation Evaluation of
Optimistically Replicated Filing in Mobile Environments

�

An-I A. Wang, Peter L. Reiher, and Rajive Bagrodia
Computer Science Department

University of California, Los Angeles

Abstract
�� ��

Optimistic replication of data is becoming increasingly
popular in mobile environments, but its performance
and scaling characteristics are not well understood.
This paper presents a simulation evaluation of
optimistically replicated filing in a mobile environment.
We first compare full and selective optimistic
replication systems to capture the properties required
for scaling. We then show that the presence of portable
computers in optimistically replicated filing systems
achieves a 60-percent cost reduction (e.g., computing
resources) with only a 10-percent degradation of
service quality (e.g., consistency of data perceived by
users). This finding reveals certain similarities between
the network disconnection interval and frequency of
data synchronization. The research suggests new
guidelines for design of optimistic replication systems.

1 Introduction

Optimistic data replication is an increasingly important
technology. It allows the use of ATM banking with
network failures and partitions, parallelism in making
airline reservations, and simultaneous cooperative
access to shared data on laptops disconnected from
networks. With its resiliency to network failures, high
data availability, and cooperative data sharing,
optimistic replication has become one of the enabling
technologies for mobile computing. Oracle 7 [2],
Bayou [32], Ingres, Lotus Notes [13], Microsoft Brief
Case, and Concurrent Version System are popular
applications that have adopted the optimistic replication
concept [19].

�

 This work is sponsored by the Defense Advanced Research Project
Agency under contract DATB63-94-C-0080. The authors can be
reached at the Computer Science Department, UCLA, Los Angeles,
CA 90095, or by e-mail to { awang, reiher, rajive} @cs.ucla.edu.

 Early research on optimistic replication was largely
performed in the context of file systems. Most efforts
were devoted to proving the correctness and practicality
of the method. The Locus Operating System [23; 25],
Coda [30], Ficus [7], and other projects are examples of
optimistic replication. They proved that concurrent
modifications can be correctly resolved without data
loss [28; 18], and they deployed their systems among
substantial numbers of real users [15; 21; 10].
However, the existing research sheds little light on the
performance and scaling properties of optimistic
replication systems, especially in the context of mobile
computing.

We have constructed a validated general simulation
framework [33] to evaluate the performance of
optimistically replicated systems in an intermittently
connected environment. This paper presents our
insights on optimistic replication in terms of the
properties required for scaling and behavior with the
presence of portables.

Section 2 describes the motivation and mechanism
of optimistic replication. Section 3 describes our
simulation and input traffics. Section 4 introduces our
experimental assumptions, parameter space, and
metrics. Section 5 presents our insights obtained from
those experiments. Section 6 relates our work to other
research, and Section 7 summarizes lessons learned and
makes recommendations for future optimistic
replication system design.

2 Background

In large-scale distributed systems, replication is a good
technique for providing high availability for data
sharing across machine boundaries, because each
machine can own a local copy of the data. Optimistic
replication allows immediate access to any available
replica of a data item, at the risk of permitting
concurrent updates. In many scenarios, this risk is
justifiable for three reasons. First, most files have a

single writer, particularly over a short time period.
Thus, allowing writes to any data replica rarely results
in concurrent updates. Second, a large class of
applications (e.g., library database systems) can work
well with slightly aged information, and immediate
propagation of new updates to all replicas is not vital.
Third, for many applications, the majority of concurrent
data modifications can be performed in parallel. With
proper handling, the modifications can be later merged
automatically or manually without data loss.
Directories are an important example. Independent file
creations can be applied to two replicas of a directory
without causing problems, because the differing
directory replicas can be easily merged into a single
directory.
 Permitting copies of data to become temporarily
inconsistent requires a reconciliation process to bring
replicas into synchronization. This is done by
comparing replicas and applying the updates at some
convenient time (e.g., when portable computers are
temporarily connected to the network). Typically,
updates are tracked using either logging [30] or
scanning [7; 27]. Improper concurrent accesses, or
conflicts, occur when different replicas of the same file
are updated subsequent to the last reconciliation.
Optimistic systems usually provide extensible
application-specific libraries to resolve the majority of
conflicting updates automatically. Conflicts that are not
automatically resolved require user intervention [24;
28; 18].
 Consider an append-only log, with log entries
ordered by timestamps. If two replicas of this log
receive independent updates, the optimistic replication
system will allow each of them to append new records
to the end of an otherwise identical log. When
reconciliation between these replicas occurs, the
conflict will be detected and resolved automatically by
creating a log consisting of the common parts, followed
by the new records in the timestamp order. Either the
system or the users of the log file would provide a
resolver program that could examine the conflicting
versions of the file and produce the proper merged
version.
 On mobile computing units with limited resources,
selective replication allows storage of a subset of files
that will be referenced by the user in the upcoming
disconnected period [26, 31]. By doing so, selective
replication can lower various overheads.

3 Simulation and input traffics

Experimental studies of replication systems are few,
due to various costs of obtaining useful and scalable
measurements to examine a large parameter space. To
overcome many of these difficulties, we have designed
a general simulation framework that can be configured
to evaluate large-scale replicated file systems with
heterogeneous configurations. The framework
comprises more than ten thousand lines of code. The
built-in simulation language was developed using
grammar-encoded languages, Lex and Yacc, to support
compositions of simulated library components. The
body of the simulation was developed using Maisie, a
C-based discrete-event simulation language [1]. The
simulation error is within 5 percent of the real system
being calibrated, determined by the full factorial
multivariate linear regression analysis [11]. Since the
design and validation are applications of common
software engineering disciplines and experimental
methodologies, we refer the details to a prior paper
[33]. However, our traffic generator is tailored to
evaluate optimistic replication environments, and we
will discuss this component in detail.

Our simulation input traffic is based on a three-
month data trace of file access patterns, collected at
Locus Computing Corporation [16]. This trace consists
of the actual activities of software developers. The
traced system did not use replication, but had large
numbers of users and machines connected by a local
area network, performing both local and remote file
accesses. To a certain extent, the results presented
depend on the characteristics of this workload.
However, this dependency is inescapable, and we
believe that the workload is realistic and representative
of many office environment workloads.

Extensive pilot runs show that the approaches
adopted by common traffic generators—capturing the
temporal and spatial localities—are insufficient to
evaluate optimistically replicated systems. In such
systems, the consistency and recentness of data
perceived by the end-users is highly dependent on how
data are shared, as well as how data are accessed. In
addition, distribution of user activities also can
contribute to the overall service quality measures.

For example, our trace data reveal that as the
degree of file sharing increases, the percentage of write
accesses decreases. Thus, our experiments adopt a fine-
grain decomposition of the file sharing and operation
patterns, as shown in Figure 3.1. Without this fine-
grained characterization of file sharing, the percent of
write access is significantly overestimated for files at a

File access
 Read-write access

Read-only access Nonshared access Shared access
 2-way sharing 3+way sharing
 Read access Write access Read access Write access (Further splitting)

Figure 3.1: Categorization of file accesses.

high sharing factor, and the growth rate of conflicts is
potentially exponential [10].

File references fed to the model are divided into
read-only accesses and read-write accesses. Read-only
accesses do not affect most of the results in the
simulation. Read-write file accesses are partitioned into
accesses to shared and nonshared files. Assuming each
user will always access a particular replica, updates to
nonshared files will never create conflicts and always
contain the most current data, because only a single
replica is used for access to such files. Shared files are
further classified as files shared between exactly two
users and files shared among more than two users (e.g.,
two-way shared and three-plus-way shared).

To capture the daily work cycles, we model the
trace at hourly intervals with mean arrival rate equal to
the mean arrival rate of the corresponding hour in the
trace. Average hourly traffic can be obtained by
averaging the mean arrival rates of a certain hour of the
day across the entire trace. Our simulation also
captures the nonuniform access distribution across users
by first finding the aggregate arrival rate and then
distributing the aggregate traffic by the expected
percentage contribution of each simulated user.

As for the patterns of disconnection, we model
each portable to be connected for 2 to 12 contiguous
hours during the hours with heavier file access traffics
revealed by the trace. We choose long disconnected
intervals instead of wireless intermittent connections
because wireless network has not reached the level of
ubiquity and economy. The portable is disconnected
for the remainder of the day to reflect the common
work schedule. For example, if we specify portables to
be connected for two hours per day, each portable
would randomly select two contiguous hours from the
work hours, and the choice of connecting hours changes
from day to day. Future work may examine the
disconnection patterns with a trace directly collected
from a mobile environment.

4 Exper iments

4.1 Exper imental assumptions

Replication granularity controls the level at which
replication is applied. Possible granularities include a

file, a directory, or a sub-tree of a file hierarchy
(typically called a volume). For simplicity, we assume
that all files are replicated under a single volume, and
the volume is either fully or selectively replicated
across the servers. Each server contains only one
replica of the volume; only one local user accesses each
replica. We assume also that at most one reconciliation
process is in progress at any point at a given machine.
This constraint implies that if a site is participating in a
reconciliation process, the site will deny reconciliation
requests from other sites. All denied reconciliation
requests are aborted.

Like most replication systems, each reconciliation
process involves only two replicas in our model, and
the site initiating replication can choose any other
replica as its partner based on a specified reconciliation
topology. Due to space constraints, this paper only
presents data on the adaptive ring topology; however,
the lessons learned should be independent of topology.
In a nonadaptive ring topology, all replicas participating
in accessing a certain replicated item form a ring. At
reconciliation time, a replica reconciles with an
immediate neighboring replica in the ring. In an
adaptive ring, if the target replica is busy or absent at
reconciliation time, a replica will try the next
immediate neighboring replica. One replica can
potentially belong to many reconciliation rings because
selective replication permits different replicated items
in the replicated volume to be shared with different
groups of replicas.

File accesses to remote replicas and various types
of node and network failures are not modeled for this
initial study, but will be areas of interest for future
study.

4.2 Parameter space

Table 4.1 summarizes the major simulation
configurations and parameters. Our simulation does not
model the complexity of the operating system and
underlying hardware. Those delays are modeled by
parameterization of a certain measured system into
analytical equations [11; 33]. In our case, we measured
an early prototype of the Rumor Replicated File System
(RRFS) [27, 9], running on Dell Latitude XP 486, 100
MHz laptops with 12 Mbytes of memory and a Linux

Parameters Specifications
Simulation duration 576 hours
Calibrated hardware platform Dell Latitude XP 486 100 Mhz (12 Mbytes of memory)
Calibrated OS platform Linux 2.0.x
Network channel 10Mb Ethernet

Environment
configuration

Physical topology Single-level Ethernet-connected servers
Replication system
File-sharing pattern

RRFS
Trace-data based

User access skewing function Distribution mapped from the trace data
Number of files 10150 files (from the trace; ~200 Mbytes of data)

System
configuration

File size distribution
File access interval distribution
Reconciliation topology

Trace-data based
Trace-data based
Adaptive ring

Independent
variables

Replication granularity
Percentage of portables
Connection duration for portables
Replication factor
Reconciliation interval

Full volume, selective subset of data in the volume
0, 30, 60, 90 percent
2 to 12 hours per day with a 2-hour step
2, 5, 8, 11, 14, 17 replicas1
1 to 21 hours with a 3-hour step1

Table 4.1: Major simulation parameters.

Metrics Definitions

Reconciliation time Elapsed time from the moment a replica requests reconciliation with a remote replica to
 the moment that all files in the local replica are reconciled, excluding aborted sessions2

CPU overhead Percent CPU utilization per replica due to reconciliation processes, including the aborted
 sessions

Transmission volume per replica Bandwidth required per replica for periodic reconciliation processes
Aggregate transmission volume Global bandwidth required for all replicas to execute periodic reconciliation processes

Cost metrics

Storage Storage required per replica to keep track of the replicated states
Conflict rate Number of conflicts per replica per hour
Time to stale read Expected number of days before encountering one stale read

QoS metrics

Time to stale write Expected number of days before encountering one stale write

Table 4.2: Definitions of various metrics.

1 Seventeen replicas would take approximately one hour to complete a full volume reconciliation, which imposes the minimum reconciliation interval
to be one hour.
2 The time spent for aborted sessions is the elapsed time from the moment at which a replica requests reconciliation with a remote replica to the
moment at which the replica receives the rejection message from the remote replica. This metric excludes the aborted sessions because it measures the
average execution time for a successful reconciliation process.

1.2.x operating system. Certain results (e.g., running
time of the system) are thus contingent on the versions
of the software and hardware we chose. The input
traffic patterns are extracted from the Locus trace with
the methods we described in Section 3.
 For the independent variables, we conducted more
than 2000 pilot runs over a large parameter space with
various resolutions to locate the variables and regions
of high variability for further investigations. The
parameter space and resolution were reduced when
necessary to accelerate the data collection process.

Our simulation investigated the coarsest possible
granularity—full volume, and the finest possible
granularity—selective replication, with perfect
prediction of upcoming file references. To examine the
effects of portable users, we varied the percentage of
portable users from 0 to 90 percent. The connection
duration for those portables was varied from 2 to 12

hours according to the description in Section 3.
Replication factor, or the number of data copies, was
varied from 2 to 17 replicas.

Reconciliation interval describes the frequency of
the reconciliation process. In most systems,
reconciliation is performed immediately after an update
[8], periodically [27], or on demand [30]. The results
presented in this paper use periodic reconciliation only,
with no fast propagation at update time. We varied the
interval from 1 to 21 hours.

4.3 Metr ics

Table 4.2 defines various cost and quality of service
(QoS) metrics. The cost metrics are fairly straight-
forward. For QoS, one popular metric is the conflict
rate. However, as shown in [33, 17], this metric is
flawed. Consider the scenario where detection and

recording of conflicts occur only during a reconciliation
process. We can reduce the number of conflicts to zero
by never reconciling, resulting in no update ever being
propagated anywhere. Despite its popularity, we will
omit the conflict-rate metric in this paper. Instead, we
use time to stale read and time to stale write metrics. A
stale read or stale write occurs whenever a user reads or
writes an out-of-date replica of a file. These metrics are
hard to measure in a real system, as they depend on
global knowledge, but they can easily be measured in
our simulation.

5 Results

The scaling of optimistic replication systems is
essential for their widespread use. Section 5.1 first
explores the properties required for scaling such mobile
systems, and Section 5.2 presents the effects of using
portable computers in the context of selective
replication.

5.1 Scaling proper ties of optimistic replication

We evaluate scaling from the perspective of both
implementation and real usage patterns. Figure 5.1
compares the running time required to perform
reconciliation for full and selective replication methods.
The full replication shows linear scaling, and the
selective replication shows near-constant scaling
beyond five replicas.

Figure 5.1: Reconciliation time for full
optimistic replication and selective optimistic
replication. Standard deviation (not clearly
visible) is within 1 percent for each data point.

Selective replication can achieve near constant scaling
because it exploits the user pattern, which shows that
the majority of files are not shared beyond four replicas,
and selective replication stores the state information
only for replicas participating in shared data accesses.

On the other hand, full replication stores the state
information for all replicas, and the processing
overhead is directly proportional to the replication
factor.
 Intuitively, high-precision and fine-grained
targeting of selective replication should yield minimum
costs and the highest QoS. Table 5.1 shows differently.
Selective replication is indeed cheaper. The
reconciliation time is very likely to stay within half an
hour for 50 to even 100 replicas. For CPU utilization,
selective replication saves 68 percent; for transmission
volume, 16 percent or 2.8 minutes on 14.4-Kbyte
modems; for aggregate network bandwidth, 18 percent;
and for storage, 47 percent. However, selective
replication loses big on the QoS. For times to stale read
and stale write, selective replication loses 45 and 47
percent correspondingly.

Costs3 Metrics
Full rep. Sel. rep.

Recon. time (min.) 38 24
CPU overhead (during the recon. time) 19% 6.0%
Trans. vol. per replica (Mbytes/hr) 1.9 1.6
Aggregate trans. vol. (Mbytes/hr) 17 14
Storage per replica (Mbytes/rep) 19 10
Time to stale read (days/stale read) 12 6.3
Time to stale write (days/stale write) 22 12

Table 5.1: Comparison of full optimistic
replication and selective optimistic replication
under various predefined metrics.

Figure 5.2: Example of better QoS by full
replication than selective replication.

3 Median values are presented because of the skewing of various data
curves. For each replication method, the median values resemble the
simulation environment of 30 to 60 percent portable users with 8
hours of daily connection duration, 8 to 11 replicas, and 9- to 13-hour
reconciliation intervals.

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14 17

Replication Factor

Hour(s)
Full replication

Selective replication

Replica 1:
 File A
 File B

Replica 4:
 File A
 File B

Replica 2:
 File B

Replica 3:
 File A

Ring 1 Ring 2

Percentages of portable computers4 Metrics
0% 30% 60% 90%

Reconciliation time (minutes) 24 24 24 24
CPU overhead (during the reconciliation time) 8.2% 6.8% 3.9% 2.9%
Transmission volume per replica (Mbytes/hr) 2.3 1.9 1.0 0.89
Aggregate transmission volume (Mbytes/hr) 22 19 11 8.0
Storage per replica (Mbytes/rep) 10 10 10 10
Time to stale read (days/stale read) 6.8 6.4 5.8 5.9
Time to stale write (days/stale write) 12 12 12 11

Table 5.2: Effects of various percentages of portable computers on predefined metrics.

Hours of connection per day5 Metrics
0 2 4 6 8 10 12 24

Reconciliation time (minutes) 0 24 24 24 24 24 24 24
CPU overhead (during the reconciliation time) 0.0% 3.3% 4.2% 5.6% 6.0% 6.3% 6.3% 8.2%
Transmission volume per replica (Mbytes/hr) 0.0 0.92 1.3 1.5 1.6 1.8 1.9 2.3
Aggregate transmission volume (Mbytes/hr) 0.0 6.5 8.6 13 14 16 17 22
Storage per replica (Mbytes/rep) 0 10 10 10 10 10 10 10
Time to stale read (days/stale read) 3.5 4.9 5.4 6.0 6.3 6.4 6.4 6.8
Time to stale write (days/stale write) 9.3 10 11 11 12 12 12 12

Table 5.3: Sensitivity of laptop network connection period on the predefined metrics.

4 Median values are presented because of the skewing of various data curves. The median values resemble the simulation environment of 8 to 11
replicas and 9- to 11-hour reconciliation intervals.
5 Median values are presented because of the skewing of various data curves. The median values resemble the simulation environment of 30 to 60
percent portables, 8 to 11 replicas, and 9- to 13-hour reconciliation intervals.

With some investigation, we found that the extra
work performed by full optimistic replication actually
assists the indirect propagation of data not shared by the
local replica. Figure 5.2 illustrates a scenario using the
adaptive ring

Adaptive ring 1 (replica 1, 3, and 4) shares file A,
and adaptive ring 2 (replica 1, 2, and 4) shares file B.
By the definition of selective optimistic replication,
when replica 1 and 2 reconcile, only file B is
synchronized; similarly, when replica 1 and 3 reconcile,
only file A is synchronized. For both file A and file B
to reach replica 4, assuming no failures and no other
data propagation paths are available, selective
replication requires a minimum of four reconciliation
processes, but full replication requires only two. Full
replication can perform better when the sharing groups
are densely interconnected. Our QoS result suggests
dense interconnection of sharing groups in the trace
because the QoS greatly benefits from the redundant
data paths.
 The number of states stored by the system and the
actual degree of sharing by the users have a strong
influence over replication costs; the degree of freedom
for update dissemination and the amount of overlapping
among the sharing group affect the replication QoS.

Combining the two is essential for large-scale and high-
quality optimistic replication service.

5.2 Desirable system character istics for

por table computers

To study mobile computing, we have simulated a
scenario with various percentages of portable
computers, with a mean connection duration of eight
hours to reflect a common daily work cycle. Table 5.2
shows the effects of various percentages of portable
computers on our predefined metrics.

These numbers are encouraging; the presence of
disconnected units alleviates the replication workload.
The reconciliation time and storage remain constant.
The CPU utilization rate can drop by up to 65 percent;
transmission volume, 61 percent (a 13-minute reduction
on 14.4-Kbyte modems); and aggregate network
bandwidth, 64 percent. These reductions are all due to
fewer reconciliations being performed, since
disconnected machines cannot reconcile. On the other
hand, the QoS loss is relatively small, and the
degradation is graceful. Times to stale read and stale
write degrade by 13 and 8.3 percent, respectively.
 We have also investigated the effects of connection
duration from 2 to 12 hours. Table 5.3 shows the

effects of varying connection duration on our
predefined metrics. The 0-hour case represents the
worse QoS, where no reconciliation occurs for any
replicas, and the 24-hour case represents the best case
with the given parameter settings.

The QoS numbers in the worse case appear to be
high and suggest that the shared accesses are relatively
infrequent or highly localized. We believe that the
locality is the primary cause, because 13 percent of
trace accesses are shared accesses. The QoS numbers
in the best case set the upper bound for the QoS we can
achieve with daylong connectivity; times to stale read
and stale write can improve by 94 and 29 percent
respectively. Various cost and QoS metrics show
asymptotic behavior as the connection duration
lengthens. Notably, QoS improves little beyond eight
hours of connection duration. This result complies with
our intuition that longer connection duration beyond
working hours should not contribute significantly to
QoS.

From a different angle, network disconnection
duration does introduce complexities into optimistic
replication systems. If the reconciliation interval is one
hour and the disconnection period is one week, or if the
reconciliation interval is one week and the
disconnection period is one hour, the net effect for both
cases is equivalent to using a reconciliation interval of
one week. Whenever both reconciliation interval and
disconnection coexist, the longer duration of the two
dominates. In our experiments, effectively we have two
sets of computers (portables and non-portables)
reconciling at two different rates. Future investigation
requires repartitioning of the problem space, to find
simpler relationships among the reconciliation interval,
disconnection patterns, and other metrics.

6 Related work

Many analytical modeling and simulation studies have
been done to compare the performance of various
replication control protocols, but optimistic consistency
strategies are often not addressed [5; 12; 20].
 Golding’s thesis [4] investigates optimistic
replication in the static scenario without considering
disconnected operations. Golding describes a
timestamped anti-entropy protocol that has a one-to-one
mapping to our reconciliation process. His primary
QoS metric is the mean time to convergence of
concurrent updates [3]. One major concern with his
approach is the lack of updates during the convergence
period, and his results do not capture the effects of user
patterns. This static assumption precludes the dynamic
possibility that the update rate of users can exceed the

convergence rate. Under such a scenario, the system
can reach a highly unstable state.

Scaling of optimistic replication is a highly
controversial topic. Gray and associates [6] have
expressed some of the strongest warnings against
optimistic replication. Through the analytical approach
and assumption of uniform access patterns of replicated
data, they suggest that the scaling of optimistic
replication is questionable. However, from our prior
study [33], we have shown that the temporal access
locality alone can improve the QoS by an order of
magnitude. From the perspective of data sharing, 81
percent of our files are only two-way shared among the
users, and the overall system scales with minor
degradation of service quality. Similar to this
uniformity assumption, Gray and associates made other
assumptions on the uniform usage patterns, which
depict unrealistic and overly pessimistic predictions.
 Kistler and Satyanarayanan [15] at CMU have
conducted an empirical study of disconnected
operations of Coda, which utilizes the limited optimistic
replication capabilities in the Andrew File System [14]
to offer optimistic replication and caching support for
operation with network disconnection. The primary
interest of their study is to prove the feasibility of
disconnected operation. With trace data, researchers
demonstrated the feasibility by showing that the
average working set is small and adequate for caching.
They also demonstrated the low likelihood of
concurrent updates [15; 22]. However, simulation is
still the primary venue to explore large parameter space
and hypothetical scenarios. We are also seeking
opportunities to analyze existing trace data from
various sources to formulate the network disconnection
patterns in our future work.

7 Lessons learned and recommendations

We have compared full optimistic replication and
selective optimistic replication schemes to characterize
requirements for scaling. Future optimistic replication
systems should exploit the low degree of sharing
present in user patterns to reduce system costs, and the
interconnection among the replicas should be
sufficiently dense to leverage the indirect data
propagation. However, for the selective replication
case, we also see that aggressive local cost optimization
can actually reduce the opportunity for indirect update
propagation and degrade global QoS. Future system
design should consider both local and global system
behaviors. For example, one candidate for our future
study is to consider selective optimistic replication that
stores the states for the top 10 percent of frequently

modified files. This 10 percent increase of overhead
may accomplish 90 percent of the benefits of full
optimistic replication.

Another finding is that the presence of portable
computers alleviates the resource costs by 60 percent,
and the degradation of QoS is only 10 percent. This
finding also reveals the similarities between network
disconnection and reconciliation interval, and suggests
further investigation.

Finally, from full and selective replication
experiments we have found that no single configuration
can win in both areas of cost and QoS. However, it is
our first step toward understanding and designing a
cost-effective, high-QoS optimistic replication system
for mobile computing environments.

8 References

[1] Bagrodia R, Laio WT. MAISIE: A Language for the

Design of Efficient Discrete-Event Simulations. IEEE
Transactions on Software Engineering, 20(4): 225-238,
April 1994.

[2] Daniels D, Doo LB, Downing A, Elsbernd C, Hallmark
G, Jain S, Jenkins B, Lim P, Smith G, Souder B, Stamos
J. Oracle’s Symmetric Replication Technology and
Implications for Application Design. Proceedings of
SIGMOD Conference, p. 467, 1994.

[3] Golding RA, Long DDE. Accessing Replicated Data in
a Large-Scale Distributed System. International Journal
in Computer Simulation, 1(2), 1991.

[4] Golding RA. Modeling Replica Divergence in a Weak-
Consistency Protocol for Global Scale Distribution Data
Bases. Technical report UCSC-CRL-93-09, University
of California, Santa Cruz, 1993.

[5] Goldweber M, Johnson DB, Raab L. A Comparison of
Consistency Control Protocols. Technical report PCS-
TR89-142, Department of Mathematics and Computer
Science, Dartmouth College, 1989.

[6] Gray J, Helland P, O’Neil P, Shasha D. The Dangers of
Replication and a Solution. Proceedings of the 1996
ACM SIGMOD Conference, pp.173-182, 1996.

[7] Guy R, Heidemann J, Mak W, Page T, Popek G,
Rothmeier D. Implementation of the Ficus Replicated
File System. Proceedings of the Usenix Summer
Conference, pp. 63-71, June 1990.

[8] Guy R, Popek G, Page TW. Consistency Algorithms for
Optimistic Replication. Proceedings of the First
International Conference on Network Protocols, IEEE,
October 1993.

[9] Guy R, Reiher P, Ratner D, Gunter M, Ma W, Popek G.
Rumor: Mobile Data Access Through Optimistic Peer-
to-Peer Replication. Proceedings of Workshop on
Mobile Data Access, November 1998.

[10] Heidemann J, Goel A, Popek G. Defining and
Measuring Conflicts in Optimistic Replication.
Technical report CSD-950033, University of California,
Los Angeles, 1995.

[11] Jain R. The Art of Computer Systems Performance
Analysis. New York, John Wiley’s, 1991.

[12] Johnson DB, Raab L. A Tight Upper Bound on the
Benefits of Replication and Consistency Control
Protocols. Technical report PCS-TR90-157, Department
of Mathematics and Computer Science, Dartmouth
College, 1990.

[13] Kawell LJ, Beckhardt S, Halvorsen T, Ozzie R, Greif I.
Replicated Document Management in a Group
Communication System. Groupware: Software for
Computer-Supported Cooperative Work, IEEE Computer
Society Press, 1992, pp. 226-235.

[14] Kazar M. Synchronization and Caching Issues in the
Andrew File System. Proceeding of the Winter Usenix
Conference, pp. 31-43, February 1998.

[15] Kistler JJ, Satyanarayanan M. Disconnected Operation
in the Coda File System. ACM Transactions on
Computer Systems, 10(1), February 1992.

[16] Kuenning GH, Popek GJ, Reiher PL. An Analysis of
Trace Data for Predictive File Caching in Mobile
Computing. Proceedings of the 1994 Summer Usenix
Conference, 1994.

[17] Kuenning GH, Bagrodia R, Guy RG, Popek GJ, Reiher
P, Wang A. Measuring the Quality of Service of
Optimistic Replication. Proceedings of the ECOOP
Workshop on Mobility and Replication, July, 1998.

[18] Kumar P, Satyanarayanan M. Flexible and Safe
Resolution of File Conflicts. Proceedings of the 1995
Usenix Technical Conference, pp. 95-106, January 1995.

[19] Kung HT, Robinson J. On Optmistc Methods for
Concurrency Control. ACM Transactions on Database
Systems, 6(2), June 1981.

[20] Liu ML, Agrawal D, Abbadi AE. What Price
Replication? Technical report TRCS94-14, Computer
Science Department, University of California, Santa
Barbara, July 1994.

[21] Noble BD, Satyanarayanan M. An Empirical Study of a
Highly Available File System. Proceedings of the 1994
ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, Nashville, TN, May
1994.

[22] Page T, Guy R, Heidemann J, Ratner D, Reiher P, Goel
A, Kuenning G, Popek G. Perspectives on
Optimistically Replicated, Peer-to-Peer Filing.
Software—Practice and Experience, December 1997.

[23] Parker DS, Popek G, Rudison G, Stoughton A, Walker
B, Walton E, Chow J, Edwards D, Kiser S, Kline C.
Detection of Mutual Inconsistency in Distributed

Systems. IEEE Transactions on Software Engineering,
pp. 240-247, May 1983.

[24] Popek GJ, Guy RG, Page TW, Heidemann JS.
Replication in Ficus Distributed File Systems.
Proceedings of the Workshop on Management of
Replicated Data, Houston, Texas, November 1990.

[25] Popek GJ, Walker B. The Locus Distributed Operating
System, MIT Press, 1985.

[26] Ratner D. Selective Replication: Fine-Grain Control of
Replicated Files. Masters Thesis. University of
California, Los Angeles, 1995.

[27] Ratner D, Popek GJ, Reiher P. The Ward Model: A
Scalable Replication Architecture for Mobility.
Proceedings of the OOPSLA’96 Workshop on Object
Replication and Mobile Computing (ORMC’96), San
Jose, California, October 7, 1996.

[28] Reiher P, Heidemann J, Ratner D, Skinner G, Popek G.
Resolving File Conflicts in the Ficus File System.
Proceedings of USENIX Conference, pp. 183-195, June
1994.

[29] Reiher P, Popek J, Gunter M, Salomone J, Ratner D.
Peer-to-Peer Reconciliation-Based Replication for
Mobile Computers. ECCOP 1996 Second Workshop on
Mobility and Replication, July 1996.

[30] Satyanarayanan M. Coda: A Highly Available File
System for a Disconnected Workstation Environment.
Proceedings of the Second Workshop on Workstation
Operating Systems, September 1989.

[31] Sweeden B. Lotus Notes 4.5 Administrator’s Guide,
Sybex Network Press, 1997.

[32] Terry DB, Theimer MM, Petersen K, Demers AJ,
Spreitzer MJ, Hauser CH. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System.
Proceedings of the 15th ACM Symposium on Operating
Systems Principle, December 1995.

[33] Wang AI. A Simulation Evaluation for Optimistically
Replicated Environment. Master’s Thesis. University of
California, Los Angeles, 1998.

