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Abstract
�� ��

 
File system performance has been greatly influenced by 

disk caching mechanisms.  As the size of memory increases, 
common workloads are more likely to run completely from 
memory, and the effects of L2 caching and underlying 
hardware are becoming more visible. 

This paper investigates performance anomalies observed 
when measuring and comparing the memory performance of 
various leading file systems.  We discovered that without 
considering the effects of L2 caching policy, memory 
footprints of file systems, states of L2 cache, and memory 
page alignments, existing microbenchmarks could produce 
numbers that are significantly misleading and could result in 
poor designs and improper conclusions about relative file 
system performance. 

We recommend that the design of file system 
microbenchmarks for memory-rich environments should 
carefully consider the initial states of memory and L2 cache, 
subtle warm-up effects, the cache eviction policy, 
interactions between workload size and the memory and 
cache sizes, and the management granularity of memory and 
the L2 cache. 

1  INTRODUCTION 
The performance of modern file systems is heavily 

dependent on multi-level caching, and minor tuning of the 
caching mechanisms can have huge effects on the final 
results.  In traditional benchmarking environments where 
disk is the primary storage medium, the major caching 
effects on performance come from cached disk blocks in 
memory.  However, as the memory size increases, more 
programs execute entirely from memory with no disk 
activity.  The amount of memory available has made 
caching of disk contents vastly more effective.  However, 
one result of this change is that the effects of L2 caching are 
becoming increasingly visible in benchmarks and in real 
programs.  In particular, microbenchmark numbers, which 
guide many important file system design decisions, are now 
highly susceptible to the subtleties of underlying hardware.  
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Currently, popular file system benchmarks are designed to 
measure the file system’s disk performance.  Exercising the 
disk with a sizable working set is still the dominant practice.  
An implicit assumption was that memory performance 
numbers could always be obtained from these benchmarks 
by simply shrinking the size of the working set below the 
size of the physical memory.  However, we discovered that 
benchmarks also need to consider L2 caching effects to 
provide true insight into file system performance. 

Through the process of examining performance anomalies 
encountered when comparing memory-based and disk-based 
file systems, this paper demonstrates how the L2 caching 
policy, memory page alignment, the state of the L2 cache, 
and the sizes of file system footprints can significantly 
affect file system microbenchmark numbers in non-intuitive 
ways.  To the extent that file systems are designed or chosen 
for use based on the results of such benchmarks, these 
effects can be misleading.  In some cases, these effects 
cause a 20% or greater deviation in the key metrics 
produced by these benchmarks.  This paper (Section 7) also 
makes a number of recommendations on how to design 
microbenchmarks to measure file system performance in the 
emerging memory-rich computing environments. 

To our best knowledge, this study is the first investigation 
into the memory performance of systems using existing 
microbenchmarks that are designed to measure the disk 
performance of file systems. 

2  MICROBENCHMARK ANOMALIES 
REVEALED 

During the microbenchmarking phase of our research on 
the Conquest memory-based file system [18], we 
encountered a number of performance anomalies that 
seemed inexplicable.  

The performance study involved both memory-based and 
disk-based file systems.  The memory-based file systems 
were ramfs by Transmeta [14] and Conquest, and the disk-
based file systems were ext2fs [2], reiserfs [8], and SGI XFS 
[16].  Without examining the details of individual file 
systems, intuitively memory-based file systems should be 
able to outperform disk-based file systems under all 
circumstances.  However, the results were surprising. 

The first two major anomalies were found using the Sprite 
LFS large-file microbenchmark [12].  This discovery was 
particularly unexpected because of its popularity for 
evaluating file systems [12, 13, 9, 15].   



The Sprite LFS large-file microbenchmark writes a large 
file sequentially (with fsync), reads from it sequentially, 
writes a new large file randomly (with fsync), reads it 
randomly, and finally reads it sequentially.  The final read 
phase was originally designed to measure an important case 
for a log-structured file system.  The file size we used was 1 
MB.  This file fit into main memory for all file systems 
tested.    The detailed experimental settings are described in 
Section 3. 
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Figure 1:  Sprite LFS large-file microbenchmark for one 1-MB file.  The 
benchmark consists of five phases—sequential write, sequential read, 
random write, random read, and sequential read.  The graph shows two 
major anomalies:  (1)  For the first sequential read, memory-based file 
systems are slower than some of the disk-based file systems;  (2)  Memory 
is believed to provide a relatively uniform access speed for any access 
patterns.  However, random read is slower than the second sequential read. 

 
Figure 1 shows our early microbenchmark results and 

raises questions regarding two major anomalies:   

1. Why are memory-based file systems slower than 
some of the disk-based file systems in sequential 
read performance?  In particular, why are Conquest 
and ramfs significantly slower than ext2fs and SGI 
XFS in terms of the bandwidth for the first sequential 
read?  This question is puzzling because the code 
bases for Conquest and ramfs are significantly 
smaller and simpler than those of ext2fs and SGI 
XFS.  Smaller and simpler code should intuitively 
translate into better performance (and, indeed, it 
usually does).   

2. Why are random memory reads significantly slower 
than sequential memory reads?  Conceptually, the 
access times for any random memory location should 
be relatively uniform, unless optimizations accelerate 
the sequential accesses.  However, since data is 
moved in 4-KB blocks, most bytes should be 
transferred sequentially. 

To conduct detailed studies of these anomalies, we chose 
to use the Sprite LFS large-file microbenchmark for its 
relative ease of use for instrumentation, profiling, and 
analyses.   

3  EXPERIMENTAL SETTINGS 
For ease of presentation and discussion, the remainder of 

the paper compares Transmeta’s ramfs to the popular ext2fs.  

The measurements for Conquest, reiserfs and SGI XFS are 
omitted because the ramfs and ext2fs numbers capture the 
relevant differences between disk-based and memory-based 
file systems. Conquest-specific questions (such as, why 
Conquest can outperform ramfs) are covered in [18]. 

Both ramfs and ext2fs follow the VFS interface and use 
the same generic read and write routines provided by the 
VFS.  However, ramfs uses the caching data structures 
under VFS to store file system contents and metadata 
directly, and those temporary data structures do not provide 
persistence of data after a system reboot.  Ramfs should 
approximate the practical achievable bound for memory 
performance of file systems.  Ext2fs, on the other hand, uses 
disk as the final storage destination for data and metadata.  
Ext2fs is also one of the most widely used file systems in the 
UNIX world, and it outperforms other disk-based file 
systems on a wide variety of benchmarks [2]. 

 
Table 1:  Experimental platform. 
 

 Experimental platform 
Manufacturer 
model 

Dell PowerEdge 4400 

Processor 1 GHz 32-bit Xeon Pentium  
Processor bus 133 MHz 
Memory 4x512 MB, Micron MT18LSDT6472G, SYNCH, 

133 MHz, CL3, ECC 
L2 cache 256 KB Advanced 
Disk 73.4 GB, 10,000 RPM, Seagate ST173404LC 
Disk partition for 
testing 

6.1 GB partition starting at cylinder 7197 

I/O adaptor Adaptec AIC-7899 Ultra 160/m SCSI host 
Adaptor, BIOS v25306 

OS Linux 2.4.2 

 
Our experimental platform is described in Table 1.  Both 

the ramfs and ext2fs file systems were mounted and created 
with default settings.  For each file system, the performance 
numbers were collected over six runs, but averaged over 
only the last five runs to avoid warm-up effects.  All results 
are presented at the 90% confidence level. 

4  WHY IS RAMFS SLOWER THAN 
EXT2FS? 

As shown in Figure 1, ramfs is slower than ext2fs during 
the first sequential read phase of the LFS benchmark.  This 
section describes a series of hypotheses and experiments 
performed to trace the cause of this memory-based file 
system running slower than the disk-based one. 

4.1 Sequential Read Differences Between 
ext2fs and ramfs 

Since both ramfs and ext2fs share the same generic code 
under VFS, when workloads fit in the main memory we 
expect both file systems to achieve similar performance, but 
perhaps reaching a steady state at different speeds.  
Therefore, we ran an experiment in which we performed 
two sequential reads after the sequential write. 

 
 

first 
second 



Table 2:  Test of repeated sequential reads.  A sequential write (with 
fsync) is followed by two sequential reads. 
 

 ext2fs ramfs 
sequential write (MB/s)  14 (+0.29)  390 (+0.80)  
sequential read (MB/s) 520 (+ 1.4)  400 (+0.65)  
sequential read (MB/s)  530 (+ 0.65)  520 (+2.5)  
sequential read (MB/s) 530 (+2.6)  530 (+0.73)  

 
Table 2 shows that a warm-up effect for sequential reads 

is evident for both file systems, and ramfs achieves nearly 
the same performance as ext2fs in the steady state.  This 
somewhat confirms our intuition that the shared code base 
should result in similar performance, but there is still a 
significant warm-up effect to explain.   

Why does ext2fs warm up faster than ramfs?  We had 
several hypotheses:  (1) The default file system on the test 
machine is ext2fs; therefore, path resolutions (for various 
files and shared libraries) that involve ext2fs may cause 
contention for cache lines with ramfs during benchmarking.  
In a personal communication, Linus Torvalds [17] also 
speculated that: (2) ramfs may have cache layout problems, 
and (3) ramfs may have a different warm-up behavior for 
sequential reads than ext2fs because of different data cache 
buffer use. 

We attempted to examine various hypotheses using the 
Linux kernel profiling facility, but it yielded inconclusive 
results.  Detailed profiling significantly distorted the 
collected numbers at the microsecond scale. 

Then we tried one sequential read on a pre-existing 1-MB 
file, followed by another sequential read. 
 
Table 3:  Test of the warm-up behavior for sequential reads 
 

 ext2fs ramfs 
sequential read (MB/s) 480 (+0.98)  480 (+1.3)  
sequential read (MB/s) 520 (+ 2.7)  520 (+0.0)  

 
Table 3 shows that both ramfs and ext2fs have similar 

numbers for two consecutive sequential reads, suggesting 
that our various hypotheses are unlikely candidates to 
explain the fast warm-up effects of ext2fs.  Since both sets 
of numbers are statistically the same, even if external factors 
such as the choice of default file systems exist, the effects 
are likely to be trivial.  If ramfs has cache layout problems, 
its performance here should be noticeably slower than 
ext2fs.  Also, both file systems warm up at similar rates, so 
different ways of using the memory data cache do little to 
explain the anomaly.   

4.2 Were the Initial States of the 
Microbenchmark Bad? 

As a sanity check, we took a number of measurements to 
ensure the same initial states for various experiments.  We 
rebooted our benchmarking machine after each 
experimental run, but the booting process might still lead to 
inconsistent caching states.  We modified the original Sprite 
LFS large-file microbenchmark to perform a sequential read 
on a pre-existing 1-MB file followed by a sequential write 

(with fsync) and a sequential read on the same file.  This 
precaution should ensure that all experiments started with 
the same state after performing the first sequential read. 
 
Table 4:  Initial condition test.  A sequential read was performed on a pre-
existing 1-MB file, followed by a sequential write (with fsync) and a 
sequential read. 
 

 ext2fs ramfs 
sequential read (MB/s) 480 (+1.5)  480 (+1.4)  
sequential write (MB/s) 14 (+ 0.47)  400 (+1.2)  
sequential read (MB/s)  520 (+ 0.73)  400 (+1.3)  

 
Table 4 shows that both ext2fs and ramfs have similar 

performance for the first sequential read, confirming that 
both sets of experiments have similar initial states.  
Therefore, the cause of the anomaly is likely to be the 
sequential write.  However, why would the same sequential 
write operation cause the subsequent sequential read to 
speed up by 40 MB/s for ext2fs, while slowing it down by 
80 MB/s for ramfs?  Is it possible that a sequential write 
somehow warms up the L2 cache locality for ext2fs and 
destroys the locality for ramfs for the subsequent sequential 
read?  

4.3 Does L2 Caching Buffer Management 
Cause the Anomaly? 

Linux’s memory manager provides high-speed memory 
allocation by writing back dirty memory pages to disk 
speculatively in several ways.  Notably, if the memory is 
being allocated at a rapid rate, the memory write-back will 
be performed at a higher rate to anticipate near-term 
allocations.  Also, whenever the allocated memory exceeds 
a certain threshold, the memory manager will also start 
writing back dirty pages to avoid an exhaustive search for 
allocations. 

L2 caching tries to handle bursty allocations in a different 
manner.  The Pentium® III has a streaming I/O option to 
bypassing L2 caching for large sequential accesses [7].  
Should the high I/O bandwidth of ramfs trigger the 
streaming I/O mechanism, it would leave the L2 cache with 
little content available for reuse during the subsequent read 
operation.    

Therefore, we designed an experiment to test the write 
request rates on the triggering of any streaming I/O 
mechanism.  For the sequential write, we inserted a 
usleep call to sleep 1 µs within each iteration of write 
call, so the write request rate was significantly slowed down 
to a similar speed for both ramfs and ext2fs.  If either the 
cache buffer management or the streaming I/O mechanism 
caused this performance anomaly, we should then see 
sequential read results significantly different from the last 
row of Table 4. 

Unfortunately, Table 5 shows that the rates of write 
operations have little effect on the sequential read 
bandwidth, disproving hypotheses involving special 
sequential hardware logic as the explanation for the 
anomaly. 



 
Table 5:  L2 caching policy test.  Each write system call is followed by a 
sleep of 1 µs.  The slow sequential write of a file is followed by a normal 
sequential read. 
 

 ext2fs ramfs 
sequential write (with usleep)  
(KB/s) 

200 (+0.32)  200 (+0.40)  

sequential read (KB/s) 510 (+ 1.9)  410 (+5.5)  

4.4 Do Random Writes Also Cause the 
Anomaly? 

Results obtained from the slow sequential write 
experiment raised the suspicion that the sequential nature of 
a write may contribute little to this anomaly.  Therefore, we 
conducted an experiment with a random write (with 
fsync) followed by a sequential read. 
 
Table 6:  Test on effects of random writes.  A random write (with fsync) 
is followed by a sequential read. 
 

 ext2fs ramfs 
random write (MB/s) 9.2 (+0.27)  280 (+2.3)  
sequential read (MB/s) 510 (+ 1.4)  400 (+1.4)  

 
Table 6 shows that a random write can also cause 

abnormal behavior in the subsequent sequential read.  
Therefore, any write access can cause a subsequent read to 
achieve higher bandwidth for ext2fs and lower bandwidth 
for ramfs, pointing toward a completely different 
hypothesis. 

4.5  Forming a New Hypothesis 
One puzzling aspect of this performance anomaly was the 

inverse association between the size of the file system 
memory footprint and the performance.  From the code 
base, the cache footprint of ramfs was significantly smaller 
than ext2fs.  But, why would a smaller cache footprint 
result in worse performance?   

Given that the Sprite LFS large-file microbenchmark 
measures the bandwidth of read and write operations, the 
entire benchmark should be data-intensive, and the timing 
should be strongly correlated to the amount of data being 
transferred into and out of the L2 cache.  Since 
microbenchmarking experiments revealed only the black-
box behavior of the system, a simple and naïve model of the 
L2 cache was used to visualize the underlying mechanisms 
within the black box. 

Suppose an L2 cache has four cache lines, and the first 
two phases of the microbenchmark operate on a file with a 
size of 16 file segments, with each segment occupying one 
cache line.  For the scenario of a large cache footprint, the 
file system and the benchmark being run have an active 
footprint of three out of four cache lines (Figure 2).  This 
simple model assumes that the model starts with only the 
active cache footprint in the cache.  The model also assumes 
that the effects of cache collisions are minimal, and that 
cache collisions will never evict the cache lines containing 
the active footprint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  The model for a large cache footprint.  The first two phases of 
the Sprite LFS large-file benchmark are analyzed with a simple L2 cache 
with four cache lines.  The active footprint of the file system and 
benchmark being tested consists of three out of four cache lines, and the 
file being tested has a size of 16 segments, with each segment occupying 
one cache line. 
 

During the sequential write phase, the first write can 
directly modify the clean cache line, and all subsequent 
writes require purging the dirty cache content before 
modification.  During the sequential read phase, the first 
read requires purging the dirty cache content, because the 
previous write operation leaves the end of the file in the last 
cache line, and the read cannot reuse the content.  However, 
all subsequent reads can simply overwrite the previously 
read-in cache line from memory, since those lines are not 
modified during the read operation and thus require no 
eviction for committing changes. 

For the scenario of a small cache footprint, the active 
footprint is decreased to one cache line (Figure 3).  During 
the sequential write phase, the first three writes can directly 
modify the clean cache lines, and 13 subsequent writes 
require purging dirty cache content.  During the sequential 
read phase, the first three reads need to purge the dirty cache 
content since cache stores the last three cache lines of the 
file being benchmarked, and the read starts from the 
beginning.  The other 13 reads can simply overload the 
previously read-in cache lines from memory. 
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Figure 3:  The model for a small cache footprint.  The first two phases of 
the Sprite LFS large-file benchmark are analyzed with a simple L2 cache 
with four cache lines.  The active footprint of the file system and 
benchmark being tested consists of one cache line, and the file being tested 
has a size of 16 segments, with each segment occupying one cache line. 
 

Table 7 summarizes the differences between the two 
scenarios.  Although simple, this model shows that it is 
possible for a smaller cache footprint to result in a slower 
sequential read after a sequential write.  A smaller cache 
footprint leaves more room to cache dirty data during the 
sequential write phase, and the sequential read phase needs 
to finish committing previous dirty cache content before 
reading new information back to cache.  In essence, the file 
system with the larger footprint has already paid nearly the 
complete price for cache flushes during its write phase, 
while the file system with the smaller footprint has used the 
cache to defer some of the costs until later. 
 
Table 7:  Summary of the first two phases of Sprite LFS large-file 
macrobenchmark results using a simple cache model with four cache lines 
and a file with a size of 16 cache lines. 
 

 Large cache footprint Small cache footprint 
sequential write  16 writes, 15 flushes 16 writes, 13 flushes 
sequential read  16 reads, 1 flushes 16 reads, 3 flushes 

 
This hypothesis also explains why the anomaly of the 

sequential read occurs also after a random write, since a 
smaller cache footprint leaves more room to cache dirty data 
for any write patterns. 

 

4.6 Verifying the New Hypothesis 
We tried to verify our hypothesis through low-level 

instrumentation, high-level microbenchmarking, and 
reproducing the same behavior at the user-level.   

4.6.1  Performance Counter Instrumentation 
Our first measurement was of the amount of data being 

transferred into and out of the L2 cache.  The 
instrumentation tool we used was Rabbit [5], a performance-
counters library for Intel processors running Linux.  The 
package allowed us to monitor a few registers with little or 
no disturbance to the overall performance numbers, even for 
microbenchmarks.  We monitored CPU registers that 
contain information regarding the movement of data for the 
L2 cache.  We counted the total number of events and also 
tracked the elapsed times to compute the volume of data 
being moved. 

At the beginning of a sequential read after a write 
operation, ramfs has to move 230 KB of modified data out 
of the 256-KB L2 cache, while ext2fs moves only 66 KB of 
modified data from the L2 cache.  Given that a write 
operation precedes the read operation, the moved bytes are 
likely to represent the recently written part of the 1-MB file.  
Also, given that ramfs has a smaller cache footprint than 
ext2fs, the L2 cache can hold more dirty data when running 
ramfs than ext2fs.  Since both file systems need to read in 
the 1 MB of data after moving the dirty data out of the 
cache, the discrepancy in data volume being moved explains 
why ext2fs can achieve higher read bandwidth than ramfs.     

4.6.2  Microbenchmark Behaviors 
At the microbenchmark level, we first ran an experiment 

with a few sequential write operations (with fsync).  We 
expected the first sequential write to affect the performance 
of the second sequential write.  Also, starting from the 
second sequential write, the bandwidth numbers should not 
fluctuate as much. 
 
Table 8:  Test on repeated sequential writes. 
 

 ext2fs ramfs 
sequential write (MB/s) 13 (+0.61)  380 (+1.4)  
sequential write (MB/s) 16 (+ 0.32) 350 (+0.80)  
sequential write (MB/s) 16 (+ 0.32) 350 (+0.65)  

 
Table 8 shows that the second sequential write for ext2fs 

has an increased bandwidth (probably due to the caching of 
ext2fs file system code), while the second sequential write 
for ramfs has a reduced bandwidth (probably because of the 
need to purge many dirty cache lines from the previous 
sequential write). 

Originally, we planned to modify ramfs to use a larger L2 
footprint, but altering the source code would make our test 
methods less portable and repeatable for future 
investigations.  Instead, we used a 128-KB file to see if 
ramfs can outperform ext2fs when both the file being tested 
and the ramfs footprint can fit into the 256-KB L2 cache.  
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(Note that since ext2fs flushed 66 KB of data in the previous 
experiment, we expected that the 128-KB file and the ext2fs 
footprint would not fit into the 256-KB L2 cache.)  The 
experiment consists of a sequential write (with fsync), 
followed by two sequential reads. 
 
Table 9:  L2 cache test.  A sequential write on a 128-KB file (with fsync) 
is followed by two sequential reads. 
 

 ext2fs ramfs 
sequential write (MB/s) 4.9 (+0.43)  600 (+0.61)  
sequential  read (MB/s) 440 (+ 5.7)  810 (+25)  
sequential  read (MB/s) 1200 (+ 35)  1400 (+52)  

 
Table 9 shows that when ramfs can read recently written 

content completely from the L2 cache, it can significantly 
outperform ext2fs.   

4.6.3  Testing a User-Level Program 
To extend the applicability of our findings, we created a 

trivial array-indexing program to reproduce the write-back 
effect of L2 caching.  The user program walks through an 
integer array of 1 MB, assigning each array entry a different 
integer, followed by two loops that retrieve the value of 
each array entry to a variable.  Although they were designed 
to exercise the same behavior as the benchmark, these types 
of operations are reasonably realistic in various applications. 
 
Table 10:  A user-level test. 
 

 User program 
sequential write (MB/s)  220 (+0.32)  
sequential read (MB/s) 150 (+ 31)  
sequential read (MB/s) 200 (+ 1.3)  

 
Table 10 shows an anomaly similar to that in the 

microbenchmark, verifying that the effects of L2 caching 
are easily visible in places other than simple file system 
microbenchmarks.   

However, these numbers have peculiarities of their own.  
These bandwidth numbers appear to be low compared to 
Table 2, and the sequential write bandwidth is slightly 
higher than the sequential read bandwidth.  We do not yet 
have an explanation for these peculiarities, since a detailed 
investigation would be an unnecessary digression for the 
purpose of this paper.  However, this user program does 
show the difficulty of designing microbenchmarks that 
actually match real program behavior. 

4.6.4  Lessons Learned 
The numbers obtained from these three levels of 

experiments teach us several lessons: 

• Intuitively, a smaller cache footprint should yield faster 
performance, but under certain workloads, a smaller 
footprint can also increase the effects of a write-back 
cache policy, causing the performance of a subsequent 
phase of a benchmark to swing in either direction. 

• The effects of memory and L2 caching are easily 
visible at the application level, beyond file system 
microbenchmarks.   

• To measure the memory performance of file systems 
under microbenchmarks, we have to consider the L2 
cache states at each phase of measurement. 

Incorporating the states of the L2 cache into the design of 
microbenchmarks can introduce some complexity, since the 
cache size, cache line eviction policy, and n-way 
associativity are different from machine to machine.  Also, 
microbenchmarks need to consider whether the 
dependencies between adjacent file system operations are 
intended and reflective of actual access patterns. 

4.6.5  Modifications to the Sprite LFS Large-File 
Microbenchmark 

Using these lessons, we modified the Sprite LFS large-file 
microbenchmark in the following way:  Each phase operates 
on 11 files (instead of a single file) in a fixed order, and the 
numbers are averaged across the last 10 files.  The numbers 
collected from the first file are dropped to reduce the warm-
up effect of L2 caching on final results and to collect the 
steady state numbers for each phase of the microbenchmark. 

Figure 4 presents the results of this newer version of the 
microbenchmark for ext2fs and ramfs.  The anomaly of 
ramfs being slower than ext2fs has disappeared.  Both ext2fs 
and ramfs performed equally well on reads since the file 
content was now read from the memory buffer.  However, 
another anomaly still exists: namely, sequential memory 
reads are much faster than random memory reads. 
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Figure 4:  Sprite LFS large-file microbenchmark, with file size equal to 1 
MB, and each phase repeated ten times.  The benchmark consists of five 
phases—sequential write, sequential read, random write, random read, and 
sequential read.   

5 WHY ARE RANDOM MEMORY 
ACCESSES SLOWER THAN SEQUENTIAL 
ACCESSES?  

The performance of random memory accesses could 
differ from that of sequential memory accesses for a few 
reasons.  First, sequential accesses might be accelerated by 
either hardware or software sequential prefetching logic.  
Second, each random file access involves an extra seek 
system call, incurring extra kernel-crossing overhead.  
Third, memory hardware might have a faster sequential 
access mode.  Since the upper bits of memory addresses 



usually stay the same for sequential accesses, memory 
accesses might not need to wait for the upper bits of a 
memory address to stabilize before accessing the memory 
content. 

Unfortunately, none of these three hypotheses plausibly 
explain the performance gap we encountered.  First, since 
both random and sequential accesses are performed at the 
granularity of 4-KB blocks in the benchmark, most bytes are 
transferred sequentially, leaving a minimal effect on random 
and sequential read performance due to sequential logic or 
memory hardware. 

In addition, given that sequential reads achieve about 500 
MB/s for a 1-MB file, the elapsed time to perform a 
sequential read is about 2 milliseconds; a random read is 4 
milliseconds.  Unless the overhead of locating a random 
memory block or making an extra system call can cost 2 
milliseconds, this hypothesis cannot explain why random 
memory reads are so slow. 

Therefore, we once again resorted to the Rabbit 
performance-counter library to monitor CPU registers 
during the microbenchmark.  We paid special attention to 
corresponding ext2fs and ramfs numbers that differed by 
more than a factor of two.  What caught our attention was 
that random memory accesses incurred many misaligned 
memory accesses, while sequential memory accesses 
incurred none.   

From the source code of our microbenchmark, we found 
that random memory accesses were indeed unaligned.1  
Therefore, such accesses usually required fetching data from 
two memory words, while the same-sized access in the 
sequential mode fetched data from only one word.  Thus, 
each memory reference by the random read phase made two 
memory accesses most of the time.  This effect caused the 
random memory read bandwidth to be half of the sequential 
read bandwidth.   Many applications that perform so-called 
random reads (e.g., linkers) do so on word-aligned or page-
aligned boundaries, so the benchmark is not necessarily 
indicative of real-world performance. 
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Figure 5:  Sprite LFS large-file microbenchmark, with file size equal to 1 
MB, each phase repeated ten times, and memory-aligned random memory 
reads.  The benchmark consists of five phases—sequential write, sequential 
read, random write, random read, and sequential read.   
                                                 
1 We used a version of the Sprite LFS benchmark downloaded in the spring 
of 2001.  A later version of the benchmark performs random accesses on 
page-aligned boundaries, so apparently this benchmark problem was 
independently discovered and fixed in the interim. 

 
After finding the cause of the anomaly, we modified the 

microbenchmark to perform page-aligned random reads.  
Figure 5 shows a newer version of the data for the Sprite 
LFS large-file microbenchmark, with the additional 
modification of aligned random memory reads.   

However, we spotted yet more glitches to explain.  Why 
are random memory accesses now faster than sequential 
memory accesses?  Also, why is the performance 
difference between random and sequential memory writes 
larger than that between corresponding reads? 

6 WHY ARE RANDOM MEMORY 
ACCESSES FASTER THAN SEQUENTIAL 
ACCESSES?  

The performance differences between sequential and 
random memory performance can be explained through 
probability analysis.  Caching works because of the 
possibility of reusing cache content.  When a file is larger 
than the cache size, sequential accesses provide no 
opportunity for cache reuse before a given line is replaced, 
while random accesses will sometimes hit in the cache. 

The performance difference between a random and a 
sequential write is greater than the performance gap for 
corresponding reads because of the relative cost of cache 
misses.  When reading a 1-MB file from memory through a 
256-KB L2 cache, initial read misses might involve some 
purging of dirty L2 cache content to memory.  Once the L2 
cache is filled with read-only content, subsequent read 
misses will likely involve reading the file content into the 
cache directly, with few dirty cache lines to evict.  On the 
other hand, a write miss (occurring when accessing a 1-MB 
file from memory through a 256-KB L2 cache) is very 
likely to involve evicting a dirty cache line, reading in the 
target cache content, and modifying the cache line.  For a 
write operation, since the disadvantage of a cache miss is 
greater, the relative advantage of a hit is also greater.  
Therefore, the performance difference between random and 
sequential writes is greater than that of reads. 

A microbenchmark that operated on 128-KB files was 
used to verify the above hypothesis.  One would expect no 
performance differences among file operations for the 
following reasons:  (1) both sequential or random write are 
less likely to flush the dirty L2 cache content because the 
file size is small compared to the size of the L2 cache; (2) 
since an fsync call is invoked at the end of each file close, 
and dirty L2 cache content is flushed, the subsequent write 
operation does not need to commit the dirty data for the 
previous write; and (3) without the need to flush existing 
dirty L2 cache content, the cost of write misses should be 
similar to the cost of read misses, assuming that data 
migration is the dominating performance cost. 

With the expectation of uniform performance across all 
file operations, once again we see surprising results in 
Figure 6: random accesses under ramfs are 20% slower than 
sequential accesses. 
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Figure 6:  Sprite LFS large-file microbenchmark, with file size equal to 
128 KB, each phase repeated ten times, and memory-aligned random 
memory reads.  The benchmark consists of five phases—sequential write, 
sequential read, random write, random read, and sequential read.   
 

Based on the differences between achieved bandwidths, 
we can compute the difference in elapsed time to be about 
150 µs.  The extra lseek system call and the random 
number generation call may account for this timing 
difference.  To test this explanation, we padded sequential 
accesses with a dummy lseek call and a dummy random 
number generation call within each iteration of a file access. 
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Figure 7:  Sprite LFS large-file microbenchmark, with file size equal to 
128 KB, each phase repeated ten times, and memory-aligned random 
memory reads.  Sequential accesses are augmented with dummy lseek 
and random number generation calls.  The benchmark consists of five 
phases—sequential write, sequential read, random write, random read, and 
sequential read.   
 

Figure 7 finally shows the graph that we expected to see, 
with uniform memory access times for all file accesses 
under ramfs.  However, this experiment points out that with 
the speed of the L2 cache on modern machines, the 
overhead of a system call and crossing the kernel boundary 
can potentially degrade file system throughput by 20%.  
This effect shows that performance numbers are very 
sensitive to minute details in the design of microbenchmarks 
and experiments.  The effect should thus be considered in 
the design of data-intensive applications. 

7 BONNIE++ MICROBENCHMARK 
To see if similar anomalies are present in other 

microbenchmarks, we also tried the popular Bonnie++ 
benchmark (version 1.02) [4], which is largely a C++ 
version of the original Bonnie benchmark [1].  In addition to 

the bandwidth tests in the original Bonnie, Bonnie++ adds 
six tests of file create/stat/unlink to simulate 
operations that are common bottlenecks on large Squid and 
INN servers and machines with tens of thousands of mail 
files under /var/spool/mail.  

Anomalies were also observed during the last six tests of 
Bonnie++, which first sequentially create 1024 
directories with 16 empty files each, sequentially stat 
those files in the same order of creation, and sequentially 
unlink (delete) them.  The benchmark then creates 
same number of files in a random order to fill 1024 
directories with 16 empty files each.  The benchmark also 
stats and unlinks those files in a random order.  Figure 
8 presents the Bonnie++ benchmark results.  All files can fit 
into the main memory. 

Our previous findings largely explain the anomalies 
observed in the Bonnie++.  The RAM-based file systems are 
slower than some of the disk-based file systems during the 
sequential stat phase because the RAM-based file systems 
need to commit more dirty data from L2 cache to memory at 
the beginning of the sequential stat than do the disk-based 
file systems.  Also, for RAM-based file systems, random 
stats are significantly faster than sequential stats due to 
the probabilistic reuse of cache content.   
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Figure 8:  Last six tests of the Bonnie++ benchmark—sequential create, 
sequential stat, sequential delete, random create, random stat, 
and random delete.  The benchmark first creates 1024 directories, 
each with 16 empty files, in a sequential order.  It then stats and 
unlinks (deletes) those files in a sequential order.  The benchmark then 
moves on to create files in a random order, stat those files in a random 
order, and unlink them in a random order.  Note that for the test case of 
stating files sequentially, memory-based file systems are slower than 
some of the disk-based file systems. 

8 RECOMMENDATIONS FOR 
MICROBENCHMARKING FILE SYSTEMS  

As we move toward memory-rich environments, the 
increasingly visible effects of memory and L2 caching 
behaviors have far-reaching implications on 
microbenchmarking of systems in general. 

Given that the main purpose of microbenchmarks is to 
measure individual design points (file operations in the case 
of file systems), the design of microbenchmarks for 
memory-rich environments should address the following 
concerns: 

anomaly 



• Assure identical initial states for memory and L2 
cache.  Before conducting each experiment, the 
measurement machine should be rebooted when 
possible to reset the states of memory and L2 cache.  In 
particular, because modern memory management 
involves pre-allocation and fragmentation management, 
simple deallocation of memory resources is unlikely to 
restore the memory and L2 cache states to their 
conditions prior to benchmarking. 

• Watch out for warm-up effects.   Numbers collected 
at the beginning of each phase of a microbenchmark 
should be treated with care.  If warm-up effects are 
inherent to user patterns, they can be included for data 
analysis.  However, if the intent is to measure the 
steady-state performance numbers, numbers collected 
during the warm-up period should be dropped, as in one 
of modifications we made to the Sprite 
microbenchmark (Section 4.6.5). 

• Avoid false accounting due to L2 cache policy.  
Modern machines often use asynchronous mechanisms 
to speed up computation.  The write-back policy of L2 
caching is an example of how the timing of a read 
operation is distorted due to a prior write.  One simple 
way to avoid this type of false accounting is to insert 
additional file operations between phases of 
benchmarks and measure only the steady-state 
numbers. 

• Vary the workload sizes across the size boundaries 
of L2 cache and memory.  Microbenchmark numbers 
strongly depend on the size of the workload relative to 
the size of the L2 cache and memory.  In our Sprite 
benchmark example, changing the workload size 
effectively changes our conclusions about the relative 
access speeds of random and sequential accesses to 
memory content.   

• Watch out for cache-line and memory-management 
granularity.  In the case of the Sprite benchmark, the 
simple misalignment of random accesses contributes a 
factor-of-two performance difference compared to 
sequential memory accesses.  

Of course, this list is by no means exhaustive.  As 
program execution speed gets closer to hardware speeds, we 
expect to see more high-level performance behaviors that 
are sensitive to low-level hardware, such as L1 caching.   

9 RELATED WORK 
The most widely used benchmark in file system literature 

is the Andrew File System Benchmark [6], which captures 
the workload characteristics of a software development 
environment.  As memory sizes have grown, this benchmark 
no longer stresses modern file systems because the data size 
is too small.  The Modified Andrew Benchmark (MAB) 
[11] was introduced to stress more modern file systems.  
However, since the growth of memory size has outpaced the 
average program size over the years, running programs from 
memory is the common case, and the memory performance 
of file systems is more relevant to user experience.  Even in 

cases where disk performance is still relevant, it is unclear 
that benchmarks like MAB capture the dynamics of those 
cases. 

Chen and Patterson [3] questioned the relative evolutions 
of hardware and benchmarks and proposed a self-scaling 
benchmark to address the rapid growth of memory size.  
However, the benchmark framework they proposed is based 
on a synthetic workload, and the benchmark provides 
information more relevant at the macrobenchmarking level 
than at the microbenchmarking level.  In other words, their 
benchmark does not reveal important characteristics of the 
performance of individual file system operations. 

There is still wide disagreement on how to design 
benchmarks to measure the disk I/O performance of file 
systems [10].  However, due to the shifting characteristics of 
memory-rich environments, our work is, to our knowledge, 
the first investigation of the memory performance of file 
systems under existing microbenchmarks that are designed 
to measure disk performance. 

10 FUTURE WORK 
Through the examination of one simple microbenchmark, 

we uncovered a number of potential problems with applying 
existing disk-based file system benchmarks to measure the 
memory performance of file systems.  One natural extension 
is to analyze additional popular benchmarks to see whether 
they have similar problems.   

However, there is a more far-reaching question.  File 
system designers and benchmarkers are familiar with disk 
performance asymmetries, and have designed their systems 
and benchmarks to take those into account.  But as CPU 
speed continues to increase, file system performance is 
becoming more sensitive to the underlying hardware than 
ever before.  Various asynchronous mechanisms expose 
additional unanticipated dependencies among high-level 
operations and file system performance numbers.  The time 
may be coming for those who design both file systems and 
file system benchmarks to consider how other system 
asymmetries, such as those related to the L2 cache, affect 
their designs.  

From Table 7, one might deduce that the cost of a write 
needs to occur eventually when dirty cache lines are 
flushed; therefore, we are just shifting costs around.  
However, this is not always the case.  In particular, cache 
flushing might be avoided depending on the ordering of read 
and write accesses.  For instance, if our 1-MB file is sliced 
into eight 128-KB access units and the reads and writes are 
arranged to reuse the L2 cache content more aggressively, 
ramfs could achieve significant performance improvements 
by reducing the total number of flushes. Compilers can 
certainly take advantage of these underlying behaviors to 
generate more efficient code.  A more general question is 
how to take advantage of the low-level dependencies among 
various file operations to improve high-level applications.   

One of our last experiments (Figures 6 and 7) suggests 
that the overhead of kernel crossing for system calls may be 
very significant relative to the speed of the L2 cache.  



Perhaps multiple system calls should be bundled to amortize 
the cost of crossing the kernel boundary.   

11 CONCLUSIONS 
Comparing the performance of several file systems should 

have been a straightforward task.  But we discovered that in 
a modern memory-rich environment, memory footprints, the 
write-back policy of the L2 cache, the state of the L2 cache, 
and memory alignment can all complicate performance 
numbers in non-intuitive ways.    

Smaller L2 cache footprints can leave more room for 
caching dirty data, amplifying performance swings for 
immediately subsequent operations.  Misaligned random 
memory accesses can incur a twofold performance loss 
compared to sequential accesses.  On the other hand, when 
the L2 cache size is a significant fraction of the size of a file 
operation, cache hits can make random accesses faster than 
sequential ones. Finally, at the speed of modern L2 caches, 
the difference of a single kernel crossing induced by a 
system call can cause a significant performance difference. 

Ideally, a microbenchmark should be able to take into 
account underlying hardware parameters automatically and 
generate meaningful results; however, this task is difficult 
due to the growing complexity of hardware.  We believe 
that hardware performance characteristics need to be 
exposed to both the benchmark and operating system 
through an appropriate interface.  Such transparency will be 
invaluable for the design of higher-level services, such as 
file systems, compilers, applications, and benchmarks 
themselves 

Microbenchmarking file systems in memory-rich 
environments is significantly more difficult than measuring 
systems with disk as the major bottleneck.  Modern 
benchmarking requires intimate knowledge of underlying 
hardware, such as the cache eviction policy and set 
associativity.  It is also critical to set the initial states of 
memory and the L2 cache, understand subtle memory and 
L2-cache warm-up effects, and align accesses to the 
management granularity of memory and the L2 cache.  
Designing good benchmarks demands specialized expertise 
and a thorough understanding of the hardware. No longer 
can a quickly and casually composed benchmark be 
expected to give insightful pictures of performance 
behavior. 
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