AAAI ’99 Context Workshop

Version 0.95 April 21, 1999

Printed 04/22/99 2:59 AM

Baby Steps From GUI Towards Dialogue:

Mixed-Initiative Computerese

Mitchell Tsai, Peter Reiher, Jerry Popek

Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095

{tsai, reiher, popek}@cs.ucla.edu

Abstract(
Initiative and control are crucial issues even in computereses, the very basic implementations of speech which handle tasks in traditional computer applications. Our “Baby Steps” dialogue system uses a context-based approach to handle initiative decisions when faced with noisy input sensors, dangerous and irreversible actions, and multiple input/output modalities. We are studying Microsoft PowerPoint multimodal dialogue to investigate the problems which may be encountered by mobile computers in real and virtual environments, as opposed to purely linguistic approaches.

Introduction

Before natural language dialogue is possible with computers, hybrid computer-human languages will be very popular. These computereses use phrases such as “Scratch That”, “Cross Out”, and “Choose One.” to provide meanings specific to the computer environment. Even when computers can handle fully natural human dialogue, we feel that computereses will still be used by many people along side human languages.

Traditional computer initiative and control systems have passed through many stages:

1) Batch Processing – No Interaction

2) Command-Line Processing – Computer in control

3) GUI – Human in control, event loop

4) Beyond GUI – Mixed-initiative

Why is mixed-initiative good in post-GUI environments?

Of course, we would eventually like to support natural communication. But at a basic level, the newer user input methods (speech, vision, handwriting) have many characteristics which make older systems inefficient and inadequate.

1) Noise (much higher levels and many types)

2) Errors (by the person and the computer)

3) Ambiguity (accidental and deliberate)

4) Fragmentation (of input across different sensors)

Researchers have been driving for basic speed and accuracy in speech and handwriting analysis, but they often neglect two important factors - the ease of error correction and the cost of proofreading. Consider a dictation system with 99% accuracy at 150 wpm. If each error takes 10 sec to correct, approximately 20% of our time is spent correcting errors.

Good design of dialogue systems is vital for computer applications that may perform dangerous and/or irreversible actions. Irretrievable error loss forces users to discard many programs as too dangerous for their needs. This is a very common problem with today’s speech recognition users, who abandon programs without adequate undo support. Error correction methods are a critical aspect of dialogue systems. Dragon NaturallySpeaking is often preferred over IBM ViaVoice because ViaVoice does not allow correction using speech-only communication.

To study the problems of post-GUI environments, we have been designing a system to handle context-sensitive mouse and speech commands in Microsoft PowerPoint. Even though the dialogue is strongly biased towards human control of a computer application, we find many sound reasons for mixed-initiative dialogue.

1) Content Clarification
e.g. meaning

2) Input Clarification
e.g. speech recognition errors

3) Action-based Confirmation
e.g. Dangerous/irreversible actions should have interactive confirmation

4) Multimodal Coordination

5) Planning/Context/State Clarification

6) Training
e.g. speech, contexts, dialogue

Our main initiative question is deciding when and how to respond to user commands; e.g. “Did you mean ‘Move the red box’ or ‘Move the blue box’?” When a user is giving a PowerPoint presentation, they may want to mask computer responses acceptable during editing. For example, if there is an ambiguous command, it may be preferable to execute the most likely command rather than ask the user. Help systems should probably be muted, and it may be helpful to signal the user unobtrusively (e.g. pager/IR signal).

Deciding which output mode to use in communication is an important initiative issue. Even when using a single mode like video, there are many degrees of obtrusiveness.

1) Speech
a) Question (wait for response)
b) Statement (don’t wait for response)

2) Video
a) Modal
b) Non-modal (display on the side)

3) Internal (Program Mode Shift)
e.g. switch from ‘Dictation Mode’ to ‘Command Mode’, switch cursor shape to ‘draw box’

4) Other
a) Signal another computer
b) Signal another device (e.g. pager)

In fact, there are many different types of data streams which the computer must handle:

1) Internal (application, operating system, network)

2) Interface (conversational, user interface)

3) External (psychological, environmental, social)

In order to update knowledge about these data streams, the computer may wish to ask the user questions. Traditionally the computer maintains this information automatically, only changing when a user changes configuration settings manually in a dialog box or configuration file.

We make initiative decisions based on information from three major sources:

1) Uncertain input information from sensors;
e.g. speech, mouse, keyboard

2) Command properties from applications
e.g. reversibility, cost, expected usage patterns

3) Contexts – detected through automatic and user-assisted methods

Architecture of a Dialogue Manager

[image: image1.wmf]Context Manager

Command

Processing

Modules

Sensors

Command

Manager

Sensor

Interpreters

OS &

Applications

Figure 1: Baby Steps Dialogue Management System

Baby Steps is a Dialogue Management System (Figure 1) which adds three main components to operating systems:

The Command Manager intercepts communication between sensor processors and applications. It helps the sensor interpreters select better commands and filter commands before they reach the application.

The Command Processing Modules process commands from the command manager, taking uncertain data and returning it in a processed or higher-level form. The current modules focus on context-sensitive use of “Top 10” speech engine output, context-sensitive mouse movements, safety filters, and multimodal integration.

The Context Manager monitors data streams in the background, analyzing patterns in user behavior to detect when the situation or context has changed. It also provides a central repository for storage of command properties, such as reversibility and cost, which help the dialogue system determine when and how to take action.

Current Baby Steps prototypes run on 166-333 MHz Pentiums under Windows NT 4.0. They handle speech, keyboard, and mouse communication.

First Steps Towards Dialogue

Consider a naïve implementation of speech recognition using a commercial speech engine (See Figure 2).

[image: image2.wmf]TextRange

.Font.Color = ppAccent1

Sounds

Speech Enabler

Speech

Recognition

Engine

OS &

Applications

Grammar

Best Phrase

Command

“Make the text blue”

Figure 2: Speech-enabled application

The speech engine is first preloaded with a simple grammar containing all allowable phrases. Then the speech recognition engine (F) processes each incoming sound to return the most likely phrase, and a Speech Enabler (G) maps phrases to application commands:

Command
= G(Phrase, Context)
= G(F(Sound), Context)

Contexts merely record the application state. For example, Microsoft PowerPoint uses different “methods” for the same command in Editing mode and SlideShow mode.

Even this bare-bones design presents important issues:

1) What if a sensor processor does not choose the desired command? How can we help?

2) If a sensor processor delivers an incorrect command to an application, can the command be reversed (undo) or trapped before execution?

3) What happens if the computer misinterprets critical commands, especially corrections and confirmations?

4) If error rates are very high, does this change the nature of the command process?

Improving Speech Recognition Performance

What if the recognized phrase is not the one desired? Speech recognition engines can return a “Top 10” list of phrases with recognition scores.

Score (Phrase | Sound) = –100 to 100

Relative frequencies of commands may be available:

P(Command | Context) = 0 to 1

We can combine these data to select a more likely phrase using likelihoods (L).

L(Command | Sound, Context) =

L(Command | Context)

* L(Command | Phrase, Context)

* L(Phrase | Sound)

where L(A) = F(A) / ((AF(A) – F(A))

and F(A) can be P(A) or some other scoring function.

One type of context we use contains a list of command likelihoods:

Context A: [PowerPoint user in presentation mode]

“Next Slide”
L = 0.2

“Previous Slide”
L = 0.2

etc…

Context B: [PowerPoint user in editing mode]

“Next Slide”
L = 0.05

“Delete Box”
L = 0.1

“Save”
L = 0.2

etc…

“Baby Steps” Context Design

Baby Steps contexts contain three main sections:

a) Definition

b) Usage : properties, reasoners

How do we use this context to conduct dialogue?

c) Meta-Usage : activation/deactivation, meta-reasoners

When do we activate this context?

The Usage section of the following simplified context includes a grammar containing command likelihoods. The Meta-Usage section contains some rules about activating and deactivating this context.

Context (ID = 1)

Name = "Viewing Slides"

(optional manually-created name)

Number of Commands = 9

Grammar = "Open", "Close", "Quit",
"Next|Previous -|Slide", "View|End Slide Show"

Properties Matrix =
"Open"
L=0.1

"Close"
L=0.1

"Quit”
L=0.05

"Next Slide" | "Next"
L=0.3

"Previous Slide" | "Previous"
L=0.3

"View Slide Show"
L=0.1

"End Slide Show"
L=0.1

Meta-Usage =

Activate when "View Slide Show" is heard

Deactivate when an editing command is heard

By switching between this context and other contexts (such as an “Editing Slides” context), we can focus the recognition of commands towards expected phrases, as well as use different initiative models to decide which commands to clarify and confirm.

Active Situation Defined by Overlaying Contexts

The active situation is defined by blending various contexts. We are mostly concerned with the creation of appropriate vocabularies and grammars for speech recognition engines. But we are also interested in combining knowledge of possible behavior patterns. How does user behavior change as they shift from “Viewing Slides” to “Proof-Reading Slides” to “Editing Slides”, and how do we capture this in our contexts?

Current Situation =
40% Context C + 30% Context D
+ 10% Context G + 10% Context H
+ 5% Context X + 5% Context Y

Current State:

1) Active contexts:
Context C, Context D

2) Suspended contexts:
Context X, Context Y

3) Pre-active contexts:
Context G, Context H

Pre-active contexts are ones that we predict may occur in the near future. For example, if the computer hears one editing command, that may be an accident. It may not be useful to activate all the editing commands immediately, since this may harm speech engine performance. The actual context switch also adds an additional cost.

Knowledge About Actions

Application designers may know important details about application tasks, safety and reversibility of various commands, and common behavior patterns. Combining these details with sensor processor analysis provides more information to correctly determine the intended command (and to determine when to ask a user for clarification).

Contexts may include many of these Command Properties:

"Move box"
L=0.45, Reversible=1, Safety=1,
Cost=0.1, UndoCommand ="Move box"

"Delete box"
L=0.2 , Reversible=1, Safety=0.5, Cost=0.2, UndoCommand ="Add box"

"Quit"
L=0.1 , Reversible=0, Safety=0,
Cost=0.8, UndoCommand =null

Deciding When To Clarify and Confirm

Dangerous commands must be clarified, but too many requests for clarification will make the system slower and very annoying. If we define cost (LCost) and reversibility (LReversible) for each command, we can produce the a probability that we should clarify the command with the user, PClarification:

PClarification =
[1-L(CommandML, Context)]

* LReversible(CommandML, Context)

* LCost(CommandML, Context)

CommandML = the most likely command

LReversible = 0 to 1 (1 means fully reversible)

LCost = 0 to 1 (a normalized version of cost)

Deciding What To Ask When Clarifying

Pattern analysis of the top most likely commands can produce more useful questions. In the following case, the top two commands have very close scores, so we should ask the user “Did you want Command A or Command B?”

Score(Command A | Sound) =75

Score(Command B | Sound) =70

Score(Command C | Sound) =30

If Command A is “Move the red box here.” and Command B is “Move the box here”, we may decide they are identical commands, so there is no need to ask the user. If only one command has a high score, we can ask about that command.

There are many other useful patterns which can be handled by a dialog manager. For instance, if the user is repeating some previous commands, we might ask “are you trying to do Command X again?” Rather than ask “Which box do you want to move?”, we could say “I’m still not sure which box you want.” or “Which box?”

Transparency is Not the Best Policy

Often people design computer systems to be as unobtrusive as possible, striving for transparency. But this terseness is often hard to understand and automatic behavior are extremely difficult to reliably design. Our experience (Reiher, 1996) with automatic conflict resolution in file system replication has produced many unanswered questions about the best way to automatically handle conflicts.

The user can preemptively switch contexts and interactively assist an automatic system to produce better behavior. Speech systems often benefit from user manually switching vocabularies as they switch tasks. But a mixed-initiative system can also decide to ask the user for help in designing and switching between contexts. The user can also assist the computer to handle other internal tasks.

Management of Contexts

It is not enough to switch between context A and context B. Contexts may overlap and remain semi-active, and we may be interested in the behaviors which cause context shifts.

Here are some context management tasks:

Definition of Contexts

1) Context Generation

2) Context Evolution

Real-Time Use of Contexts

3) Context Detection

4) Context Activation (De-Activation)

Preparing to Use Contexts

5) Context Prediction

Context Meta-Behavior

6) Context Shift Patterns (6-10 types)

7) Context Sets (Multiple Contexts Active)

8) Context Meta-Flow (Dialogue Analysis)

It would be nice to perform all these tasks automatically, but user assistance may be a key factor in obtaining good performance. Our dialogue manager can ask questions such as “Are you going to give a real presentation?”

Multi-Level Events with Probabilistic Data

Even within the computer, it may be best to preserve ambiguity for effective internal processing and external dialogue.

Baby Steps uses events to communicate ambiguous information between different parts of the system. These events contain “command objects” such as the following:

Type = Speech

PClarification = 0.6

NCommands = 3

Command[1] = “Thicken line 11”, L[1] = 0.61

Command[2] = “Thicken line 13”, L[2] = 0.24

Command[3] = “Quit”, L[3] = 0.15

Our system uses distributed multi-level events, in addition to traditional centralized handling of context information. Each data stream consists of low-level events such as mouse clicks or speech fragments. Interpreters and analyzers produce higher-level events like words or commands. These higher-level events can be cues or behavior patterns, such as “Microsoft Word user in reading mode or article-writing mode.”

If sensor processors, applications, and other dialogue programs can trade ambiguous data that contains dialogue and context information, this can produce better performance than systems that force input events into deterministic states.

Performance Evaluation

Current metrics for measuring performance of dialogue systems are inadequate. Real users are often concerned with “Did it speed up my task?” or “Was it easier to use?”, rather than “How many errors occurred?”

A common approach to evaluating speech dictation systems measures the error rate of the best choice phrase (e.g., Error = 5% or 15%). Real systems must consider many additional factors, which often dominate the total time to complete a task (See Figure 3):

1)
Tspeech
Time of actual speech

2) Tdelay
Delay before all words appear

3) Tcorrections
Time to correct mistakes

4) Tcheck
Time to check for errors

Ttotal = Tspeech Tdelay + Tcorrections + Tcheck

[image: image3.wmf]Type

Time (sec)

Speed (wpm)

% Total Time

T

speech

 38

160

 16%

T

delay

 33

 85

 14%

T

corrections

131

 30

 57%

T

check

29

 26

 13%

T

total

230

26

100%

Figure 3: Speech Dictation Performance

Error Types & Minimizing Impact of Errors

Measuring application performance is more difficult, since errors may be dangerous and irreversible. Dictation programs can provide better performance by changing words after hearing more speech, but current applications are not usually so fortunate. We provide a simple hierarchy of error types (from best to worst):

1) Desired Effect – Wrong phrase, but it worked

2) Inaction – No response, “Say again”, or another command which was unable to execute

3) Confirmation – Asked the user for confirmation

4) Minor (undoable) – “Undo” works

5) Medium

a) Fixable (1 command) – You must know the proper command to reverse the error.

b) Fixable (few commands) – Reversible with a few commands

6) Major

a) Unrecoverable (many commands) – Lost important information

b) Lost Document (entire document) – Application Crash/Freeze, Exit without Save

[image: image4.wmf]•

Desired Effect

 2%

•

Inaction

13%

•

Confirmation

 0%

•

Minor

 0%

–

Undoable

•

Medium

–

Fixable (1 command)

–

Fixable (Few commands)

•

Major

 10%

–

Unrecoverable (Many commands)

–

Application Crash/Freeze, Exit without Save

1%

8%

1%

7%

6%

9%

A

B

C

Figure 4: Speech Application Performance

In Figure 4, compare three different versions of Baby Steps controlling Microsoft PowerPoint, each with an overall 25% error rate. Most errors in the naive speech-enabled PowerPoint (version A) are not undoable because the application treats all PowerPoint method calls as one unit when issuing “Undo.”

Ease of Use

Thus to increase performance, we must

1) Decrease total time to perform task

2) Decrease error rate

3) Make errors less serious

but there are also many usability factors to consider, which are not currently measuring in our project.

4) Easier to setup and learn

5) Easier to remember and use

6) Useful in more situations

Related Work

Mixed-Initiative Conversation

Donaldson and Cohen (1997) provide a three-part goal-oriented model of turn-taking. They also breakdown goals into four categories – repair, clarification, information-seeking, and question-answering.

Abella, Brown, and Buntschuh (1996) discuss dialogue motivators as a set of motivations for conducting a dialogue.

Chu-Carroll and Brown (1997) analyzed the cues which signal initiative shifts – explicit, discourse, and analytical.

Context-Handling Infrastructures

Cross-application context-handling infrastructures have just recently been appearing. At Georgia Tech, Daniel Salber and Gregory Abowd are working on a Java-based Context Toolkit (1999) to filter noisy sensor and actuator data for applications.

SitComp (Situated Computing) provides situation information and context data for mobile ParcTab devices and other computers (Hull, 1997). Schilit (1995) wrote his thesis at Columbia University on an architecture for context-aware mobile computing.

The systems focus on simple external sensors such as GPS receivers and user identification devices to provide background information.

Multimodal Architectures

At the Oregon Graduate Institute, they have developed a distributed, agent-based, multimodal system called QuickSet (Cohen et al. 1997). It uses typed feature structures to store multimodal inputs in a common meaning representation, and uses temporally sensitive unification for multimodal integration.

At CMU, Vo and Waibel (1997) have developed a set of grammar-based Java tools for constructing multimodal input processing modules.

Context for Adaptive Operating Systems

At UC Santa Cruz, Kroeger used multi-order context modeling to predict file system actions from prior events. A simple last successor model can correctly predict the next file access 72% of the time (1999).

Conclusion

User control and response methods in current GUI systems are insufficient for many problems presented by new input sensors – noise, ambiguity, errors, multiple fragmented input sources. Effective use of dialogue between the user and the computer is necessary for effective communication. We have presented early work on a context-based dialogue system which examines strategies for improving multimodal communication with Microsoft PowerPoint. Also, we believe that current metrics for measuring performance are inadequate, and we have provided some new criteria for comparing dialogue system performance.

Acknowledgements

Xuedong Huang (Speech Technology Group) and Bruno Alabiso (Language Enabled APplications) at Microsoft Research for valuable experience working with the Microsoft Speech SDK, LEAP, and NLP systems during a research internship .

References

Abella, A., Brown M. K., Buntschuh, B. M. 1996. Development Principles for Dialog-based Interfaces. In Proceedings of the ECAI-96 Workshop on Dialog Processing in Spoken Language Systems

Chu-Carroll, J., Brown, M. K. 1997. Initiative in Collaborative Interactions – Its Cues and Effects. In AAAI-97 Symposium on Mixed-Initiative Interaction.

Cohen, P., Smith, I., Chen, L., and Clow, J. 1997. QuickSet: Multimodal Interaction for Distributed Applications. In Proceedings of the Fifth Annual International Multimodal Conference.

Donaldson, T., Cohen, R. 1997. A Constraint Satisfaction Framework for Managing Mixed-Initiative Discourse. In AAAI-97 Symposium on Mixed-Initiative Interaction.

Hull, R., Neaves, P., Bedrod-Roberts J. 1997 Towards Situated Computing. In Proceedings of ISWC ’97, First Intl. Symposium on Wearable Computers, Cambridge, MA.

Kroeger, T., Long, D. 1999. The Case for Adaptive File Access Pattern Matching. In Proceedings of the Seventh Workshop in Hot Topics in Operating Systems (HotOS-VII).
Linton, F. 1998. Microsoft Word's Usage Patterns: A Naturalistic Inquiry. Presentation at Microsoft Research from MITRE Corporation, May 18, 1998.

Reiher, P., Popek, G., Gunter, M., Salomone, J., and Ratner, D. 1996. Peer-to-Peer Reconciliation-Based Replication for Mobile Computers. In ECOOP ’96 Second Workshop on Mobility and Replication.

Salber, D., Abowd, G. 1999. The Context Toolkit : Aiding the Development of Context-Enabled Applications. In Proceedings of Conference on Human Factors in Computing Systems CHI-99. Forthcoming.

Schilit, W. 1995. System Architecture for Context-Aware Mobile Computing, Columbia University Ph.D. Thesis.

Tsai, M., Reiher, P., Popek, G. 1999. Command Management System for Next-Generation User Input. In Proceedings of the Seventh Workshop in Hot Topics in Operating Systems (HotOS-VII).
Vo, M., Waibel, A. 1997. Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach. Technical Report CMU-CS-97-192, Carnegie Mellon University.

(Copyright (1999, American Association for Artificial Intelligence (� HYPERLINK http://www.aaai.org) ��www.aaai.org)�. All rights reserved.

