Automated Planning for Open Network Architectures Alexey Rudenko

Advisors: Peter Reiher and Gerald J. Popek

University of California, Los Angeles June 2002

Introduction

- Motivation
 - Distributed adaptations can improve often-poor QoS
 - How to perform adapter distribution?
 - Automated solution is preferred
- Goal
 - Allocate adapters for a connection
 - Under various constraints
- Challenge
 - Build a planning system that can be used transparently for applications in programmable networks

Accomplishments

- Designed and implemented an automated planning system that calculates and deploys plans
- Measured the performance of the planning system
- Demonstrated advantages of planning
- Results are being published

Reasons for Adaptability

- Network variability
 - Bandwidth, latency, jitter, security, reliability, monetary cost
- Network heterogeneity
 - Internet, wireless, dial-up, specialized client devices
- Some applications require at least a particular level of service
 - Real-time applications

Adaptations

- Application data stream can be adapted with:
 - Compression
 - Distilling
 - Encryption
 - Prioritization
 - Data storage (caching, prefetching, buffering)
 - Scheduling wireless interface
 - FEC

Open Network Architectures

- Programmable networks whose behavior can be dynamically changed
 - User data adaptation
 - User data rerouting
- Active Networks, Conductor
 - Dynamic deployment of adapters

Planned Distributed Adaptation

- Select and distribute adapters within programmable networks to effectively improve QoS of applications
- Build automated planning system for unicast connections serving adaptationunaware applications

Plan is a set of instructions to the connection nodes

- what adapter to use
- in what order
- with respect to available node resources

Secure Low-Bandwidth Web

Introduction Planning Procedure Planning Algorithm Performance Conclusion 8

FEC

Secure Low-Bandwidth Video

Low bandwidth Insecure Unreliable	Low bandwidth	Insecure
Adaptation: Compression Encryption	Distilling Compression	Encryption

Exhaustive Search

Naïve Template Planning

- Adapters always on problematic links
- Example of an inefficient solution

Naïve Template Planning 2

- Adapters always on end links
- Example of an infeasible solution

Full-Scale Template Planning

- Exponential space of network situations is referred to a smaller number of precalculated plan templates
- Put real adapters during connection establishment
- Potentially inefficient, infeasible

Solution: Online Automated Planning

- Allocate adapters
- Satisfy constraints
 - Keep used link resources below offered limits
 - Keep used node resource below offered limits
 - Minimize nodes' resources used

Requirements to Planning

- Planning must be fast to benefit real-time applications
- Adapters must be consistent
 - No adapter inhibits the work of another adapter
 - Semantics of data is preserved
- Adapters must be efficiently selected, ordered, and located

Requirements (cont.)

- Extensibility of the system
 - Independent evolution of planners and adapters
- Resource management
 - Accept or reject a new connection
 - Stop, kill, or replan old connections
- Security of the planning procedure
- Fault-tolerance (what if node/adapter fails?)
- Accounting

General Planning Procedure

• Planning data collection

- User preferences
- Application data stream requirements
- Network conditions
- Plan calculation with the planning algorithm
- Plan deployment
- Local planning and centralized planning

Local Planning

- Local plan between two neighbor nodes
 - Assume
 - planning data collected off-line
 - adapters are locally available
 - Local planning: adapter selection and ordering
- Chain of sequential local plans
 - Can be used as a solution
 - Calculated fast
 - Potentially inefficient

Local Planning

Centralized Planning

- Collects planning data about a connection
 - Application requirements
 - Network conditions
- Calculates a plan
- Deploys the plan
- More efficient but harder to calculate

Centralized Planning (cont.) Planner Adapter storage site Sending user Destination Source Receiving user ONA node Planner Adapters Introduction Planning Procedure Planning Algorithm Performance Conclusion 22

Implementation with Panda

- Panda AN system designed in our lab
- Planner and adapter storage site on the source node

Combined Planning Procedure

- Local planning is first
- Switch to a new central plan when it is ready
 - Central plan may not be necessary for short (< 100 packets) connections
 - Factors for longer life of local plan
 - slow machines
 - busy network
 - central plan calculation delay or failure
 - central plan deployment delay or failure

Combined Planning Procedure

- Network conditions can change during session
 - Run centralized planning again
 - Switch to a new central plan

• Now: how to calculate a plan?

Planning Algorithm

• Planner must understand adapter data

Adapter data structure

Problem ID	Solution method	Low bandwidth
Effects: Efficiency of solution, impact on data size, lossless (y/n), etc.		Effects: efficiency = 0 data size coef lossless = yes
Costs: Required executional resources, execution latency, monetary cost, delivery latency, etc.		Costs: CPU, memor
Preconditions	Postconditions	Compressability = 1

Example of compressor data

Low bandwidth	LZ compression			
Effects: efficiency = 0.5 data size coefficient = 0.5 lossless = yes				
Costs: CPU, memory, HD				
Compressability = 1	Compressability = 0			

Planning Data

• What data is necessary for planning?

Category	Attributes (example)
Stream characteristics	Throughput, format, encrypted (y/n), compressed (y/n
Stream requirements	Throughput, secret (y/n)
User preferences	User chooses a solution method if more than one exist
Link resources	Bandwidth, secure (y/n) , reliable (y/n) , etc.
Node resources	CPU, memory, HD

Heuristic Search in Plan Space

- Run sequentially
 - Adapter selection
 - using real adapters, handle plan feasibility and adapter consistency from the beginning of a planning process
 - Adapter ordering
 - templates can be calculated off-line
 - Optimize of adapter locations in the results of adapter selection and ordering

Adapter Ordering

• One or more partial-order plans ordered by solution methods

Adapter Ordering (cont.)

- Additional constraints come from:
 - Application-level protocol requirements
 - Adapter preconditions/postconditions
 - e.g., adapter requires a particular format
 - Network conditions
 - if users are not able to decrypt cached data, it should be cached unencrypted

Adapter Ordering (cont.)

- Conflicts between real adapters during ordering
 - Detected through precondition and postcondition analysis
 - Resolved through
 - reorder, if partial order plan allows
 - adding more adapters
 - If not solvable, adapter selection must be repeated

Resulting Local Plans

- Result of adapter selection and ordering
 - Chain of local per-link plans
 - The result plan works
 - But can be inefficient
 - processes data longer
 - wastes connection link resources

Optimization of Plan

- Optimization is needed
 - Cover more connection hops with an adapter that improves link conditions (compression, encryption, etc.)
 - Not with FEC, wireless interface scheduler, and some other adapters!
 - Drop redundant adapters
 - also reduce the latency of adaptation
 - Stay feasible

Plan Optimization

- Recursive best-first search
 - Local plan chain is the initial point
 - Transformation: merging neighboring plans
 - preserving adapter order link node nodesresources links resources - Evaluation function $f = \sum_{k=1}^{max} \sum_{k=1}^{max} \alpha_k lr_k + \sum_{k=1}^{max} \sum_{k=1}^{max} \beta_m nr_m$
 - - α_k , β_m weight coefficients
 - lr_k , nr_m link and node resources
 - Find minimum of the function
 - can be local

Example of Two Plans Merging

Plan Merging (cont.)

- Plan merge can fail
 - discouraged by an evaluation function
 - insufficient knowledge about adapters
 - unrecoverable constraint conflict
 - insufficient computational resources on connection nodes
 - time limit
- Best-effort plan is delivered

Example of Planning

Example of Planning

Example of Planning (cont.)

Example of Planning (cont.)

Example (cont.)

• Chain of local plans

Example (cont.)

- Merge AB+BC
 - DeFEC stays on B
 - Compression dropped

Example (cont.)

- Merge AC + CD
 - Encryption dropped

Performance Results

- The planner testing on a separate machine
 - Dell Inspiron, 333 MHz, 128MB
 - Simulate connections
 - number of nodes (2 to 15)
 - problems of low bandwidth, very low bandwidth, and security for each link
 - number of adapters a node can execute (1 to 10)
 - Exhaustive search planner for heuristics search evaluation

Heuristics/Exhaustive Planning Latency Ratio

of adapters in non-opyimized plan

Given that an optimal plan exists, it was not found in: 1 case for 4-node connection (from 1000 tries) 3 cases for 5-node connection (from 1000 tries) 8 cases for 6-node connection (occurred in about 1 percent of tries)

Planning Algorithm Test

6 nodes, 14 adapters: 90 milliseconds at most

Planning Algorithm Test (cont.)

12 nodes, 9 adapters: 160 milliseconds at most

Real-time Application Test

- HP Omnibook, 500 MHz, 128Mb
- Panda middleware with planner
- Applications
 - Connector (test application)
 - WaveVideo multimedia package [Fankhauser99]
- Adapters
 - Null adapters, resolution-drop, encryption

Application Test (cont.)

- 2-, 3-, 4-node connections
- Link conditions
 - 150 Kbps, 800 Kbps
 - secure, insecure
- QoS is measured in dB, peak signal-to-noise ratio (PSNR)

PSNR (luminance)

PSNR is 10 dB higher for an adapted stream

Centralized vs. Local Planning

Centralized vs. Local Planning

Planning Procedure Latency

Planning procedure is 1.1 second at most 100 to150 packets under local plan before central plan is on

Related Work

- Naïve Planning (mostly proxies)
 Agent-proxy Mowgli [Liuljeberg96]
- Template Planning
 - Conductor [Yarvis00]
- Online Planning
 - Adaptation: CANS [Fu01]
- Inspirational AI Planning Approaches
 - least-commitment planning [Kamphampati94]
 - RBFS [Korf93]

Contribution

- Designed and implemented
 - Heuristic planning algorithm for unicast connections
 - adapter data structure
 - adapter selection supporting system extensibility
 - adapter ordering
 - plan optimization
 - Feasible automated planning procedure
 - Combined local and centralized planning
 - Replanning
 - Shown that real-time applications benefit

56

Work was presented

- Demonstrations
 - DARPA site visit
 - UCLA CSD Annual Research Review
- Publications
 - Openarch 2000
 - Dance 2002
 - Other papers in the works

Wider Applicability

- Beneficial for rescue/military missions
 - Ad hoc networks with highly customized application protocols
- Applicable on various distributed systems
 - Open network architectures
 - Peer-to-peer networks
 - Remote code invocation systems

Conclusion

- Feasible planning system for unicast connections is implemented
- Real-time applications benefit
- The planning system allows relatively independent development of planner and adapters
- The planning system improves active network resource distribution

Introduction Planning Procedure Planning Algorithm Performance Conclusion

60