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Abstract—Vehicular ad hoc networks (VANETs) are designed
to provide traffic safety by enabling vehicles to broadcast
information—such as speed, location and heading—through
inter-vehicular communications to proactively avoid collisions.
However, the attacks targeting these networks might overshadow
their advantages if not protected against. One powerful threat
against VANETs is vehicular botnets. In our earlier work, we
demonstrated several vehicular botnet attacks that can have
damaging impacts on the security and privacy of VANETs.
In this paper, we present SHIELDNET, the first detection
mechanism against vehicular botnets. Similar to the detection
approaches against Internet botnets, we target the vehicular
botnet communication and use several machine learning tech-
niques to identify vehicular bots. We show via simulation that
SHIELDNET can identify 77 percent of the vehicular bots. We
propose several improvements on the VANET standards and
show that their existing vulnerabilities make an effective defense
against vehicular botnets infeasible.

Index Terms—Vehicular Ad Hoc Networks, VANET Security,
Vehicular Botnets, Vehicular Botnet Communication, Intrusion
Detection, Machine Learning, Reputation-Based Security

I. INTRODUCTION

Many traffic accidents are caused by unsafe driver actions
due to insufficient traffic information [20]. In vehicular ad
hoc networks (VANETs), vehicles exchange traffic information
through Basic Safety Messages (BSMs) [21], which contain
current speeds, locations, directions, etc. Vehicles use this
information to prevent collisions by automated and prompt re-
actions to abrupt traffic events. However, the wide acceptance
of VANETs depends on their security since attacks on them
might have fatal consequences, unlike most other systems.

One of the most powerful adversaries against VANETs
is vehicular botnets. We pioneered the concept, argued its
feasibility, and demonstrated the first vehicular botnet attack—
namely a congestion attack—and its effectiveness in [6]. This
attack can cause traffic congestion on any road of interest,
making it and other roads surrounding it virtually unusable.
We also presented BOTVEILLANCE in [8]—a vehicular
botnet surveillance attack—which violates one of the most
fundamental requirements of VANETs, location privacy. We
finally demonstrated RIoT in [9]—the first attack against
Internet of Things (IoT) devices using vehicles—which can
compromise a significant percentage of the IoT devices in
an area of interest by taking advantage of the mobility and
collective communication range of vehicular bots. Considering
the dangers vehicular botnets impose through such attacks, it is
crucial to eliminate them for the safety and privacy of drivers.

In our earlier work, we designed the first vehicular botnet
communication protocol, GHOST [7], which exploits the
existing vulnerabilities in the VANET standards to avoid
detection. The standards assign finer granularity than nec-
essary to some fields in BSMs, particularly speed, latitude,
longitude and positional accuracy. GHOST splits and injects
secret messages into the least significant bits of these four
fields. It remains hidden because the magnitude of the fine
granularity in these fields makes the variations in their values
caused by the injections less than the natural variations. While
GHOST is not the only possible mechanism for vehicular
botnets to coordinate their activities, future mechanisms are
very likely to be similar to GHOST since using the VANET
control channel for vehicular botnet communication is the
stealthiest approach—given that the control channel is already
standardized to be frequently used by everyone [21]. Since
only BSMs are allowed to be sent through this channel, future
mechanisms will also be forced to work with BSMs to transmit
botnet messages, which will have similar side effects to
GHOST. Since vehicular bots have to use GHOST or a similar
communication protocol to secretly coordinate their attacks,
similar to Internet botnets, the most effective defense against
such cooperative adversaries is targeting their communication
protocol to identify them. Instead of trying to detect which
specific vehicular botnet attack is being performed and defend
against it, going after the common mechanism among such
attacks—vehicular botnet communication—provides a defense
against not only the known threats but also the future ones. In
this paper, we target GHOST since any detection mechanism
against it can also largely be used against future mechanisms
anyway due to the aforementioned reasons.

In this paper, we present SHIELDNET, a detection mecha-
nism against vehicular botnets, which applies machine learning
techniques to search for evidence of GHOST usage and
identify the participants as possible vehicular bots. Since
the only indication of GHOST usage is the effects that its
secret message injections have on the values of the afore-
mentioned BSM fields, each machine learning algorithm of
SHIELDNET is chosen based on the expected change pattern
in each corresponding field value to be able to detect the
anomalies. Our work is the first implementation of a defense
against vehicular botnets. After identifying the most applicable
machine learning algorithms for the BSM fields, we determine
their best configurations. However, SHIELDNET is designed
in an adaptive manner, meaning that its machine learning



algorithms can easily be replaced or extended without affecting
its reputation-based vehicular bot identification component.
We also discuss the vulnerabilities in the VANET standards
in more depth and show via simulation that GHOST remains
infeasible to detect even with SHIELDNET as long as these
vulnerabilities exist. We then implement the vulnerability fixes
so that our defense is evaluated with the improved standards.

In Section II, we discuss the existing defense approaches
for Internet botnets and if they are applicable to the problem
of vehicular botnet detection. In Section III, we describe the
GHOST protocol and present the design details of SHIELD-
NET. In Section IV, we discuss the configurations of the
machine learning algorithms for the evaluation of SHIELD-
NET, and show the accuracy of our detection mechanism via
simulation. In Section V, we describe the vulnerabilities in the
standards that GHOST exploits and that need to be fixed as
future work. In Section VI, we conclude with the contributions
of our work to future research on VANET security.

II. RELATED WORK

The concept of botnets has received much research attention
due to the high impact of these networks of compromised
machines. Internet botnet detection, particularly, is a well-
studied subject and there are numerous approaches proposed
to tackle this problem. Most botnet detection techniques are
based on passive network traffic monitoring and analysis [5]
[19], similarly to our approach. These techniques attempt
to detect botnets by identifying their command and control
(C&C) channels that are used for their coordination; some
C&C protocol models are presented in [2]. They try to achieve
this by searching for anomalies in network traffic [10] [14]—
such as high latency, high traffic volumes, and traffic on
unusual ports—or specifically in DNS traffic [1], which are
caused by C&C activities. However, the C&C channel of
GHOST neither causes these network anomalies nor uses
the same network architecture as Internet botnets. Vehicular
botnet messages are already injected into BSMs, which are
broadcast to everyone with a high frequency as per the
VANET standards. This way, the C&C activities of vehicular
botnets do not change the existing network conditions in any
way. Therefore, Internet botnet detection approaches are not
applicable to our problem.

In the context of VANETs, there is no existing work in the
direction of detecting vehicular botnets. Our work is the first
step towards identifying the unique characteristics of vehicular
botnets to detect them, and the first implementation of such
a detection mechanism. We determine the standard and most
applicable machine learning algorithms [3] [4] [13] based on
the expected change patterns in the injected BSM field values
and the format of each field, and use these algorithms to detect
anomalies in them. The scope of this paper is not designing
new machine learning algorithms; our novelty comes from
designing an adaptive vehicular bot detection framework that
houses them. The framework provides organized and efficient
data collection for the built-in machine learning algorithms,
and uses their outputs for its reputation-based vehicular bot

identification mechanism. Its adaptive design makes the addi-
tion of new machine learning algorithms or the removal of the
built-in ones very easy for future researchers.

The vehicular bots that are identified by our detection
mechanism would naturally need to be removed from the
network. Since there are already many existing mechanisms
for the eviction of misbehaving vehicles—such as [15] and
[16]—which are surveyed in [17], designing a new one is out
of the scope of this paper.

III. SHIELDNET

A. Overview

Here we first discuss the GHOST protocol and which of
the injected BSM fields are suitable to be used for vehic-
ular bot detection. We then describe the design details of
SHIELDNET—the machine learning algorithms applied on
the suitable fields to detect anomalies in their values and
the reputation-based analysis of these anomalies to identify
vehicular bots. SHIELDNET is intended for use by authorities
with the means to monitor the exchanged BSMs in the whole
shielded area. It is designed in an adaptive manner so that
authorities can easily replace the machine learning algorithms
applied on the data whenever they feel necessary without
affecting the reputation-based identification of vehicular bots.
We use a labeled dataset, which is a large set of BSMs—
collected during our vehicular botnet simulation—where the
injected ones are marked, for the investigations and evalua-
tion in this paper; however, SHIELDNET uses unsupervised
machine learning algorithms and does not require any labeled
data to identify vehicular bots.

B. GHOST

There are two wireless channels in VANETs that vehicles
use to send messages: control and service channel. The control
channel is reserved only for broadcasting BSM messages,
while the service channel is shared among all the other
applications that are not related to traffic safety. Vehicular
bots need a communication channel that they can frequently
use to coordinate their attacks without raising any flags. They
are not allowed to send any messages other than BSMs in
the control channel, and it might raise suspicion if there is
a continuous traffic in the service channel among only the
same set of vehicles. GHOST enables vehicular bots to conceal
the botnet messages inside the broadcast BSMs. Since BSMs
are already frequently broadcast (every 100 msec [21]) to
everyone, vehicular bots can piggyback their messages onto
them without raising suspicion. They achieve this by splitting
their two-byte botnet messages into four parts and injecting
them to the least significant four bits of the speed, latitude,
longitude and positional accuracy fields in their outgoing
BSMs. The original botnet message can then be reconstructed
from these four fields by the receiver bots. The injected
messages will look like random noise to authorities monitoring
the BSM broadcasts even if they can be identified, since they
are encrypted with a random scheme that changes periodically.
Further details of the GHOST mechanism can be found in [7].



Figure 1. BSM fields where botnet messages will be injected into and the
effect of the injection on the field values

Figure 1 shows the content of a BSM according to the
VANET standards. The injected fields are highlighted and
the theoretical maximum changes in their values due to the
injections are shown; the theoretical maximum change in a
field value is the change when 0xF is injected while the field
has 0x0 as its least significant four bits. The vulnerability in
the standards that allows GHOST to stay hidden is the fine
granularity assigned to these fields. Due to this vulnerability,
even the theoretical maximum changes GHOST makes in the
field values remain well under the tolerated natural variations.
In fact, experiments reveal that the observed maximum and
average changes caused by GHOST are significantly lower
than the theoretical maximum changes, as shown in Figure 2.

Average Max Theoretical Max
Latitude (d) 5.02E-07 7.67E-07 15E-07

Longitude (d) 5.25E-07 7.73E-07 15E-07
GPS Position (cm) 8.08 12.11 24

Positional Accuracy (d) 0.02 0.03 0.08
Speed (miles/h) 0.29 0.40 0.67

Figure 2. Changes in the values of the injected fields during the experiment

Detecting the GHOST usage by searching cleartext botnet
messages in the BSM fields or checking extreme variations in
their values is infeasible due to all the aforementioned reasons.
Therefore, SHIELDNET uses machine learning approaches to
detect the anomalies in the fields by predicting their values
based on the features and learned behavior specific to them.
Since there is no predictable behavior for the positional
accuracy field—the noise in the calculation of the vehicle’s
heading relative to true north—only the speed, latitude and
longitude fields are used for the anomaly detection.

C. Anomaly Detection in Speed

Prior to applying machine learning to detect anomalies in
speed values, we performed statistical analysis on the labeled
dataset to look for a predictable pattern in how the GHOST
injections might effect these values. We first investigated if
the injections yield higher or lower speed values on average
than the non-injected values. Since the effect of the four-bit
injections on the speed values in two-byte granularity is very

low as aforementioned, we calculated the average of values
represented by the four least significant bits of the speed field
for all the injected and non-injected BSMs. We observed that
these two averages were nearly identical, meaning that there
was no predictable pattern. We repeated the same analysis for
the one, two and three least significant bits as well but the
outcome was the same. We then investigated if there was a
bit pattern associated with the injections in the speed values,
that is, if the injections cause more ones or more zeros in the
binary speed values on average than the non-injected values.
We calculated the average number of ones and the average
number of zeros in the speed field for all the injected and non-
injected BSMs. Since the content of the injection is random
due to the botnet message being encrypted with a random
scheme that changes periodically, this analysis did not reveal
any predictable pattern as well. Due to the unpredictability
of the effects of the injections caused by the randomness in
their nature, the only effective approach to detect anomalies in
speed values is learning a vehicle’s recent mobility pattern and
determining the plausibility of its following speed broadcasts
based on how well they fit this pattern.

SHIELDNET uses a machine learning algorithm, specifi-
cally moving average using discrete linear convolution [3],
to model each vehicle’s mobility pattern based on its speed
advertisements and detects outliers with a stationary standard
deviation. Each outlier is then reported to the reputation-based
vehicular bot identification mechanism.

Figure 3. Model of a vehicle’s mobility and outliers during the simulation

SHIELDNET creates a separate mobility model for each
vehicle and performs anomaly detection simultaneously for all
of them. Figure 3 shows the mobility model created for one
of the vehicles in the simulation (green line). The model is
continuously updated with each speed advertisement from the
vehicle received by authorities monitoring the BSM broadcasts
in the shielded area. Each advertised speed value (black dot) is
tested against the model built so far and marked as an outlier
(red star) if it does not fit the model based on the configurable
stationary standard deviation. If it is not considered as an
outlier, the model is then updated to include this new speed
value in its convolution.

D. Anomaly Detection in Latitude and Longitude
Detecting anomalies in latitude and longitude values by

learning their change patterns is impractical for several rea-



sons. First, depending on the heading, only the latitude or
only the longitude or both might change and the amount of
change in each is determined by both the heading and speed.
As a result, the convolution approach alone would not be able
to predict their next values. Second, even if another machine
learning approach could incorporate the effect of heading and
speed in its model, there is another factor in addition to the
effect of injections that might be considered as an anomaly:
GPS error. Therefore, the only effective approach to detect
anomalies in latitude and longitude values is learning the
GPS error pattern to be able to distinguish the effect of the
injections from the GPS error as anomalies.

The level of GPS error is determined by the environmental
factors such as interference, obstacles, etc. Therefore, vehi-
cles under the same environmental factors are expected to
have similar GPS errors. In other words, a vehicle having
a significantly different GPS error than other vehicles under
the same environmental factors would indicate an anomaly—
likely to be caused by the injections into the vehicle’s latitude
and longitude values. In order to detect such anomalies, GPS
errors in the same environment need to be clustered together
based on their similarity. Since being in the same environment
is represented as having both similar latitudes and longitudes,
2D clustering approaches would fail to model one of these
dimensions required: latitude, longitude and GPS error.

SHIELDNET uses the 3D version [13] of DBSCAN [4]—
a density-based cluster discovery algorithm for large spatial
databases with noise—for dividing the spatial GPS errors into
multiple 3D clusters based on their similarity and proximity.

SHIELDNET’s GPS error calculations start for each ve-
hicle when its first two BSMs, say BSM1 and BSM2,
are received. Using the speeds and headings advertised in
BSM1 and BSM2, as well as BSM1’s and BSM2’s times-
tamps, BSM2’s expected latitude and longitude—latexp and
longexp—are calculated. The GPS error for the vehicle would
then be the Euclidian distance between latexp and longexp and
the actual latitude and longitude advertised in BSM2—latadv
and longadv . The next GPS error for BSM2 and BSM3 is
calculated using BSM2’s latexp and longexp instead of its
latadv and longadv , which are inaccurate due to the GPS error.

Figure 4. 3D clusters of the GPS errors and outliers calculated by DBSCAN

Figure 4 shows how the calculated GPS errors are divided
into multiple spherical 3D clusters (different colored circles).

Clusters are created based on the configurable maximum
cluster radius and minimum number of points required within
this radius to form a cluster. Figure 4 depicts only the data
belonging to a subset of the shielded area. The latitude (y-axis)
and longitude (x-axis) values in the graph are the distance in
meters from the bottom and left edge of the shielded area,
respectively. Each calculated GPS error is tested against the
model built so far and marked as an outlier (blue cross) if it
cannot belong to a cluster. The outlier is then reported to the
reputation-based vehicular bot identification mechanism.

E. Reputation-Based Identification of Vehicular Bots

SHIELDNET performs a reputation-based analysis on all
of the outliers reported by the built-in machine learning algo-
rithms in order to identify vehicular bots. This identification
mechanism is designed to provide authorities with a list of
vehicles that are most likely to be bots and to constantly update
this list while the machine learning algorithms simultaneously
generate new outlier reports.

Figure 5. Diagram of SHIELDNET’s components and their interactions

Figure 5 shows the individual components of SHIELDNET,
how they communicate with each other and the input/output
of each component. These components operate in a pipelined
manner; each component immediately processes the partial
data inputted and forwards the result to the next component
while the new data is constantly being inputted. This pipeline
starts with the data collector where all the BSMs being
broadcast in the shielded area are inputted. Authorities collect
this data by using network sniffers with a high communication
range—most likely the Roadside Units (RSUs). The data
collector then organizes the inputted BSMs and passes them



to the machine learning algorithms as input. There can be
any number of machine learning algorithms at the next step
in the pipeline and it might change over time. Therefore, the
data collector is designed in an adaptive manner to detect
the current algorithms and forward the data accordingly. After
BSMs are passed to each machine learning algorithm, outlier
detection is performed on the data relevant to the algorithm and
outliers are reported to the temporal sequencer. Each outlier
report is a pair of the pseudonym (identifier) of the vehicle
that broadcasts the outlier and the timestamp of this broadcast.
Based on these reports, the temporal sequencer calculates
the suspicion level for each vehicle, which determines its
likelihood of being a bot. Finally, the temporal sequencer sorts
the list of vehicles by their suspicion levels and marks all the
vehicles with suspicion levels that are higher than a threshold
as bots. The pseudonyms of these vehicles that are likely to be
bots are then given to authorities for the appropriate action to
be taken towards either recovering their system to its factory
settings or removing them from the network.

Figure 6. Temporal sequencing of the outliers to calculate suspicion levels

The mechanism for the temporal sequencing of the outliers
reported by the machine learning algorithms is depicted with
an example in Figure 6. Starting from the first BSM, every
broadcast of each vehicle in the shielded area is placed in the
temporal sequencer ordered by its timestamp (different colored
bars), which captures both the duration that each vehicle is
in the shielded area relative to others and the total number
of BSMs received from each vehicle. The BSMs with an
outlier reported by any of the machine learning algorithms are
marked by the temporal sequencer (red lines) according to
the pseudonyms and timestamps located in the outlier reports.
These marked BSMs are then used for calculating the outlier
percentage of each vehicle—which is the percentage of the
marked BSMs of a vehicle over all of its broadcast BSMs—to
be used in the suspicion level calculation.

Outliers might occur for every vehicle due to the false
positives caused by the machine learning algorithms. As a
result, an innocent vehicle might sometimes have the same
outlier percentage as a vehicular bot. However, due to the
nature of GHOST and vehicular botnet attacks, injections and
the outliers caused by them are likely to be frequent during
certain times whereas the outliers for innocent vehicles tend to

be more scattered. For example, even though Car A and Car
C in Figure 6 seem to have the same outlier percentage, Car
C is more likely to be a bot due to this reason. Therefore, the
temporal sequencer divides the BSM and outlier report data
into multiple time intervals (dashed lines) and performs the
outlier percentage calculations for each interval separately. If a
vehicle’s outlier percentage for an interval is above a threshold,
the vehicle gets marked as a violator for that interval. The
temporal sequencer then calculates the suspicion level for a
vehicle by finding the percentage of the intervals for which
the vehicle is a violator over all the intervals that the vehicle’s
BSMs span. The temporal sequencer’s use of percentages—
outlier percentage of a vehicle instead of its total number
of outliers and percentage of a vehicle’s interval violations
instead of the total number of interval violations—normalizes
the effect of vehicles being in the shielded area for different
durations on the resulting suspicion levels. For example, in
Figure 6, it enables Car E to be correctly assigned a higher
suspicion level than Car B.

After the calculation of the suspicion level for a vehicle,
it is immediately added to the temporal sequencer’s sorted
suspicion level list and authorities are updated with the new
list. If the suspicion level of the vehicle is above a threshold,
it gets identified as a bot and authorities deal with it alongside
the other identified bots in the list. Note that none of the outlier
percentage calculation, suspicion level calculation or vehicular
bot identification mechanism depends on any specific types
or number of machine learning algorithms. This is because,
much like the data collector, the temporal sequencer is also
designed in an adaptive manner so that the types and number
of the machine learning algorithms used for anomaly detection
can easily be changed as long as there is at least one algorithm
that outputs outlier reports.

IV. EVALUATION

We used Veins [18] (which combines the SUMO and OM-
NeT simulators) to evaluate SHIELDNET. SUMO is respon-
sible for simulating realistic vehicular traffic while OMNeT
simulates the IEEE 802.11p standard [21]. Each simulation
was 30 minutes long and a total of 1500 cars passed through
the shielded area. The percentage of vehicular bots over the
total number of cars was 20%.

Since the vulnerability in the VANET standards that makes
GHOST infeasible to detect is the excessive fine granularity
in the injected fields, we evaluated SHIELDNET using both
the BSM traces with the normal granularity that is compliant
with the current standards and the traces with the decreased
granularity. We decreased the granularity of the injected fields
by a magnitude that makes the effect of the injections more
noticeable and that we believe does not affect traffic safety;
the details are explained in Section V.

We evaluated SHIELDNET separately for each machine
learning algorithm, that is, there was only one active machine
learning algorithm in each simulation detecting anomalies in
the values of the specific injected BSM field(s) it is responsible
for. This way, as we observed the capabilities provided by



SHIELDNET, we also evaluated the effectiveness of each
machine learning algorithm individually. Each algorithm was
tested with both the normal and decreased granularity BSM
traces. The accuracy metric is defined as the percentage of
vehicles that are actually bots in the list of identified vehicular
bots SHIELDNET reports to authorities.

Convolution Standard Deviation Sliding Window Size Interval Length (sec)
Normal Granularity 0.1 25 140

Decreased Granularity 0.5 5 40
3D DBSCAN Max Cluster Radius (m) Min Number of Points Interval Length (sec)

Both Granularities 4 8 100

Figure 7. Optimal configuration parameters of the machine learning algo-
rithms for the normal and decreased granularity

Figure 7 shows the optimal parameter values used in the
experiments for the components of SHIELDNET—standard
deviation and sliding window size for the convolution, maxi-
mum allowed radius for the clusters and minimum number of
data points required to form a cluster for the 3D DBSCAN,
and interval length used in the temporal sequencer. The factors
that affect the optimal parameter values are different for each
component. The optimal configuration of the convolution is
determined by the used granularity since the sensitivity re-
quired to detect the outliers caused by injections changes with
the granularity. On the other hand, the optimal configuration of
the 3D DBSCAN is independent of the granularity but rather
governed by the geography and its environmental factors that
affect GPS errors and the best way to model them. Finally, the
optimal interval length for the temporal sequencer is decided
based on the frequency of the outlier reports from the machine
learning algorithms; the more frequently outliers are reported,
the smaller the interval length should be.

Figure 8. Accuracies of vehicular bot identification using convolution for the
normal and decreased granularity

The vehicular bot identification accuracies are shown in
Figure 8 for the normal and decreased granularity when only
the convolution is used for anomaly detection. The results
confirm that, with the normal granularity in the speed field as
per the current VANET standards, GHOST remains infeasible
to detect since 19% accuracy is just a statistical result of 20%
of all cars in the simulation being bots. When the granularity is
decreased, the experiments reveal that, with our approach, the
time-series speed data indeed follows a sufficiently predictable

pattern to detect injections and SHIELDNET can identify the
vehicular bots with 77% accuracy.

Figure 9. Accuracies of vehicular bot identification using 3D DBSCAN for
the normal and decreased granularity

Figure 9 shows the vehicular bot identification accuracies
for the normal and decreased granularity when only the 3D
DBSCAN is used for anomaly detection. The results substan-
tiate the effectiveness of our approach of clustering GPS errors
in 3D based on latitude and longitude; despite the normal
granularity, 38% identification accuracy is significantly more
than a statistical result of the bot percentage of 20%. On
the other hand, decreasing granularity does not improve the
accuracy that much due to the low limit of granularity decrease
in the latitude and longitude fields that is possible without
affecting traffic safety. This issue and an existing vulnerability
related to the nature of GPS errors—which adversely affect the
accuracy—are explained in Section V.

The accuracy of SHIELDNET is also affected by the
values of thresholds used in the temporal sequencer—the
outlier percentage threshold to determine interval violators and
the suspicion level threshold to identify vehicular bots. We
currently use a static outlier percentage threshold, which is the
same for all intervals, and a static suspicion level threshold.
As future work, implementing a mechanism that determines
the best threshold values dynamically based on changing
network activity will significantly improve the SHIELDNET’s
vehicular bot identification accuracy.

V. VULNERABILITIES IN VANET STANDARDS

The significant contributions of SHIELDNET to VANET
security need to be complemented with improvements to
the VANET standards since GHOST cannot be detected by
SHIELDNET with the current fine granularity in the injected
fields—each increment is in the unit of 0.02 m/s (≈ 0.04
miles/h) for speed and 10−7 degrees for latitude and longitude
[21], which are the fields that the anomaly detection is
performed on. Therefore, we decreased the granularity of these
fields by a factor of 16, which we believe is the minimum
granularity that does not affect traffic safety; a further decrease
would cause each increment in the speed field to be in the unit
of more than≈ 1 mile/h, and each increment in the latitude and
longitude fields to represent more than ≈ 1 meter in distance.
The experiments showed that, while this granularity decrease



by a factor of 16 was sufficient to make the injections on
the speed field noticeable, the variations in GPS errors were
still generally higher than the effects of the injections on the
latitude and longitude fields. In other words, GHOST could not
be detected without a significant false positive rate by using
only the latitude and longitude values. Therefore, the standards
should further be improved so that the additional granularity
decrease in the latitude and longitude fields would not impact
traffic safety (e.g., enforcing an extra safety distance). An
obvious attacker response to the granularity decrease in the
injected fields would be decreasing the size of the botnet
messages to make injections less noticeable. However, this
would significantly impact the functionality of GHOST due
to the consequent increase in duration for fully synchronizing
the information needed for attacks among vehicular bots, and
decrease in the number of attacks that could be performed
simultaneously, details of which are located in [7].

Another existing vulnerability that affects the success of
the anomaly detection in latitude and longitude values is
the unpredictability of GPS errors. There are several factors
determining these errors such as satellite orbits, inaccuracies in
satellite time, atmospheric effects, signal blockage, multi-path
effect and radio interference [11]. Randomness in these factors
makes the GPS error for an individual vehicle unpredictable
at any given time [12]. However, since vehicles close to each
other would be subjected to similar environmental conditions,
they would have similar GPS errors. Our 3D DBSCAN model
exploits this phenomenon effectively to detect the anomalies
that are caused by the injections, as aforementioned. While
our approach compensates for the randomness in GPS errors
considerably, there is still a significant unpredictability in radio
interference levels. Even vehicles close to each other might
sometimes experience very different radio interference levels
due to the changing number, positions and usage pattern of
nearby interfering devices, causing a high false positive rate
in the 3D DBSCAN. Therefore, as future work, techniques
for smoothing random GPS errors [12], prediction models for
local radio interference caused by user devices, and/or methods
for normalizing the effects of radio interference locally can be
built and incorporated into our 3D DBSCAN model in order
to decrease the differences in GPS errors of vehicles close to
each other. Otherwise, even though SHIELDNET already has
an identification accuracy of 77% using only the convolution
on speed values, attackers might come up with ways to better
utilize the latitude and longitude fields for injection, reducing
the use of the speed field and thus decreasing the probability
of getting detected.

VI. CONCLUSION

In this paper, we presented SHIELDNET—an adaptive
detection mechanism designed to defend against vehicular
botnets. It is a vehicular bot identification framework that
employs a set of machine learning algorithms to detect the
use of GHOST, a vehicular botnet communication protocol.
SHIELDNET is the first implementation of a defense mecha-
nism against vehicular botnets. We used the standard machine

learning algorithms that are the most suitable for our anomaly
detection approaches to evaluate SHIELDNET. We discussed
the effectiveness of these approaches and explained how easily
our adaptive framework can be extended with new machine
learning algorithms. We showed via experimentation that
GHOST remains infeasible to detect if the standard granularity
in the injected BSM fields is not decreased. We described how
we decreased the granularity of these fields without affecting
traffic safety and demonstrated that SHIELDNET can identify
77 percent of the vehicular bots with the decreased granularity.
We discussed the vulnerabilities that still exist in the VANET
standards and need to be fixed. We recommended several
solutions to improve the accuracy of the anomaly detection
in GPS errors as future work.
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