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Optimistic replication of data is becoming increasingly 
popular in mobile environments, but its performance 
and scaling characteristics are not well understood.  
This paper presents a simulation evaluation of 
optimistically replicated filing in a mobile environment.  
We first compare full and selective optimistic 
replication systems to capture the properties required 
for scaling.  We then show that the presence of portable 
computers in optimistically replicated filing systems 
achieves a 60-percent cost reduction (e.g., computing 
resources) with only a 10-percent degradation of 
service quality (e.g., consistency of data perceived by 
users).  This finding reveals certain similarities between 
the network disconnection interval and frequency of 
data synchronization.  The research suggests new 
guidelines for design of optimistic replication systems. 
 
 
1 Introduction 
 
Optimistic data replication is an increasingly important 
technology.  It allows the use of ATM banking with 
network failures and partitions, parallelism in making 
airline reservations, and simultaneous cooperative 
access to shared data on laptops disconnected from 
networks.  With its resiliency to network failures, high 
data availability, and cooperative data sharing, 
optimistic replication has become one of the enabling 
technologies for mobile computing.  Oracle 7 [2], 
Bayou [32], Ingres, Lotus Notes [13], Microsoft Brief 
Case, and Concurrent Version System are popular 
applications that have adopted the optimistic replication 
concept [19]. 
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 Early research on optimistic replication was largely 
performed in the context of file systems.  Most efforts 
were devoted to proving the correctness and practicality 
of the method.  The Locus Operating System [23; 25], 
Coda [30], Ficus [7], and other projects are examples of 
optimistic replication.  They proved that concurrent 
modifications can be correctly resolved without data 
loss [28; 18], and they deployed their systems among 
substantial numbers of real users [15; 21; 10].  
However, the existing research sheds little light on the 
performance and scaling properties of optimistic 
replication systems, especially in the context of mobile 
computing. 

We have constructed a validated general simulation 
framework [33] to evaluate the performance of 
optimistically replicated systems in an intermittently 
connected environment.  This paper presents our 
insights on optimistic replication in terms of the 
properties required for scaling and behavior with the 
presence of portables. 

Section 2 describes the motivation and mechanism 
of optimistic replication.  Section 3 describes our 
simulation and input traffics.  Section 4 introduces our 
experimental assumptions, parameter space, and 
metrics.  Section 5 presents our insights obtained from 
those experiments.  Section 6 relates our work to other 
research, and Section 7 summarizes lessons learned and 
makes recommendations for future optimistic 
replication system design. 
 
2 Background 
 
In large-scale distributed systems, replication is a good 
technique for providing high availability for data 
sharing across machine boundaries, because each 
machine can own a local copy of the data.  Optimistic 
replication allows immediate access to any available 
replica of a data item, at the risk of permitting 
concurrent updates.  In many scenarios, this risk is 
justifiable for three reasons.  First, most files have a 



single writer, particularly over a short time period.  
Thus, allowing writes to any data replica rarely results 
in concurrent updates.  Second, a large class of 
applications (e.g., library database systems) can work 
well with slightly aged information, and immediate 
propagation of new updates to all replicas is not vital.  
Third, for many applications, the majority of concurrent 
data modifications can be performed in parallel.  With 
proper handling, the modifications can be later merged 
automatically or manually without data loss.  
Directories are an important example.  Independent file 
creations can be applied to two replicas of a directory 
without causing problems, because the differing 
directory replicas can be easily merged into a single 
directory. 
 Permitting copies of data to become temporarily 
inconsistent requires a reconciliation process to bring 
replicas into synchronization.  This is done by 
comparing replicas and applying the updates at some 
convenient time (e.g., when portable computers are 
temporarily connected to the network).  Typically, 
updates are tracked using either logging [30] or 
scanning [7; 27].  Improper concurrent accesses, or 
conflicts, occur when different replicas of the same file 
are updated subsequent to the last reconciliation.  
Optimistic systems usually provide extensible 
application-specific libraries to resolve the majority of 
conflicting updates automatically.  Conflicts that are not 
automatically resolved require user intervention [24; 
28; 18]. 
 Consider an append-only log, with log entries 
ordered by timestamps.  If two replicas of this log 
receive independent updates, the optimistic replication 
system will allow each of them to append new records 
to the end of an otherwise identical log.  When 
reconciliation between these replicas occurs, the 
conflict will be detected and resolved automatically by 
creating a log consisting of the common parts, followed 
by the new records in the timestamp order.  Either the 
system or the users of the log file would provide a 
resolver program that could examine the conflicting 
versions of the file and produce the proper merged 
version. 
 On mobile computing units with limited resources, 
selective replication allows storage of a subset of files 
that will be referenced by the user in the upcoming 
disconnected period [26, 31].  By doing so, selective 
replication can lower various overheads.   
 
 
 
 

3 Simulation and input traffics 
 
Experimental studies of replication systems are few, 
due to various costs of obtaining useful and scalable 
measurements to examine a large parameter space.  To 
overcome many of these difficulties, we have designed 
a general simulation framework that can be configured 
to evaluate large-scale replicated file systems with 
heterogeneous configurations.  The framework 
comprises more than ten thousand lines of code.  The 
built-in simulation language was developed using 
grammar-encoded languages, Lex and Yacc, to support 
compositions of simulated library components.  The 
body of the simulation was developed using Maisie, a 
C-based discrete-event simulation language [1].  The 
simulation error is within 5 percent of the real system 
being calibrated, determined by the full factorial 
multivariate linear regression analysis [11].  Since the 
design and validation are applications of common 
software engineering disciplines and experimental 
methodologies, we refer the details to a prior paper 
[33].  However, our traffic generator is tailored to 
evaluate optimistic replication environments, and we 
will discuss this component in detail.  

Our simulation input traffic is based on a three-
month data trace of file access patterns, collected at 
Locus Computing Corporation [16].  This trace consists 
of the actual activities of software developers.  The 
traced system did not use replication, but had large 
numbers of users and machines connected by a local 
area network, performing both local and remote file 
accesses.  To a certain extent, the results presented 
depend on the characteristics of this workload.  
However, this dependency is inescapable, and we 
believe that the workload is realistic and representative 
of many office environment workloads.   

Extensive pilot runs show that the approaches 
adopted by common traffic generators—capturing the 
temporal and spatial localities—are insufficient to 
evaluate optimistically replicated systems.  In such 
systems, the consistency and recentness of data 
perceived by the end-users is highly dependent on how 
data are shared, as well as how data are accessed.  In 
addition, distribution of user activities also can 
contribute to the overall service quality measures. 

For example, our trace data reveal that as the 
degree of file sharing increases, the percentage of write 
accesses decreases.  Thus, our experiments adopt a fine-
grain decomposition of the file sharing and operation 
patterns, as shown in Figure 3.1. Without this fine-
grained characterization of file sharing, the percent of 
write access is significantly overestimated for files at a  
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Figure 3.1:  Categorization of file accesses. 

 
high sharing factor, and the growth rate of conflicts is 
potentially exponential [10].   

File references fed to the model are divided into 
read-only accesses and read-write accesses.  Read-only 
accesses do not affect most of the results in the 
simulation.  Read-write file accesses are partitioned into 
accesses to shared and nonshared files.  Assuming each 
user will always access a particular replica, updates to 
nonshared files will never create conflicts and always 
contain the most current data, because only a single 
replica is used for access to such files.  Shared files are 
further classified as files shared between exactly two 
users and files shared among more than two users (e.g., 
two-way shared and three-plus-way shared).   

To capture the daily work cycles, we model the 
trace at hourly intervals with mean arrival rate equal to 
the mean arrival rate of the corresponding hour in the 
trace.  Average hourly traffic can be obtained by 
averaging the mean arrival rates of a certain hour of the 
day across the entire trace.  Our simulation also 
captures the nonuniform access distribution across users 
by first finding the aggregate arrival rate and then 
distributing the aggregate traffic by the expected 
percentage contribution of each simulated user. 

As for the patterns of disconnection, we model 
each portable to be connected for 2 to 12 contiguous 
hours during the hours with heavier file access traffics 
revealed by the trace.  We choose long disconnected 
intervals instead of wireless intermittent connections 
because wireless network has not reached the level of 
ubiquity and economy.  The portable is disconnected 
for the remainder of the day to reflect the common 
work schedule.  For example, if we specify portables to 
be connected for two hours per day, each portable 
would randomly select two contiguous hours from the 
work hours, and the choice of connecting hours changes 
from day to day.  Future work may examine the 
disconnection patterns with a trace directly collected 
from a mobile environment. 
 
4 Exper iments 
 
4.1 Exper imental assumptions 
 
Replication granularity controls the level at which 
replication is applied.  Possible granularities include a 

file, a directory, or a sub-tree of a file hierarchy 
(typically called a volume).  For simplicity, we assume 
that all files are replicated under a single volume, and 
the volume is either fully or selectively replicated 
across the servers.  Each server contains only one 
replica of the volume; only one local user accesses each 
replica.  We assume also that at most one reconciliation 
process is in progress at any point at a given machine.  
This constraint implies that if a site is participating in a 
reconciliation process, the site will deny reconciliation 
requests from other sites.  All denied reconciliation 
requests are aborted.  

Like most replication systems, each reconciliation 
process involves only two replicas in our model, and 
the site initiating replication can choose any other 
replica as its partner based on a specified reconciliation 
topology.  Due to space constraints, this paper only 
presents data on the adaptive ring topology; however, 
the lessons learned should be independent of topology.  
In a nonadaptive ring topology, all replicas participating 
in accessing a certain replicated item form a ring.  At 
reconciliation time, a replica reconciles with an 
immediate neighboring replica in the ring.  In an 
adaptive ring, if the target replica is busy or absent at 
reconciliation time, a replica will try the next 
immediate neighboring replica.  One replica can 
potentially belong to many reconciliation rings because 
selective replication permits different replicated items 
in the replicated volume to be shared with different 
groups of replicas.  

File accesses to remote replicas and various types 
of node and network failures are not modeled for this 
initial study, but will be areas of interest for future 
study.  

 
4.2 Parameter  space 
 
Table 4.1 summarizes the major simulation 
configurations and parameters.  Our simulation does not 
model the complexity of the operating system and 
underlying hardware.  Those delays are modeled by 
parameterization of a certain measured system into 
analytical equations [11; 33].  In our case, we measured 
an early prototype of the Rumor Replicated File System 
(RRFS) [27, 9], running on Dell Latitude XP 486, 100 
MHz laptops with 12 Mbytes of memory and a Linux  



Parameters Specifications 
Simulation duration 576 hours 
Calibrated hardware platform Dell Latitude XP 486 100 Mhz (12 Mbytes of memory) 
Calibrated OS platform Linux 2.0.x 
Network channel 10Mb Ethernet 

 
 
Environment 
configuration 

Physical topology Single-level Ethernet-connected servers 
Replication system 
File-sharing pattern 

RRFS 
Trace-data based 

User access skewing function Distribution mapped from the trace data 
Number of files 10150 files (from the trace; ~200 Mbytes of data) 

 
 

System 
configuration 

File size distribution 
File access interval distribution 
Reconciliation topology 

Trace-data based 
Trace-data based 
Adaptive ring 

 
Independent 
variables 

Replication granularity 
Percentage of portables 
Connection duration for portables 
Replication factor 
Reconciliation interval 

Full volume, selective subset of data in the volume 
0, 30, 60, 90 percent 
2 to 12 hours per day with a 2-hour step 
2, 5, 8, 11, 14, 17 replicas1 
1 to 21 hours with a 3-hour step1 

 
Table 4.1: Major simulation parameters. 

 
Metrics Definitions 

Reconciliation time Elapsed time from the moment a replica requests reconciliation with a remote replica to  
  the moment that all files in the local replica are reconciled, excluding aborted sessions2  

CPU overhead Percent CPU utilization per replica due to reconciliation processes, including the aborted  
  sessions 

Transmission volume per replica Bandwidth required per replica for periodic reconciliation processes 
Aggregate transmission volume Global bandwidth required for all replicas to execute periodic reconciliation processes 

 
 
 

 
Cost metrics 

 
Storage  Storage required per replica to keep track of the replicated states 
Conflict rate Number of conflicts per replica per hour 
Time to stale read  Expected number of days before encountering one stale read 

 
QoS metrics 

Time to stale write  Expected number of days before encountering one stale write 
 

Table 4.2: Definitions of various metrics. 

                                                           
1 Seventeen replicas would take approximately one hour to complete a full volume reconciliation, which imposes the minimum reconciliation interval 
to be one hour. 
2 The time spent for aborted sessions is the elapsed time from the moment at which a replica requests reconciliation with a remote replica to the 
moment at which the replica receives the rejection message from the remote replica.  This metric excludes the aborted sessions because it measures the 
average execution time for a successful reconciliation process. 

1.2.x operating system.  Certain results (e.g., running 
time of the system) are thus contingent on the versions 
of the software and hardware we chose.  The input 
traffic patterns are extracted from the Locus trace with 
the methods we described in Section 3.   
 For the independent variables, we conducted more 
than 2000 pilot runs over a large parameter space with 
various resolutions to locate the variables and regions 
of high variability for further investigations.  The 
parameter space and resolution were reduced when 
necessary to accelerate the data collection process.  

Our simulation investigated the coarsest possible 
granularity—full volume, and the finest possible 
granularity—selective replication, with perfect 
prediction of upcoming file references.  To examine the 
effects of portable users, we varied the percentage of 
portable users from 0 to 90 percent.  The connection 
duration for those portables was varied from 2 to 12 

hours according to the description in Section 3.  
Replication factor, or the number of data copies, was 
varied from 2 to 17 replicas.     

Reconciliation interval describes the frequency of 
the reconciliation process.  In most systems, 
reconciliation is performed immediately after an update 
[8], periodically [27], or on demand [30].  The results 
presented in this paper use periodic reconciliation only, 
with no fast propagation at update time.  We varied the 
interval from 1 to 21 hours.   
 
4.3 Metr ics 
 
Table 4.2 defines various cost and quality of service 
(QoS) metrics.  The cost metrics are fairly straight-
forward.  For QoS, one popular metric is the conflict 
rate.  However, as shown in [33, 17], this metric is 
flawed.  Consider the scenario where detection and 



recording of conflicts occur only during a reconciliation 
process.  We can reduce the number of conflicts to zero 
by never reconciling, resulting in no update ever being 
propagated anywhere.  Despite its popularity, we will 
omit the conflict-rate metric in this paper.  Instead, we 
use time to stale read and time to stale write metrics.  A 
stale read or stale write occurs whenever a user reads or 
writes an out-of-date replica of a file.  These metrics are 
hard to measure in a real system, as they depend on 
global knowledge, but they can easily be measured in 
our simulation. 
 
5 Results 
 
The scaling of optimistic replication systems is 
essential for their widespread use.  Section 5.1 first 
explores the properties required for scaling such mobile 
systems, and Section 5.2 presents the effects of using 
portable computers in the context of selective 
replication. 
 
5.1 Scaling proper ties of optimistic replication 
 
We evaluate scaling from the perspective of both 
implementation and real usage patterns.  Figure 5.1 
compares the running time required to perform 
reconciliation for full and selective replication methods. 
The full replication shows linear scaling, and the  
selective replication shows near-constant scaling 
beyond five replicas. 

 

 
Figure 5.1:  Reconciliation time for full 
optimistic replication and selective optimistic 
replication.  Standard deviation (not clearly 
visible) is within 1 percent for each data point. 
 
Selective replication can achieve near constant scaling 
because it exploits the user pattern, which shows that 
the majority of files are not shared beyond four replicas, 
and selective replication stores the state information 
only for replicas participating in shared data accesses.  

On the other hand, full replication stores the state 
information for all replicas, and the processing 
overhead is directly proportional to the replication 
factor.  
 Intuitively, high-precision and fine-grained 
targeting of selective replication should yield minimum 
costs and the highest QoS.  Table 5.1 shows differently.  
Selective replication is indeed cheaper.  The 
reconciliation time is very likely to stay within half an 
hour for 50 to even 100 replicas.  For CPU utilization, 
selective replication saves 68 percent; for transmission 
volume, 16 percent or 2.8 minutes on 14.4-Kbyte 
modems; for aggregate network bandwidth, 18 percent; 
and for storage, 47 percent.  However, selective 
replication loses big on the QoS.  For times to stale read 
and stale write, selective replication loses 45 and 47 
percent correspondingly. 
 

Costs3 Metrics 
Full rep. Sel. rep. 

Recon. time (min.) 38 24 
CPU overhead (during the recon. time) 19%  6.0%  
Trans. vol. per replica (Mbytes/hr) 1.9 1.6 
Aggregate trans. vol. (Mbytes/hr) 17 14 
Storage per replica (Mbytes/rep) 19 10 
Time to stale read (days/stale read) 12 6.3 
Time to stale write (days/stale write) 22 12 

 
Table 5.1:  Comparison of full optimistic 
replication and selective optimistic replication 
under various predefined metrics. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.2:  Example of better QoS by full 
replication than selective replication. 
 
 

 

                                                           
3 Median values are presented because of the skewing of various data 
curves.  For each replication method, the median values resemble the 
simulation environment of 30 to 60 percent portable users with 8 
hours of daily connection duration, 8 to 11 replicas, and 9- to 13-hour 
reconciliation intervals. 
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Percentages of portable computers4 Metrics 
0% 30% 60% 90% 

Reconciliation time (minutes) 24 24 24 24 
CPU overhead (during the reconciliation time) 8.2% 6.8% 3.9% 2.9% 
Transmission volume per replica (Mbytes/hr) 2.3 1.9 1.0 0.89 
Aggregate transmission volume (Mbytes/hr) 22 19 11 8.0 
Storage per replica (Mbytes/rep) 10 10 10 10 
Time to stale read (days/stale read) 6.8 6.4 5.8 5.9 
Time to stale write (days/stale write) 12 12 12 11 

 
Table 5.2:  Effects of various percentages of portable computers on predefined metrics. 

 
 

Hours of connection per day5 Metrics 
0 2 4 6 8 10 12 24 

Reconciliation time (minutes) 0 24 24 24 24 24 24 24 
CPU overhead (during the reconciliation time) 0.0% 3.3% 4.2% 5.6% 6.0%  6.3% 6.3% 8.2% 
Transmission volume per replica (Mbytes/hr) 0.0 0.92 1.3 1.5 1.6 1.8 1.9 2.3 
Aggregate transmission volume (Mbytes/hr) 0.0 6.5 8.6 13 14 16 17 22 
Storage per replica (Mbytes/rep) 0 10 10 10 10 10 10 10 
Time to stale read (days/stale read) 3.5 4.9 5.4 6.0 6.3 6.4 6.4 6.8 
Time to stale write (days/stale write) 9.3 10 11 11 12 12 12 12 

 
Table 5.3:  Sensitivity of laptop network connection period on the predefined metrics. 

 

                                                           
4 Median values are presented because of the skewing of various data curves.  The median values resemble the simulation environment of 8 to 11 
replicas and 9- to 11-hour reconciliation intervals. 
5 Median values are presented because of the skewing of various data curves.  The median values resemble the simulation environment of 30 to 60 
percent portables, 8 to 11 replicas, and 9- to 13-hour reconciliation intervals. 

With some investigation, we found that the extra 
work performed by full optimistic replication actually 
assists the indirect propagation of data not shared by the 
local replica.  Figure 5.2 illustrates a scenario using the 
adaptive ring  

Adaptive ring 1 (replica 1, 3, and 4) shares file A, 
and adaptive ring 2 (replica 1, 2, and 4) shares file B.  
By the definition of selective optimistic replication, 
when replica 1 and 2 reconcile, only file B is 
synchronized; similarly, when replica 1 and 3 reconcile, 
only file A is synchronized.  For both file A and file B 
to reach replica 4, assuming no failures and no other 
data propagation paths are available, selective 
replication requires a minimum of four reconciliation 
processes, but full replication requires only two.  Full 
replication can perform better when the sharing groups 
are densely interconnected.  Our QoS result suggests 
dense interconnection of sharing groups in the trace 
because the QoS greatly benefits from the redundant 
data paths. 
 The number of states stored by the system and the 
actual degree of sharing by the users have a strong 
influence over replication costs; the degree of freedom 
for update dissemination and the amount of overlapping 
among the sharing group affect the replication QoS.  

Combining the two is essential for large-scale and high-
quality optimistic replication service. 
 
5.2 Desirable system character istics for  

por table computers 
 
To study mobile computing, we have simulated a 
scenario with various percentages of portable 
computers, with a mean connection duration of eight 
hours to reflect a common daily work cycle.  Table 5.2 
shows the effects of various percentages of portable 
computers on our predefined metrics.   

These numbers are encouraging; the presence of 
disconnected units alleviates the replication workload.  
The reconciliation time and storage remain constant.  
The CPU utilization rate can drop by up to 65 percent; 
transmission volume, 61 percent (a 13-minute reduction 
on 14.4-Kbyte modems); and aggregate network 
bandwidth, 64 percent.  These reductions are all due to 
fewer reconciliations being performed, since 
disconnected machines cannot reconcile.  On the other 
hand, the QoS loss is relatively small, and the 
degradation is graceful.  Times to stale read and stale 
write degrade by 13 and 8.3 percent, respectively.  
 We have also investigated the effects of connection 
duration from 2 to 12 hours.  Table 5.3 shows the 



effects of varying connection duration on our 
predefined metrics.  The 0-hour case represents the 
worse QoS, where no reconciliation occurs for any 
replicas, and the 24-hour case represents the best case 
with the given parameter settings.  

The QoS numbers in the worse case appear to be 
high and suggest that the shared accesses are relatively 
infrequent or highly localized.  We believe that the 
locality is the primary cause, because 13 percent of 
trace accesses are shared accesses.  The QoS numbers 
in the best case set the upper bound for the QoS we can 
achieve with daylong connectivity; times to stale read 
and stale write can improve by 94 and 29 percent 
respectively.  Various cost and QoS metrics show 
asymptotic behavior as the connection duration 
lengthens.  Notably, QoS improves little beyond eight 
hours of connection duration.  This result complies with 
our intuition that longer connection duration beyond 
working hours should not contribute significantly to 
QoS. 

From a different angle, network disconnection 
duration does introduce complexities into optimistic 
replication systems.  If the reconciliation interval is one 
hour and the disconnection period is one week, or if the 
reconciliation interval is one week and the 
disconnection period is one hour, the net effect for both 
cases is equivalent to using a reconciliation interval of 
one week.  Whenever both reconciliation interval and 
disconnection coexist, the longer duration of the two 
dominates.  In our experiments, effectively we have two 
sets of computers (portables and non-portables) 
reconciling at two different rates.  Future investigation 
requires repartitioning of the problem space, to find 
simpler relationships among the reconciliation interval, 
disconnection patterns, and other metrics.   
 
6 Related work 
 
Many analytical modeling and simulation studies have 
been done to compare the performance of various 
replication control protocols, but optimistic consistency 
strategies are often not addressed [5; 12; 20]. 
 Golding’s thesis [4] investigates optimistic 
replication in the static scenario without considering 
disconnected operations.  Golding describes a 
timestamped anti-entropy protocol that has a one-to-one 
mapping to our reconciliation process.  His primary 
QoS metric is the mean time to convergence of 
concurrent updates [3].  One major concern with his 
approach is the lack of updates during the convergence 
period, and his results do not capture the effects of user 
patterns.  This static assumption precludes the dynamic 
possibility that the update rate of users can exceed the 

convergence rate.  Under such a scenario, the system 
can reach a highly unstable state. 

Scaling of optimistic replication is a highly 
controversial topic.  Gray and associates [6] have 
expressed some of the strongest warnings against 
optimistic replication.  Through the analytical approach 
and assumption of uniform access patterns of replicated 
data, they suggest that the scaling of optimistic 
replication is questionable.  However, from our prior 
study [33], we have shown that the temporal access 
locality alone can improve the QoS by an order of 
magnitude.  From the perspective of data sharing, 81 
percent of our files are only two-way shared among the 
users, and the overall system scales with minor 
degradation of service quality.  Similar to this 
uniformity assumption, Gray and associates made other 
assumptions on the uniform usage patterns, which 
depict unrealistic and overly pessimistic predictions.  
 Kistler and Satyanarayanan [15] at CMU have 
conducted an empirical study of disconnected 
operations of Coda, which utilizes the limited optimistic 
replication capabilities in the Andrew File System [14] 
to offer optimistic replication and caching support for 
operation with network disconnection.  The primary 
interest of their study is to prove the feasibility of 
disconnected operation.  With trace data, researchers 
demonstrated the feasibility by showing that the 
average working set is small and adequate for caching.  
They also demonstrated the low likelihood of 
concurrent updates [15; 22].  However, simulation is 
still the primary venue to explore large parameter space 
and hypothetical scenarios. We are also seeking 
opportunities to analyze existing trace data from 
various sources to formulate the network disconnection 
patterns in our future work. 
 
7 Lessons learned and recommendations 
 
We have compared full optimistic replication and 
selective optimistic replication schemes to characterize 
requirements for scaling.  Future optimistic replication 
systems should exploit the low degree of sharing 
present in user patterns to reduce system costs, and the 
interconnection among the replicas should be 
sufficiently dense to leverage the indirect data 
propagation.  However, for the selective replication 
case, we also see that aggressive local cost optimization 
can actually reduce the opportunity for indirect update 
propagation and degrade global QoS.  Future system 
design should consider both local and global system 
behaviors.  For example, one candidate for our future 
study is to consider selective optimistic replication that 
stores the states for the top 10 percent of frequently 



modified files.  This 10 percent increase of overhead 
may accomplish 90 percent of the benefits of full 
optimistic replication. 

Another finding is that the presence of portable 
computers alleviates the resource costs by 60 percent, 
and the degradation of QoS is only 10 percent.  This 
finding also reveals the similarities between network 
disconnection and reconciliation interval, and suggests 
further investigation. 

Finally, from full and selective replication 
experiments we have found that no single configuration 
can win in both areas of cost and QoS.  However, it is 
our first step toward understanding and designing a 
cost-effective, high-QoS optimistic replication system 
for mobile computing environments. 
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