
The Effects of Memory-Rich Environments on File System Microbenchmarks

An-I A. Wang, Computer Science Department, UCLA, awang@lasr.cs.ucla.edu
Geoffrey Kuenning, Computer Science Department, Harvey Mudd College, geoff@cs.hmc.edu

Peter Reiher, Gerald J. Popek,* Computer Science Department, UCLA, {reiher, popek@lasr.cs.ucla.edu}

Keywords: L2 cache, memory, file system, benchmark,
microbenchmark.

Abstract
�� ��

File system performance has been greatly influenced by

disk caching mechanisms. As the size of memory increases,
common workloads are more likely to run completely from
memory, and the effects of L2 caching and underlying
hardware are becoming more visible.

This paper investigates performance anomalies observed
when measuring and comparing the memory performance of
various leading file systems. We discovered that without
considering the effects of L2 caching policy, memory
footprints of file systems, states of L2 cache, and memory
page alignments, existing microbenchmarks could produce
numbers that are significantly misleading and could result in
poor designs and improper conclusions about relative file
system performance.

We recommend that the design of file system
microbenchmarks for memory-rich environments should
carefully consider the initial states of memory and L2 cache,
subtle warm-up effects, the cache eviction policy,
interactions between workload size and the memory and
cache sizes, and the management granularity of memory and
the L2 cache.

1 INTRODUCTION
The performance of modern file systems is heavily

dependent on multi-level caching, and minor tuning of the
caching mechanisms can have huge effects on the final
results. In traditional benchmarking environments where
disk is the primary storage medium, the major caching
effects on performance come from cached disk blocks in
memory. However, as the memory size increases, more
programs execute entirely from memory with no disk
activity. The amount of memory available has made
caching of disk contents vastly more effective. However,
one result of this change is that the effects of L2 caching are
becoming increasingly visible in benchmarks and in real
programs. In particular, microbenchmark numbers, which
guide many important file system design decisions, are now
highly susceptible to the subtleties of underlying hardware.

* Gerald Popek is also associated with United Online.

Currently, popular file system benchmarks are designed to
measure the file system’s disk performance. Exercising the
disk with a sizable working set is still the dominant practice.
An implicit assumption was that memory performance
numbers could always be obtained from these benchmarks
by simply shrinking the size of the working set below the
size of the physical memory. However, we discovered that
benchmarks also need to consider L2 caching effects to
provide true insight into file system performance.

Through the process of examining performance anomalies
encountered when comparing memory-based and disk-based
file systems, this paper demonstrates how the L2 caching
policy, memory page alignment, the state of the L2 cache,
and the sizes of file system footprints can significantly
affect file system microbenchmark numbers in non-intuitive
ways. To the extent that file systems are designed or chosen
for use based on the results of such benchmarks, these
effects can be misleading. In some cases, these effects
cause a 20% or greater deviation in the key metrics
produced by these benchmarks. This paper (Section 7) also
makes a number of recommendations on how to design
microbenchmarks to measure file system performance in the
emerging memory-rich computing environments.

To our best knowledge, this study is the first investigation
into the memory performance of systems using existing
microbenchmarks that are designed to measure the disk
performance of file systems.

2 MICROBENCHMARK ANOMALIES
REVEALED

During the microbenchmarking phase of our research on
the Conquest memory-based file system [18], we
encountered a number of performance anomalies that
seemed inexplicable.

The performance study involved both memory-based and
disk-based file systems. The memory-based file systems
were ramfs by Transmeta [14] and Conquest, and the disk-
based file systems were ext2fs [2], reiserfs [8], and SGI XFS
[16]. Without examining the details of individual file
systems, intuitively memory-based file systems should be
able to outperform disk-based file systems under all
circumstances. However, the results were surprising.

The first two major anomalies were found using the Sprite
LFS large-file microbenchmark [12]. This discovery was
particularly unexpected because of its popularity for
evaluating file systems [12, 13, 9, 15].

The Sprite LFS large-file microbenchmark writes a large
file sequentially (with fsync), reads from it sequentially,
writes a new large file randomly (with fsync), reads it
randomly, and finally reads it sequentially. The final read
phase was originally designed to measure an important case
for a log-structured file system. The file size we used was 1
MB. This file fit into main memory for all file systems
tested. The detailed experimental settings are described in
Section 3.

� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � � � � � � � �

	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	

� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
0

100

200

300

400

500

600

700

sw sr rw rr sr

MB/s

� � � �
SGI XFS � � � � � reiserfs � � � � � ext2fs � � � � � ramfs � � � � � Conquest

Figure 1: Sprite LFS large-file microbenchmark for one 1-MB file. The
benchmark consists of five phases—sequential write, sequential read,
random write, random read, and sequential read. The graph shows two
major anomalies: (1) For the first sequential read, memory-based file
systems are slower than some of the disk-based file systems; (2) Memory
is believed to provide a relatively uniform access speed for any access
patterns. However, random read is slower than the second sequential read.

Figure 1 shows our early microbenchmark results and

raises questions regarding two major anomalies:

1. Why are memory-based file systems slower than
some of the disk-based file systems in sequential
read performance? In particular, why are Conquest
and ramfs significantly slower than ext2fs and SGI
XFS in terms of the bandwidth for the first sequential
read? This question is puzzling because the code
bases for Conquest and ramfs are significantly
smaller and simpler than those of ext2fs and SGI
XFS. Smaller and simpler code should intuitively
translate into better performance (and, indeed, it
usually does).

2. Why are random memory reads significantly slower
than sequential memory reads? Conceptually, the
access times for any random memory location should
be relatively uniform, unless optimizations accelerate
the sequential accesses. However, since data is
moved in 4-KB blocks, most bytes should be
transferred sequentially.

To conduct detailed studies of these anomalies, we chose
to use the Sprite LFS large-file microbenchmark for its
relative ease of use for instrumentation, profiling, and
analyses.

3 EXPERIMENTAL SETTINGS
For ease of presentation and discussion, the remainder of

the paper compares Transmeta’s ramfs to the popular ext2fs.

The measurements for Conquest, reiserfs and SGI XFS are
omitted because the ramfs and ext2fs numbers capture the
relevant differences between disk-based and memory-based
file systems. Conquest-specific questions (such as, why
Conquest can outperform ramfs) are covered in [18].

Both ramfs and ext2fs follow the VFS interface and use
the same generic read and write routines provided by the
VFS. However, ramfs uses the caching data structures
under VFS to store file system contents and metadata
directly, and those temporary data structures do not provide
persistence of data after a system reboot. Ramfs should
approximate the practical achievable bound for memory
performance of file systems. Ext2fs, on the other hand, uses
disk as the final storage destination for data and metadata.
Ext2fs is also one of the most widely used file systems in the
UNIX world, and it outperforms other disk-based file
systems on a wide variety of benchmarks [2].

Table 1: Experimental platform.

 Experimental platform
Manufacturer
model

Dell PowerEdge 4400

Processor 1 GHz 32-bit Xeon Pentium
Processor bus 133 MHz
Memory 4x512 MB, Micron MT18LSDT6472G, SYNCH,

133 MHz, CL3, ECC
L2 cache 256 KB Advanced
Disk 73.4 GB, 10,000 RPM, Seagate ST173404LC
Disk partition for
testing

6.1 GB partition starting at cylinder 7197

I/O adaptor Adaptec AIC-7899 Ultra 160/m SCSI host
Adaptor, BIOS v25306

OS Linux 2.4.2

Our experimental platform is described in Table 1. Both

the ramfs and ext2fs file systems were mounted and created
with default settings. For each file system, the performance
numbers were collected over six runs, but averaged over
only the last five runs to avoid warm-up effects. All results
are presented at the 90% confidence level.

4 WHY IS RAMFS SLOWER THAN
EXT2FS?

As shown in Figure 1, ramfs is slower than ext2fs during
the first sequential read phase of the LFS benchmark. This
section describes a series of hypotheses and experiments
performed to trace the cause of this memory-based file
system running slower than the disk-based one.

4.1 Sequential Read Differences Between
ext2fs and ramfs

Since both ramfs and ext2fs share the same generic code
under VFS, when workloads fit in the main memory we
expect both file systems to achieve similar performance, but
perhaps reaching a steady state at different speeds.
Therefore, we ran an experiment in which we performed
two sequential reads after the sequential write.

first
second

Table 2: Test of repeated sequential reads. A sequential write (with
fsync) is followed by two sequential reads.

 ext2fs ramfs
sequential write (MB/s) 14 (+0.29) 390 (+0.80)
sequential read (MB/s) 520 (+ 1.4) 400 (+0.65)
sequential read (MB/s) 530 (+ 0.65) 520 (+2.5)
sequential read (MB/s) 530 (+2.6) 530 (+0.73)

Table 2 shows that a warm-up effect for sequential reads

is evident for both file systems, and ramfs achieves nearly
the same performance as ext2fs in the steady state. This
somewhat confirms our intuition that the shared code base
should result in similar performance, but there is still a
significant warm-up effect to explain.

Why does ext2fs warm up faster than ramfs? We had
several hypotheses: (1) The default file system on the test
machine is ext2fs; therefore, path resolutions (for various
files and shared libraries) that involve ext2fs may cause
contention for cache lines with ramfs during benchmarking.
In a personal communication, Linus Torvalds [17] also
speculated that: (2) ramfs may have cache layout problems,
and (3) ramfs may have a different warm-up behavior for
sequential reads than ext2fs because of different data cache
buffer use.

We attempted to examine various hypotheses using the
Linux kernel profiling facility, but it yielded inconclusive
results. Detailed profiling significantly distorted the
collected numbers at the microsecond scale.

Then we tried one sequential read on a pre-existing 1-MB
file, followed by another sequential read.

Table 3: Test of the warm-up behavior for sequential reads

 ext2fs ramfs
sequential read (MB/s) 480 (+0.98) 480 (+1.3)
sequential read (MB/s) 520 (+ 2.7) 520 (+0.0)

Table 3 shows that both ramfs and ext2fs have similar

numbers for two consecutive sequential reads, suggesting
that our various hypotheses are unlikely candidates to
explain the fast warm-up effects of ext2fs. Since both sets
of numbers are statistically the same, even if external factors
such as the choice of default file systems exist, the effects
are likely to be trivial. If ramfs has cache layout problems,
its performance here should be noticeably slower than
ext2fs. Also, both file systems warm up at similar rates, so
different ways of using the memory data cache do little to
explain the anomaly.

4.2 Were the Initial States of the
Microbenchmark Bad?

As a sanity check, we took a number of measurements to
ensure the same initial states for various experiments. We
rebooted our benchmarking machine after each
experimental run, but the booting process might still lead to
inconsistent caching states. We modified the original Sprite
LFS large-file microbenchmark to perform a sequential read
on a pre-existing 1-MB file followed by a sequential write

(with fsync) and a sequential read on the same file. This
precaution should ensure that all experiments started with
the same state after performing the first sequential read.

Table 4: Initial condition test. A sequential read was performed on a pre-
existing 1-MB file, followed by a sequential write (with fsync) and a
sequential read.

 ext2fs ramfs
sequential read (MB/s) 480 (+1.5) 480 (+1.4)
sequential write (MB/s) 14 (+ 0.47) 400 (+1.2)
sequential read (MB/s) 520 (+ 0.73) 400 (+1.3)

Table 4 shows that both ext2fs and ramfs have similar

performance for the first sequential read, confirming that
both sets of experiments have similar initial states.
Therefore, the cause of the anomaly is likely to be the
sequential write. However, why would the same sequential
write operation cause the subsequent sequential read to
speed up by 40 MB/s for ext2fs, while slowing it down by
80 MB/s for ramfs? Is it possible that a sequential write
somehow warms up the L2 cache locality for ext2fs and
destroys the locality for ramfs for the subsequent sequential
read?

4.3 Does L2 Caching Buffer Management
Cause the Anomaly?

Linux’s memory manager provides high-speed memory
allocation by writing back dirty memory pages to disk
speculatively in several ways. Notably, if the memory is
being allocated at a rapid rate, the memory write-back will
be performed at a higher rate to anticipate near-term
allocations. Also, whenever the allocated memory exceeds
a certain threshold, the memory manager will also start
writing back dirty pages to avoid an exhaustive search for
allocations.

L2 caching tries to handle bursty allocations in a different
manner. The Pentium® III has a streaming I/O option to
bypassing L2 caching for large sequential accesses [7].
Should the high I/O bandwidth of ramfs trigger the
streaming I/O mechanism, it would leave the L2 cache with
little content available for reuse during the subsequent read
operation.

Therefore, we designed an experiment to test the write
request rates on the triggering of any streaming I/O
mechanism. For the sequential write, we inserted a
usleep call to sleep 1 µs within each iteration of write
call, so the write request rate was significantly slowed down
to a similar speed for both ramfs and ext2fs. If either the
cache buffer management or the streaming I/O mechanism
caused this performance anomaly, we should then see
sequential read results significantly different from the last
row of Table 4.

Unfortunately, Table 5 shows that the rates of write
operations have little effect on the sequential read
bandwidth, disproving hypotheses involving special
sequential hardware logic as the explanation for the
anomaly.

Table 5: L2 caching policy test. Each write system call is followed by a
sleep of 1 µs. The slow sequential write of a file is followed by a normal
sequential read.

 ext2fs ramfs
sequential write (with usleep)
(KB/s)

200 (+0.32) 200 (+0.40)

sequential read (KB/s) 510 (+ 1.9) 410 (+5.5)

4.4 Do Random Writes Also Cause the
Anomaly?

Results obtained from the slow sequential write
experiment raised the suspicion that the sequential nature of
a write may contribute little to this anomaly. Therefore, we
conducted an experiment with a random write (with
fsync) followed by a sequential read.

Table 6: Test on effects of random writes. A random write (with fsync)
is followed by a sequential read.

 ext2fs ramfs
random write (MB/s) 9.2 (+0.27) 280 (+2.3)
sequential read (MB/s) 510 (+ 1.4) 400 (+1.4)

Table 6 shows that a random write can also cause

abnormal behavior in the subsequent sequential read.
Therefore, any write access can cause a subsequent read to
achieve higher bandwidth for ext2fs and lower bandwidth
for ramfs, pointing toward a completely different
hypothesis.

4.5 Forming a New Hypothesis
One puzzling aspect of this performance anomaly was the

inverse association between the size of the file system
memory footprint and the performance. From the code
base, the cache footprint of ramfs was significantly smaller
than ext2fs. But, why would a smaller cache footprint
result in worse performance?

Given that the Sprite LFS large-file microbenchmark
measures the bandwidth of read and write operations, the
entire benchmark should be data-intensive, and the timing
should be strongly correlated to the amount of data being
transferred into and out of the L2 cache. Since
microbenchmarking experiments revealed only the black-
box behavior of the system, a simple and naïve model of the
L2 cache was used to visualize the underlying mechanisms
within the black box.

Suppose an L2 cache has four cache lines, and the first
two phases of the microbenchmark operate on a file with a
size of 16 file segments, with each segment occupying one
cache line. For the scenario of a large cache footprint, the
file system and the benchmark being run have an active
footprint of three out of four cache lines (Figure 2). This
simple model assumes that the model starts with only the
active cache footprint in the cache. The model also assumes
that the effects of cache collisions are minimal, and that
cache collisions will never evict the cache lines containing
the active footprint.

Figure 2: The model for a large cache footprint. The first two phases of
the Sprite LFS large-file benchmark are analyzed with a simple L2 cache
with four cache lines. The active footprint of the file system and
benchmark being tested consists of three out of four cache lines, and the
file being tested has a size of 16 segments, with each segment occupying
one cache line.

During the sequential write phase, the first write can
directly modify the clean cache line, and all subsequent
writes require purging the dirty cache content before
modification. During the sequential read phase, the first
read requires purging the dirty cache content, because the
previous write operation leaves the end of the file in the last
cache line, and the read cannot reuse the content. However,
all subsequent reads can simply overwrite the previously
read-in cache line from memory, since those lines are not
modified during the read operation and thus require no
eviction for committing changes.

For the scenario of a small cache footprint, the active
footprint is decreased to one cache line (Figure 3). During
the sequential write phase, the first three writes can directly
modify the clean cache lines, and 13 subsequent writes
require purging dirty cache content. During the sequential
read phase, the first three reads need to purge the dirty cache
content since cache stores the last three cache lines of the
file being benchmarked, and the read starts from the
beginning. The other 13 reads can simply overload the
previously read-in cache lines from memory.

1 write
footprint

footprint

footprint

footprint

seg 0

footprint

footprint

15 writes + 15 cache
line flushes

footprint

seg 15

footprint

footprint

1 read + 1 cache
line flush

footprint

seg 0

footprint

footprint

footprint

seg 15

footprint

footprint
15 reads

Figure 3: The model for a small cache footprint. The first two phases of
the Sprite LFS large-file benchmark are analyzed with a simple L2 cache
with four cache lines. The active footprint of the file system and
benchmark being tested consists of one cache line, and the file being tested
has a size of 16 segments, with each segment occupying one cache line.

Table 7 summarizes the differences between the two
scenarios. Although simple, this model shows that it is
possible for a smaller cache footprint to result in a slower
sequential read after a sequential write. A smaller cache
footprint leaves more room to cache dirty data during the
sequential write phase, and the sequential read phase needs
to finish committing previous dirty cache content before
reading new information back to cache. In essence, the file
system with the larger footprint has already paid nearly the
complete price for cache flushes during its write phase,
while the file system with the smaller footprint has used the
cache to defer some of the costs until later.

Table 7: Summary of the first two phases of Sprite LFS large-file
macrobenchmark results using a simple cache model with four cache lines
and a file with a size of 16 cache lines.

 Large cache footprint Small cache footprint
sequential write 16 writes, 15 flushes 16 writes, 13 flushes
sequential read 16 reads, 1 flushes 16 reads, 3 flushes

This hypothesis also explains why the anomaly of the

sequential read occurs also after a random write, since a
smaller cache footprint leaves more room to cache dirty data
for any write patterns.

4.6 Verifying the New Hypothesis
We tried to verify our hypothesis through low-level

instrumentation, high-level microbenchmarking, and
reproducing the same behavior at the user-level.

4.6.1 Performance Counter Instrumentation
Our first measurement was of the amount of data being

transferred into and out of the L2 cache. The
instrumentation tool we used was Rabbit [5], a performance-
counters library for Intel processors running Linux. The
package allowed us to monitor a few registers with little or
no disturbance to the overall performance numbers, even for
microbenchmarks. We monitored CPU registers that
contain information regarding the movement of data for the
L2 cache. We counted the total number of events and also
tracked the elapsed times to compute the volume of data
being moved.

At the beginning of a sequential read after a write
operation, ramfs has to move 230 KB of modified data out
of the 256-KB L2 cache, while ext2fs moves only 66 KB of
modified data from the L2 cache. Given that a write
operation precedes the read operation, the moved bytes are
likely to represent the recently written part of the 1-MB file.
Also, given that ramfs has a smaller cache footprint than
ext2fs, the L2 cache can hold more dirty data when running
ramfs than ext2fs. Since both file systems need to read in
the 1 MB of data after moving the dirty data out of the
cache, the discrepancy in data volume being moved explains
why ext2fs can achieve higher read bandwidth than ramfs.

4.6.2 Microbenchmark Behaviors
At the microbenchmark level, we first ran an experiment

with a few sequential write operations (with fsync). We
expected the first sequential write to affect the performance
of the second sequential write. Also, starting from the
second sequential write, the bandwidth numbers should not
fluctuate as much.

Table 8: Test on repeated sequential writes.

 ext2fs ramfs
sequential write (MB/s) 13 (+0.61) 380 (+1.4)
sequential write (MB/s) 16 (+ 0.32) 350 (+0.80)
sequential write (MB/s) 16 (+ 0.32) 350 (+0.65)

Table 8 shows that the second sequential write for ext2fs

has an increased bandwidth (probably due to the caching of
ext2fs file system code), while the second sequential write
for ramfs has a reduced bandwidth (probably because of the
need to purge many dirty cache lines from the previous
sequential write).

Originally, we planned to modify ramfs to use a larger L2
footprint, but altering the source code would make our test
methods less portable and repeatable for future
investigations. Instead, we used a 128-KB file to see if
ramfs can outperform ext2fs when both the file being tested
and the ramfs footprint can fit into the 256-KB L2 cache.

3 writes
footprint

footprint

seg 2

seg 1

seg 0

13 writes + 13 cache
line flushes

footprint

seg 15

seg 14

seg 13

3 reads + 3 cache
line flushes

footprint

seg 2

seg 1

seg 0

footprint

seg 15

seg 14

seg 13
13 reads

(Note that since ext2fs flushed 66 KB of data in the previous
experiment, we expected that the 128-KB file and the ext2fs
footprint would not fit into the 256-KB L2 cache.) The
experiment consists of a sequential write (with fsync),
followed by two sequential reads.

Table 9: L2 cache test. A sequential write on a 128-KB file (with fsync)
is followed by two sequential reads.

 ext2fs ramfs
sequential write (MB/s) 4.9 (+0.43) 600 (+0.61)
sequential read (MB/s) 440 (+ 5.7) 810 (+25)
sequential read (MB/s) 1200 (+ 35) 1400 (+52)

Table 9 shows that when ramfs can read recently written

content completely from the L2 cache, it can significantly
outperform ext2fs.

4.6.3 Testing a User-Level Program
To extend the applicability of our findings, we created a

trivial array-indexing program to reproduce the write-back
effect of L2 caching. The user program walks through an
integer array of 1 MB, assigning each array entry a different
integer, followed by two loops that retrieve the value of
each array entry to a variable. Although they were designed
to exercise the same behavior as the benchmark, these types
of operations are reasonably realistic in various applications.

Table 10: A user-level test.

 User program
sequential write (MB/s) 220 (+0.32)
sequential read (MB/s) 150 (+ 31)
sequential read (MB/s) 200 (+ 1.3)

Table 10 shows an anomaly similar to that in the

microbenchmark, verifying that the effects of L2 caching
are easily visible in places other than simple file system
microbenchmarks.

However, these numbers have peculiarities of their own.
These bandwidth numbers appear to be low compared to
Table 2, and the sequential write bandwidth is slightly
higher than the sequential read bandwidth. We do not yet
have an explanation for these peculiarities, since a detailed
investigation would be an unnecessary digression for the
purpose of this paper. However, this user program does
show the difficulty of designing microbenchmarks that
actually match real program behavior.

4.6.4 Lessons Learned
The numbers obtained from these three levels of

experiments teach us several lessons:

• Intuitively, a smaller cache footprint should yield faster
performance, but under certain workloads, a smaller
footprint can also increase the effects of a write-back
cache policy, causing the performance of a subsequent
phase of a benchmark to swing in either direction.

• The effects of memory and L2 caching are easily
visible at the application level, beyond file system
microbenchmarks.

• To measure the memory performance of file systems
under microbenchmarks, we have to consider the L2
cache states at each phase of measurement.

Incorporating the states of the L2 cache into the design of
microbenchmarks can introduce some complexity, since the
cache size, cache line eviction policy, and n-way
associativity are different from machine to machine. Also,
microbenchmarks need to consider whether the
dependencies between adjacent file system operations are
intended and reflective of actual access patterns.

4.6.5 Modifications to the Sprite LFS Large-File
Microbenchmark

Using these lessons, we modified the Sprite LFS large-file
microbenchmark in the following way: Each phase operates
on 11 files (instead of a single file) in a fixed order, and the
numbers are averaged across the last 10 files. The numbers
collected from the first file are dropped to reduce the warm-
up effect of L2 caching on final results and to collect the
steady state numbers for each phase of the microbenchmark.

Figure 4 presents the results of this newer version of the
microbenchmark for ext2fs and ramfs. The anomaly of
ramfs being slower than ext2fs has disappeared. Both ext2fs
and ramfs performed equally well on reads since the file
content was now read from the memory buffer. However,
another anomaly still exists: namely, sequential memory
reads are much faster than random memory reads.

0

100

200

300

400

500

600

sw sr rw rr sr

MB/s

ext2fs ramfs

Figure 4: Sprite LFS large-file microbenchmark, with file size equal to 1
MB, and each phase repeated ten times. The benchmark consists of five
phases—sequential write, sequential read, random write, random read, and
sequential read.

5 WHY ARE RANDOM MEMORY
ACCESSES SLOWER THAN SEQUENTIAL
ACCESSES?

The performance of random memory accesses could
differ from that of sequential memory accesses for a few
reasons. First, sequential accesses might be accelerated by
either hardware or software sequential prefetching logic.
Second, each random file access involves an extra seek
system call, incurring extra kernel-crossing overhead.
Third, memory hardware might have a faster sequential
access mode. Since the upper bits of memory addresses

usually stay the same for sequential accesses, memory
accesses might not need to wait for the upper bits of a
memory address to stabilize before accessing the memory
content.

Unfortunately, none of these three hypotheses plausibly
explain the performance gap we encountered. First, since
both random and sequential accesses are performed at the
granularity of 4-KB blocks in the benchmark, most bytes are
transferred sequentially, leaving a minimal effect on random
and sequential read performance due to sequential logic or
memory hardware.

In addition, given that sequential reads achieve about 500
MB/s for a 1-MB file, the elapsed time to perform a
sequential read is about 2 milliseconds; a random read is 4
milliseconds. Unless the overhead of locating a random
memory block or making an extra system call can cost 2
milliseconds, this hypothesis cannot explain why random
memory reads are so slow.

Therefore, we once again resorted to the Rabbit
performance-counter library to monitor CPU registers
during the microbenchmark. We paid special attention to
corresponding ext2fs and ramfs numbers that differed by
more than a factor of two. What caught our attention was
that random memory accesses incurred many misaligned
memory accesses, while sequential memory accesses
incurred none.

From the source code of our microbenchmark, we found
that random memory accesses were indeed unaligned.1
Therefore, such accesses usually required fetching data from
two memory words, while the same-sized access in the
sequential mode fetched data from only one word. Thus,
each memory reference by the random read phase made two
memory accesses most of the time. This effect caused the
random memory read bandwidth to be half of the sequential
read bandwidth. Many applications that perform so-called
random reads (e.g., linkers) do so on word-aligned or page-
aligned boundaries, so the benchmark is not necessarily
indicative of real-world performance.

0

100

200

300

400

500

600

sw sr rw rr sr

MB/s

ext2fs ramfs

Figure 5: Sprite LFS large-file microbenchmark, with file size equal to 1
MB, each phase repeated ten times, and memory-aligned random memory
reads. The benchmark consists of five phases—sequential write, sequential
read, random write, random read, and sequential read.

1 We used a version of the Sprite LFS benchmark downloaded in the spring
of 2001. A later version of the benchmark performs random accesses on
page-aligned boundaries, so apparently this benchmark problem was
independently discovered and fixed in the interim.

After finding the cause of the anomaly, we modified the

microbenchmark to perform page-aligned random reads.
Figure 5 shows a newer version of the data for the Sprite
LFS large-file microbenchmark, with the additional
modification of aligned random memory reads.

However, we spotted yet more glitches to explain. Why
are random memory accesses now faster than sequential
memory accesses? Also, why is the performance
difference between random and sequential memory writes
larger than that between corresponding reads?

6 WHY ARE RANDOM MEMORY
ACCESSES FASTER THAN SEQUENTIAL
ACCESSES?

The performance differences between sequential and
random memory performance can be explained through
probability analysis. Caching works because of the
possibility of reusing cache content. When a file is larger
than the cache size, sequential accesses provide no
opportunity for cache reuse before a given line is replaced,
while random accesses will sometimes hit in the cache.

The performance difference between a random and a
sequential write is greater than the performance gap for
corresponding reads because of the relative cost of cache
misses. When reading a 1-MB file from memory through a
256-KB L2 cache, initial read misses might involve some
purging of dirty L2 cache content to memory. Once the L2
cache is filled with read-only content, subsequent read
misses will likely involve reading the file content into the
cache directly, with few dirty cache lines to evict. On the
other hand, a write miss (occurring when accessing a 1-MB
file from memory through a 256-KB L2 cache) is very
likely to involve evicting a dirty cache line, reading in the
target cache content, and modifying the cache line. For a
write operation, since the disadvantage of a cache miss is
greater, the relative advantage of a hit is also greater.
Therefore, the performance difference between random and
sequential writes is greater than that of reads.

A microbenchmark that operated on 128-KB files was
used to verify the above hypothesis. One would expect no
performance differences among file operations for the
following reasons: (1) both sequential or random write are
less likely to flush the dirty L2 cache content because the
file size is small compared to the size of the L2 cache; (2)
since an fsync call is invoked at the end of each file close,
and dirty L2 cache content is flushed, the subsequent write
operation does not need to commit the dirty data for the
previous write; and (3) without the need to flush existing
dirty L2 cache content, the cost of write misses should be
similar to the cost of read misses, assuming that data
migration is the dominating performance cost.

With the expectation of uniform performance across all
file operations, once again we see surprising results in
Figure 6: random accesses under ramfs are 20% slower than
sequential accesses.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

sw sr rw rr sr

MB/s

ext2fs ramfs

Figure 6: Sprite LFS large-file microbenchmark, with file size equal to
128 KB, each phase repeated ten times, and memory-aligned random
memory reads. The benchmark consists of five phases—sequential write,
sequential read, random write, random read, and sequential read.

Based on the differences between achieved bandwidths,
we can compute the difference in elapsed time to be about
150 µs. The extra lseek system call and the random
number generation call may account for this timing
difference. To test this explanation, we padded sequential
accesses with a dummy lseek call and a dummy random
number generation call within each iteration of a file access.

0

200

400

600

800

1000

1200

1400

1600

sw sr rw rr sr

MB/s

ext2fs ramfs

Figure 7: Sprite LFS large-file microbenchmark, with file size equal to
128 KB, each phase repeated ten times, and memory-aligned random
memory reads. Sequential accesses are augmented with dummy lseek
and random number generation calls. The benchmark consists of five
phases—sequential write, sequential read, random write, random read, and
sequential read.

Figure 7 finally shows the graph that we expected to see,
with uniform memory access times for all file accesses
under ramfs. However, this experiment points out that with
the speed of the L2 cache on modern machines, the
overhead of a system call and crossing the kernel boundary
can potentially degrade file system throughput by 20%.
This effect shows that performance numbers are very
sensitive to minute details in the design of microbenchmarks
and experiments. The effect should thus be considered in
the design of data-intensive applications.

7 BONNIE++ MICROBENCHMARK
To see if similar anomalies are present in other

microbenchmarks, we also tried the popular Bonnie++
benchmark (version 1.02) [4], which is largely a C++
version of the original Bonnie benchmark [1]. In addition to

the bandwidth tests in the original Bonnie, Bonnie++ adds
six tests of file create/stat/unlink to simulate
operations that are common bottlenecks on large Squid and
INN servers and machines with tens of thousands of mail
files under /var/spool/mail.

Anomalies were also observed during the last six tests of
Bonnie++, which first sequentially create 1024
directories with 16 empty files each, sequentially stat
those files in the same order of creation, and sequentially
unlink (delete) them. The benchmark then creates
same number of files in a random order to fill 1024
directories with 16 empty files each. The benchmark also
stats and unlinks those files in a random order. Figure
8 presents the Bonnie++ benchmark results. All files can fit
into the main memory.

Our previous findings largely explain the anomalies
observed in the Bonnie++. The RAM-based file systems are
slower than some of the disk-based file systems during the
sequential stat phase because the RAM-based file systems
need to commit more dirty data from L2 cache to memory at
the beginning of the sequential stat than do the disk-based
file systems. Also, for RAM-based file systems, random
stats are significantly faster than sequential stats due to
the probabilistic reuse of cache content.

� � � � �

 ! ! ! ! ! ! " " " " "

#$ $ $ $ $ $$ $ $ $ $ $

% % % % %% % % % %% % % % %% % % % %% % % % %% % % % %% % % % %% % % % %% % % % %% % % % % & & & & && & & & &
' ' ' ' '' ' ' ' '

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((())))))))))))* * * * *

+ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + + , , , , , ,, , , , , , - - - - - -

. / / / / /

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

2 2 2 2 22 2 2 2 22 2 2 2 22 2 2 2 2

3 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 3

4 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 44 4 4 4 4 4

5 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 5

6 6 6 6 6 66 6 6 6 6 66 6 6 6 6 66 6 6 6 6 66 6 6 6 6 6

7 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 7

8 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 8

9 9 9 9 99 9 9 9 99 9 9 9 99 9 9 9 99 9 9 9 9

: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :

; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;
0

50
100
150
200
250
300
350
400
450
500

sc ss sd rc rs rd

K ops / s

< < < <
SGI XFS = = = = = reiserfs > > > > ext2fs ? ? ? ? ? ramfs @ @ @ @ @ Conquest

Figure 8: Last six tests of the Bonnie++ benchmark—sequential create,
sequential stat, sequential delete, random create, random stat,
and random delete. The benchmark first creates 1024 directories,
each with 16 empty files, in a sequential order. It then stats and
unlinks (deletes) those files in a sequential order. The benchmark then
moves on to create files in a random order, stat those files in a random
order, and unlink them in a random order. Note that for the test case of
stating files sequentially, memory-based file systems are slower than
some of the disk-based file systems.

8 RECOMMENDATIONS FOR
MICROBENCHMARKING FILE SYSTEMS

As we move toward memory-rich environments, the
increasingly visible effects of memory and L2 caching
behaviors have far-reaching implications on
microbenchmarking of systems in general.

Given that the main purpose of microbenchmarks is to
measure individual design points (file operations in the case
of file systems), the design of microbenchmarks for
memory-rich environments should address the following
concerns:

anomaly

• Assure identical initial states for memory and L2
cache. Before conducting each experiment, the
measurement machine should be rebooted when
possible to reset the states of memory and L2 cache. In
particular, because modern memory management
involves pre-allocation and fragmentation management,
simple deallocation of memory resources is unlikely to
restore the memory and L2 cache states to their
conditions prior to benchmarking.

• Watch out for warm-up effects. Numbers collected
at the beginning of each phase of a microbenchmark
should be treated with care. If warm-up effects are
inherent to user patterns, they can be included for data
analysis. However, if the intent is to measure the
steady-state performance numbers, numbers collected
during the warm-up period should be dropped, as in one
of modifications we made to the Sprite
microbenchmark (Section 4.6.5).

• Avoid false accounting due to L2 cache policy.
Modern machines often use asynchronous mechanisms
to speed up computation. The write-back policy of L2
caching is an example of how the timing of a read
operation is distorted due to a prior write. One simple
way to avoid this type of false accounting is to insert
additional file operations between phases of
benchmarks and measure only the steady-state
numbers.

• Vary the workload sizes across the size boundaries
of L2 cache and memory. Microbenchmark numbers
strongly depend on the size of the workload relative to
the size of the L2 cache and memory. In our Sprite
benchmark example, changing the workload size
effectively changes our conclusions about the relative
access speeds of random and sequential accesses to
memory content.

• Watch out for cache-line and memory-management
granularity. In the case of the Sprite benchmark, the
simple misalignment of random accesses contributes a
factor-of-two performance difference compared to
sequential memory accesses.

Of course, this list is by no means exhaustive. As
program execution speed gets closer to hardware speeds, we
expect to see more high-level performance behaviors that
are sensitive to low-level hardware, such as L1 caching.

9 RELATED WORK
The most widely used benchmark in file system literature

is the Andrew File System Benchmark [6], which captures
the workload characteristics of a software development
environment. As memory sizes have grown, this benchmark
no longer stresses modern file systems because the data size
is too small. The Modified Andrew Benchmark (MAB)
[11] was introduced to stress more modern file systems.
However, since the growth of memory size has outpaced the
average program size over the years, running programs from
memory is the common case, and the memory performance
of file systems is more relevant to user experience. Even in

cases where disk performance is still relevant, it is unclear
that benchmarks like MAB capture the dynamics of those
cases.

Chen and Patterson [3] questioned the relative evolutions
of hardware and benchmarks and proposed a self-scaling
benchmark to address the rapid growth of memory size.
However, the benchmark framework they proposed is based
on a synthetic workload, and the benchmark provides
information more relevant at the macrobenchmarking level
than at the microbenchmarking level. In other words, their
benchmark does not reveal important characteristics of the
performance of individual file system operations.

There is still wide disagreement on how to design
benchmarks to measure the disk I/O performance of file
systems [10]. However, due to the shifting characteristics of
memory-rich environments, our work is, to our knowledge,
the first investigation of the memory performance of file
systems under existing microbenchmarks that are designed
to measure disk performance.

10 FUTURE WORK
Through the examination of one simple microbenchmark,

we uncovered a number of potential problems with applying
existing disk-based file system benchmarks to measure the
memory performance of file systems. One natural extension
is to analyze additional popular benchmarks to see whether
they have similar problems.

However, there is a more far-reaching question. File
system designers and benchmarkers are familiar with disk
performance asymmetries, and have designed their systems
and benchmarks to take those into account. But as CPU
speed continues to increase, file system performance is
becoming more sensitive to the underlying hardware than
ever before. Various asynchronous mechanisms expose
additional unanticipated dependencies among high-level
operations and file system performance numbers. The time
may be coming for those who design both file systems and
file system benchmarks to consider how other system
asymmetries, such as those related to the L2 cache, affect
their designs.

From Table 7, one might deduce that the cost of a write
needs to occur eventually when dirty cache lines are
flushed; therefore, we are just shifting costs around.
However, this is not always the case. In particular, cache
flushing might be avoided depending on the ordering of read
and write accesses. For instance, if our 1-MB file is sliced
into eight 128-KB access units and the reads and writes are
arranged to reuse the L2 cache content more aggressively,
ramfs could achieve significant performance improvements
by reducing the total number of flushes. Compilers can
certainly take advantage of these underlying behaviors to
generate more efficient code. A more general question is
how to take advantage of the low-level dependencies among
various file operations to improve high-level applications.

One of our last experiments (Figures 6 and 7) suggests
that the overhead of kernel crossing for system calls may be
very significant relative to the speed of the L2 cache.

Perhaps multiple system calls should be bundled to amortize
the cost of crossing the kernel boundary.

11 CONCLUSIONS
Comparing the performance of several file systems should

have been a straightforward task. But we discovered that in
a modern memory-rich environment, memory footprints, the
write-back policy of the L2 cache, the state of the L2 cache,
and memory alignment can all complicate performance
numbers in non-intuitive ways.

Smaller L2 cache footprints can leave more room for
caching dirty data, amplifying performance swings for
immediately subsequent operations. Misaligned random
memory accesses can incur a twofold performance loss
compared to sequential accesses. On the other hand, when
the L2 cache size is a significant fraction of the size of a file
operation, cache hits can make random accesses faster than
sequential ones. Finally, at the speed of modern L2 caches,
the difference of a single kernel crossing induced by a
system call can cause a significant performance difference.

Ideally, a microbenchmark should be able to take into
account underlying hardware parameters automatically and
generate meaningful results; however, this task is difficult
due to the growing complexity of hardware. We believe
that hardware performance characteristics need to be
exposed to both the benchmark and operating system
through an appropriate interface. Such transparency will be
invaluable for the design of higher-level services, such as
file systems, compilers, applications, and benchmarks
themselves

Microbenchmarking file systems in memory-rich
environments is significantly more difficult than measuring
systems with disk as the major bottleneck. Modern
benchmarking requires intimate knowledge of underlying
hardware, such as the cache eviction policy and set
associativity. It is also critical to set the initial states of
memory and the L2 cache, understand subtle memory and
L2-cache warm-up effects, and align accesses to the
management granularity of memory and the L2 cache.
Designing good benchmarks demands specialized expertise
and a thorough understanding of the hardware. No longer
can a quickly and casually composed benchmark be
expected to give insightful pictures of performance
behavior.

12 Acknowledgements
We would like to thank Janice Wheeler for commenting

on earlier drafts of this paper. This work was supported by
the National Science Foundation under Grant No. CCR-
0098363.

13 References
[1] Bray T, Bonnie Source Code, Netnews Posting, 1990.
[2] Card R, Ts’o T, Tweedie S. Design and Implementation of the Second

Extended Filesystem. Proceedings of the First Dutch International
Symposium on Linux, ISBN 90-367-0385-9, December 1994.

[3] Chen PM, Patterson DA. A New Approach to I/O Performance
Evaluation—Self-Scaling I/O Benchmarks, Predicted I/O Performance.
Proceedings of the 1993 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 1993.

[4] Coker R. Bonnie++ Documentation.
http://www.coker.com.au/bonnie++/readme.html. 2001.

[5] Heller DE. Rabbit, A Performance Counters Library for Intel
Processors and Linux, Iowa State University, 2000.

[6] Howard J, Lazar M, Menees S, Nichols D, Satyanarayanan M,
Sidebotham R, West M. Scale and Performance in a Distributed File
System, ACM Transactions on Computer Systems, 6(1), pp. 51-81,
February 1988.

[7] Keshava J, Penkovski V. Pentium® III Processor Implementation
Tradeoffs, Intel Technology Journal, 1999.

[8] Namesys. http://www.namesys.com, 2002.
[9] Mazieres D, Kaminsky M, Kaashoek MF, Witchel E. Separating key

management from file system security. Proceedings of the 17th ACM
Symposium on Operating Systems Principles, December 1999.

[10] Mogul JC. Brittle Metrics in Operating Systems Research.
Proceedings of the 7th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VII), pp. 90-95, March 1999.

[11] Ousterhout J. Why Aren’ t Operating Systems Getting Faster as Fast
as Hardware? Proceedings of the Summer 1990 USENIX Conference,
pp. 247-256, June 1990.

[12] Rosenblum M, Ousterhout J. The Design and Implementation of a
Log-Structured File System. Proceedings of the 13th ACM Symposium
on Operating Systems Principles, October 1991.

[13] Seltzer M, Smith KA, Balakrishnan H, Chang J, McMains S,
Padmanabhan V. File System Logging Versus Clustering: A
Performance Comparison. Proceedings of the USENIX Annual
Technical Conference, January 1995.

[14] Shankland S. Transmeta Taking Linux Gadgets Mobile. CNET
News.com, http://news.com.com/2100-1001-254020.html?legacy=cnet,
March 13, 2001.

[15] Strunk J, Goodson G, Scheinholtz M, Soules C, Ganger G. Self-
Securing Storage: Protecting Data in Compromised Systems,
Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, October, 2000.

[16] Sweeney A, Doucette D, Hu W, Anderson C, Nishimoto M, Peck G.
Scalability in the XFS File System. Proceedings of the USENIX Annual
Technical Conference, January 1996.

[17] Torvalds L. Why is ramfs slower than ext2fs? Personal
communication, September 2001.

[18] Wang AIA, Kuenning GH, Reiher P, Popek GJ. Conquest: Better
Performance Through a Disk/Persistent-RAM Hybrid File System.
Proceedings of the USENIX Annual Technical Conference, June 2002.

An-I A. Wang is a post-doctorate student of computer science at UCLA.
He received his Ph.D. and M.S. in computer science from UCLA in 2003
and 1998, and his B.A. in computer science from UC Berkeley in 1995.
His research interests include file systems, distributed ad hoc network
topology construction, optimistic replication, and performance analysis.

Geoffrey H. Kuenning is an assistant professor of computer science at
Harvey Mudd College. He received his Ph.D. in computer science from
UCLA in 1997, and his B.S. and M.S. in computer science from Michigan
State University in 1973 and 1974. From 1974 to 1989, he worked in the
areas of operating systems and embedded systems. His research interests
include file systems, performance analysis, and computer system security.

Peter Reiher is an adjunct associate professor of computer science at
UCLA. He received his Ph.D. and his M.S. in computer science from
UCLA in 1987 and 1984, respectively. He received his B.S. in electrical
engineering from the University of Notre Dame in 1979. Dr. Reiher’s
research interests include active networks, advanced operating systems,
parallel discrete event simulation, and security for distributed systems.

Gerald Popek is an adjunct professor of computer science at UCLA.
He received his Ph.D. and his M.S. in applied mathematics from Harvard
University in 1973 and 1970, respectively. He received his B.S. in nuclear
engineering from New York University in 1968. His research interests
include distributed file systems, mobile computing, and computer security.
Dr. Popek is also chief technology officer for United Online, a large
Internet service provider.

