
 
 

An Active Self-Optimizing Multiplayer Gaming Architecture 
 

V. Ramakrishna, Max Robinson, Kevin Eustice and Peter Reiher 
Laboratory for Advanced Systems Research 

Department of Computer Science 
University of California, Los Angeles, CA 90095 

{vrama, max, kfe, reiher}@cs.ucla.edu 
 

 
Abstract 

 
Multiplayer games are representative of a large class 

of distributed applications that suffer from redundant 
communication, bottlenecks and poor reactivity to chang-
ing network conditions. Many of these problems can be 
alleviated through simple network adaptation at the in-
frastructure level. In our model, game packets are di-
rected along the edges of a tree connecting the players, 
aggregated and multicast as necessary. This tree is heu-
ristically formed, and is dynamically adjusted in response 
to changes in network conditions. 

We have designed and implemented a prototype using 
ANTS that performs these adaptations for unmodified 
DOOM clients. Active networks is currently the only open 
architecture suitable for these types of applications. We 
present analytical results that illustrate the reduction in 
communications overhead, and show that the tree can 
quickly adjust to changing network conditions. The over-
head of the active networks layer is acceptable, especially 
in wide-area networks. 
 
1. Introduction 
 

In recent years, the multiplayer gaming industry has 
exploded, enabling millions of gamers around the world 
to play games like EverQuest, StarCraft and Quake with 
one another. Each of these games supports thousands of 
players. These games typically have real-time constraints.  

Much work has gone into improving the performance 
and scaling of these games, largely focusing on improv-
ing response time while maintaining consistent state 
among player nodes assuming unreliable packet delivery 
[1,2]. As graphics and animation quality improve, deliv-
ering only the essential data for an individual client has 
been an important research focus. Little work has been 
done to improve the underlying game network infrastruc-
ture, which could not only provide throughput gains but 
also improve consistency and interest management. 

Traditionally, game world designers have used one of 
two models: peer-to-peer or client-server. In the former, 

each player performs multiple unicasts of the game state 
to all other players; this provides optimal response time to 
the players and is feasible in a broadcast medium like a 
LAN, but fails to scale much beyond that. Also, identical 
game state is sent repeatedly, resulting in redundant 
communication. In client-server architectures, each player 
sends updates to a server, which computes new state and 
sends relevant information to all the players. The average 
response time perceived by players is sub-optimal, but 
this approach scales well. Unfortunately, the server be-
comes a bottleneck and a single point of failure. Nonethe-
less, this model is popular with game companies since it 
allows them to retain administrative control.  

Response times in these architectures tend to be highly 
skewed in favor of some players. The structures are also 
static, and cannot respond well to changes in network and 
node conditions, and players joining and leaving. 

Our approach retains most of the virtues of both the 
models and eliminates many of their drawbacks. We con-
struct a multicast tree connecting the players that has a 
low average node-to-node latency. A tree is rooted at a 
centrally located node. Player packets are aggregated at 
the tree branch points and propagated upwards. The root 
multicasts an aggregated packet to the clients, who extract 
the game packets. The root monitors network conditions 
and changes the tree structure, relocating the root, when 
conditions change. This infrastructure is hidden from the 
application, so that the game need not be modified. This 
infrastructure enhances reliability and performance. 

These techniques can be applied to a larger class of 
applications, including interest management in distributed 
simulations [3] and publish-subscribe systems. 

We use active networks [4] to enable computation at 
both end nodes and intermediate nodes through the use of 
injected code. The intermediate nodes in a connection can 
perform computation on the data stream, in addition to 
routing packets. Active networks facilitate dynamic code 
execution, new protocol deployment and creation of over-
lay networks and support load-balancing.  

 
 



2. Related Work 
 

Our work has been influenced by two systems previ-
ously designed in our lab. Panda [5] is an active net-
works-based adaptation framework that enables intelli-
gent adaptation of unaware network applications. Panda 
responds in real-time to changing network conditions and 
deploys active network adapters to optimize UDP com-
munications. Conductor [6] is a TCP-based open architec-
ture framework that provides a distributed, coordinated, 
application-transparent adaptation facility.  

Various projects use active networks to perform rout-
ing adaptations, including multicasting. The ARRCANE 
project [11] investigates active routing in mobile ad-hoc 
networks, which are in constant flux; the protocol is resil-
ient to changes in network conditions. Reliable and cus-
tomized multicasting using active networks have been 
investigated in [12,13]. Gathercast, similar to packet ag-
gregation in our middleware, has been implemented using 
active networks [14]. 

Much work has been done to improve gaming architec-
tures. The MiMaze architecture [7] is based on a peer-to-
peer model, but uses IP multicast for packet delivery; its 
topology is very static, reliability is not a concern, and its 
traffic reduction is sub-optimal. The design of a mirrored-
server architecture that uses a reliable multicast protocol 
(CRIMP) for packet delivery and a mechanism for clients 
to locate the servers nearest to them is described in [8]. A 
common drawback of all these systems is that they re-
quire the game to be extensively re-modeled. 

There is much work in building dynamic and fault tol-
erant multicast trees. Revere [9] builds overlay networks 
that forward security updates, handling reconfiguration 
for broken connections and failed nodes. [10] describes a 
distributed algorithm for building multicast trees that 
adapt to group members joining and leaving the tree dur-
ing execution. Most other reliable multicast work has 
focused on ensuring that each packet eventually reaches 
each group member [16]. We aim for something weaker; 
a small amount of packet loss is not a concern so long as 
the tree is repaired (or just adjusted) quickly. 

 
3. Design 
 
3.1. Gaming Infrastructure 

 
The gaming infrastructure combines the benefits of the 

peer-to-peer and the client-server models while eliminat-
ing some of their drawbacks. We connect all the game 
nodes to form a tree network, similar to building a multi-
cast tree. One of these nodes, at a “central” location with 
respect to all the player nodes, is selected to be the root of 
the tree, similar to the core in a core-based multicast tree. 
The definition of central could vary; in our case, we use 

latency to measure distance between nodes. The center 
must be chosen to minimize its latency from all players. 
This heuristic ensures that none of the players perceive 
much worse response time from the average, and that all 
game packets pass through this node.  

 
Figure 1 illustrates how packets are routed in this 

model. Each player sends out a packet containing its up-

date of the game state along its upward link, i.e., the link 
along the path to the root of the tree. When a branch node 
on the tree receives packets from each of its incoming 
links, it aggregates them into a single packet and forwards 
them along its upward link. This routing goes on until the 
root node receives packets from each incoming link. It 
aggregates these packets into a single packet and multi-
casts them to the player nodes; duplicating received pack-
ets at every branch node on the tree and sending them 
along all downward links of that node, i.e. those links that 
are not an upward link. Since each leaf node must be a 
player, this process terminates when each leaf receives an 
aggregated packet. This packet is deaggregated into indi-
vidual game packets and delivered to the game client.  

Figure 1. A tree connecting game players

 
3.2. Tree Building and Center Location 
 

Multicast trees are of two types: source-specific and 
group-shared.  In the former, a single node is the only 
multicast traffic source, while group-shared multicast 
trees allow every multicast group member to be a poten-
tial source. Most multicast routing protocols in use today 
are source-specific, but the latter is more suitable for our 
application, where every player must deliver packets to 
the other players and determining the optimal location of 
the root (server) is part of the problem. The general prob-
lem of finding an optimal, minimal delay, group-shared 
multicast tree is a well known NP-complete problem 
known as the Steiner tree problem [17]. 

A simple, O(n3) heuristic solution in the worst case, is 
twice as bad as the optimal, NP-Complete, solution [18]. 
Our algorithm is an iterative application of Dijkstra’s 
single-source shortest path algorithm to build shortest-
path trees to the multicast group members for every po-
tential source, selecting the optimal tree out of the set of 



potential trees. A min-priority queue implementation of 
Dijkstra means each iteration is O(n2). 

 
Once the multicast tree has been built for the given set 

of game players, a center node is picked to be the root. 
The eccentricity of a graph vertex is the longest distance 
from that vertex to any other node in the graph. The ra-
dius of a graph is the smallest value of eccentricity among 
all vertices. The center of a graph is a subset of its verti-
ces that have their eccentricity equal to the radius; there 
are at most two center vertices for a tree. We mark the 
center of the multicast tree as the root; if there are two 
candidates, one is chosen at random.  
 
3.3. Network Monitoring 

 
The multicast tree infrastructure performs continuous 

network monitoring to detect when the current tree struc-
ture becomes suboptimal with respect to average latency 
between nodes. When a change in network conditions is 
detected, a new tree is constructed and a new root is 
marked; the player nodes remain where they were before, 
but could play different roles in the new tree, for example, 
a player who was a leaf in the old tree could be a branch 
point performing aggregation and duplication in the new 
tree. The entire multicast tree is now relocated to the new 
one, which becomes a routing medium as soon as all 
nodes have been given the updated information.  

It is the responsibility of the root node to monitor net-
work conditions, and also execute the tree building and 
the root location algorithms. As this root performs more 
work than the other nodes in the tree, it can be visualized 
as a virtual server, and the modification of the tree can be 
considered to be a server relocation operation. After the 
initial tree is formed, no external intervention is needed.  

 
3.4. Role of Active Networks 
 

This infrastructure is built using active networks. Tree 
building requires knowledge of a set of active nodes as 
input along with the location of the players. All nodes in 
the tree must be active; this is necessary for them to be 
able to perform the necessary functions. 

Game packets will be intercepted by the active net-
works-based middleware and queued to the virtual (over-
lay) network layer, which performs packet forwarding 
independent of the lower IP layer. The game packet is 
encapsulated as an active packet, the only addition being 
a header that contains application-specific information. 
Adapter code is deployed at every active node, which is 
executed upon receiving an active packet. In our infra-
structure, aggregators, duplicators and deaggregators are 
deployed at the nodes. Each node knows its immediate 
neighbors in the tree and has routing information for 
them. The node also has a set of roles, i.e. that of a 

player, a branch point or a monitor.  It can take on any 
subset of these roles. The node also maintains game state. 
If it is performing aggregation, it needs to wait for pack-
ets to arrive from all its children; it queues them for ag-
gregation until all arrive. At this point, packets are aggre-
gated and sent to the parent. Duplication and deaggrega-
tion are performed just from the knowledge of its roles. 
 
4. Implementation 

 
The target multiplayer game was DOOM. The game 

protocol proceeds in lock-step. Each player computes its 
state periodically and sends it to other players. When a 
player has received an update from every other player, his 
game state advances. A fast-paced game, DOOM requires 
real-time updates to maintain a smooth flow.  

We chose a peer-to-peer, UDP-based version of 
DOOM, due to the relative ease of adapting peer-to-peer 
games rather than server-based ones, and because one of 
our goals was to eliminate a centralized server; also, we 
could examine the routing infrastructure in isolation.  

We used the ANTS active networks platform [15], a 
Java-based toolkit that provides an execution environ-
ment and a protocol programming model allowing cus-
tomization of packet forwarding.   We implemented under 
Linux, using the IPcept kernel module designed for Con-
ductor and Panda to perform transparent socket proxying 
and masquerading. 

A typical system contains a set of ANTS-enabled 
nodes, including the game clients. Initially a static tree 
must be built, with roles assigned to each node, and a root 
node chosen manually. Each active node stores the 
adapter code and maintains a routing table for known 
active nodes, as well as a neighbor list consisting of ac-
tive nodes located one hop away. All the active nodes in 
the vicinity interested in participating in the infrastructure 
must send registry capsules to the root.  

When the DOOM client sends out multiple packets to 
other players, these packets are intercepted by IPcept, 
which passes them to the middleware layer. Since these 
packets contain identical data with only the destination 
address being different, only one packet is actually encap-
sulated and forwarded; the tree structure is responsible for 
sending the packet to all the other clients.  When capsules 
containing game packets reach a tree branch point, they 
are aggregated into a single capsule; aggregation consists 
of extracting the game packets from the received cap-
sules, concatenating them and appending the capsule 
header. Every nodes performing aggregation maintain an 
ANTS-defined NodeCache object, in which packets can 
be temporarily stored until it is time for aggregation. Be-
cause of real-time constraints, we have set a timeout pe-
riod; if all expected packets do not arrive within that pe-
riod, the existing packets are aggregated and forwarded. 
Deaggregation is the reverse of aggregation: the ANTS 



header is stripped off and the game packets are extracted 
based on knowledge of their sizes (for DOOM, they are 
typically 16 bytes). 

For latency monitoring, each node “pings” its active 
neighbors periodically and sends its observations as cap-
sules to the root. The root now has a set of nodes and 
edges with weights to work with. Each edge has two 
weight values, as perceived by the two end-points; we 
take the conservative approach of choosing the higher 
value. Based on this information, the root executes the 
tree building algorithm as outlined in Section 3.2. If the 
new tree is different from the existing one, control cap-
sules are sent to the new tree nodes asking them to as-
sume their new roles. Once all the updates have been re-
ceived, the new tree comes into effect and packets are 
routed through it. The old tree nodes are not deactivated, 
so any packets still in flight will be routed to the clients, 
preventing any packet loss.  

 
5. Analysis of Benefits 

 
Our architecture achieves reduction in data communi-

cation compared to both existing models.  
Consider the total number of packets that game players 

send out into the network, given that the number of game 
players is n. For a pure peer-to-peer model, each player 
must send n-1 packets, one to every other node. The total 
number of packets sent out into the network is )1( −∗ nn , 
which is O(n2). In a client-server model, each player 
sends one packet to the server, which then sends n pack-
ets, one to each client. The total number of packets is 
O(n). In our dynamic multicast tree, each player sends out 
one packet, so the total number of packets is O(n).  

The network traffic generated per round of game state 
updates is the total number of packets traversing network 
links. This metric is difficult to measure, since it is highly 
topology and routing table dependent; we demonstrate 
this through an example. Figure 2 shows a network of 
nodes, with a tree connecting the player nodes. (Note: 

This tree is not representative of the actual one that would 
be constructed using our algorithm). Consider the packet 

communication during one round of updates for each 
model, and assume the tree root for the dynamic multicast 
acts as the server in the client-server case. Except for the 
dynamic multicast case, all communication take place 
along the shortest path between peers or from client 
server. Table 1 shows the reduction in network traffic that 
dynamic multicasting achieves.  

 
 

 Peer-to-Peer Client-Server Dynamic 
Multicast 

# packets sent 
out by parties 56 16 8 

# packets in 
the network 207 40 26 

 

The amount of transmitted data can vary depending on 
the size of the packets. Aggregation achieves packet re-
duction, but the total byte content remains the same (in 
fact, it increases slightly due to the appended capsule 
headers). Thus our comparison of the client-server model 
with the multicast model is not strictly fair, since multiple 
packets transmitted over a link in the former case might 
contain less data than an aggregated active packet. But 
aggregation reduces the number of packets, and real-time 
games packets are the order of a few tens of bytes (16 
bytes in DOOM), so there is less chance of congestion 
with an aggregated packet, unless the number of players 
is very large. Fewer packets also means less work at 
routers, so the overall latency is reduced. For large num-
ber of nodes, the packets could be aggregated only so 
long as they remain with a fixed size limit. A server in the 
client-server model would rarely be in the same place as 
the root of a multicast tree constructed by our algorithm, 
because it is static and not chosen relative to the position 
of the clients. Therefore, packets may traverse more edges 
than in our multicast tree, leading to increased traffic. In 
the worst case, the multicast tree root may have to handle 
as much data as the server in a client-server model, creat-
ing a potential bottleneck. 

Table 1. Comparison of models based on 
network in Figure 2 

Figure 2. A multicast tree 

The dynamism and self-adjustment of the game infra-
structure is a step towards ubiquitous gaming environ-
ments. Fault-tolerance is also enhanced. With small ad-
justments, this architecture could handle failure of the 
active nodes and the virtual links between them. If reli-
ability can be increased to a great extent, it would offset 
the disadvantages of the tree adjustment overhead. 

There is no centralized server node in our infrastruc-
ture that is absolutely essential for game play. The root is 
a type of server, but with very restricted functionality that 
can be easily moved from one site to another.  

The average response time latency is nearly equal, on 
average, for all players, because of the central root loca-



tion. All packets pass through this root, ensuring that two 
players never perceive widely inconsistent game state due 
to very different response times.  

 
6. Experimental Results 

 
We have designed and implemented a prototype of the 

middleware in our laboratory. This middleware was de-
ployed on HP-Omnibook 4150 laptops running the Linux 
operating system. The operating system kernels were 
hacked to provide support for the IPcept module that per-
forms transparent proxying and masquerading of asock-
ets. (This functionality can also be performed in kernels 
of version 2.4.x and higher using the netfilter framework 
and setting suitable firewalling rules using the IPtables 
toolkit). The laptops communicated with each other 
through the UCLA CS department ethernet.  

We performed a variety of tests using the test bed de-
scribed above. A variety of network topologies of active 
nodes were tried out, with a subset of them being the 
game players. These nodes and connections were defined 
in an ANTS-understandable manner, with the routing 
tables being constructed automatically by the toolkit. 
(This user-level routing table functionality was also used 
extensively in our middleware for tree building).  

We were most interested in observing and measuring 
the performance gains from two perspectives: one, how 
our dynamic multicasting framework compared with the 
traditional peer-to-peer and client-server models, and two, 
how feasible is active networks as a platform for building 
these kinds of frameworks. To measure the former, we 
considered network traffic as a metric, an informal argu-
ment about which was made in the previous section. To 
measure the latter, we considered the overhead incurred 
by the system in time units; we were also able to observe 
how quickly the tree modified itself when needed. 

The technique used for measuring architectural and ac-
tive networks performance also varied. The system per-
formance could be measured using the resources we had, 
i.e. a few laptops. On the other hand, network traffic 
measurements would be meaningful only if the number of 
nodes was reasonably large; simulation was the only was 
to perform this task. 

The results of the experiments we performed are given 
below. 

To measure the base cost of using the middleware, we 
used a simple topology that directly connected game 
playing nodes as described in Figure 3. The comparison 
was made between the middleware and no-middleware 
cases. First, without the middleware, the average time 
difference between successive packets received by a 
DOOM client was observed to be about 28.5 msec. With 
the middleware in place, this time difference rose to about 
31 msec on average, though this varied widely; the reason 
for this variation can be traced to the fact that a bunch of 

packets reach the middleware at the client node, which 
are then serialized and queued immediately to DOOM. 
Thus, an overhead of about 1.5 msec was observed on 
average; this could rise under certain circumstances, as 
we shall explain later.  

 
 
 
 
 
 
 
 
 
 

Network Link Middleware
 

DOOM 
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DOOM 
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Middleware

 
Figure 3. Simple topology for overhead meas-

urement 
 
This overhead was also measured in another way, by 

noting the execution time of the middleware layer; this 
turned out to be about 1.3 msec on average, though it var-
ied widely between 1 to 2 msec. This reading seems to 
agree with the one observed above. 

We must also mention that hardly any difference in 
quality was perceived when DOOM was played over ac-
tive networks; the game playing experience remained 
almost as good as it was without the middleware. 

Similar observations were made for other topologies 
consisting of more nodes. With a network of 3 nodes 
connected in a chain, with the end nodes being game 
players and the middle one being the root, the overhead 
suffered by the middleware at the game clients still re-
mained about 1.3 msec. The aggregation and duplication 
adapters at the root node incurred about 2 msec overhead. 

We also observed that the overhead could increase 
much beyond the average value. At the points where the 
monitoring of network conditions is done, the overhead 
could rise to a few tens of milliseconds, very rarely being 
as much as 50 msec. Also, game players observed slight 
jitter during these instants. The reason for this is that our 
network monitoring code is implemented entirely at the 
user level process; we are confident that using a kernel 
daemon to do this would yield much better results.  

Another observation we were very interested in was 
the smoothness of transition from one tree to another. 
Network condition change was emulated and the time 
taken to transition from one tree root to another was 
measured for the topology in Figure 4 using the same 
techniques as outlined above. Again, there was an ob-
servable jitter, with transition overhead being a few hun-
dred milliseconds, with the maximum observed being 700 
msec. 

 
 



 

 

Old Root New Root  
 
 
 
 
 
 
 
 
Figure 4. Topology for testing transition over-

head; bottom three nodes are players 
 
To analyze the above observations, we must keep in 

mind that these observations were made in a LAN envi-
ronment, where the average node-to-node latency was 
under 1msec on average. The comparison between 
adapted and unadapted DOOM was all the more pro-
nounced. For MANs and small WANs, where the com-
munication latency could run into tens of milliseconds, 
the observed overhead would be negligible. Also, consid-
ering that the overhead at an individual active node re-
mained somewhat constant for different topologies, a case 
could be made for the scalability of our approach. 

 (a)  
 

 

 
The other experiment performed was a simulation to 

measure benefits in communication overhead, measured 
as the total number of packets seen by the network during 
a single round of message passing. Firstly, algorithms for 
peer-to-peer and client-server models were implemented, 
in addition to the multicasting framework. For the client-
server case, the server was selected to be the same node 
as the root of the multicast tree. In addition to the network 
traffic, average node-to-node latency was also measured 
just to get an idea of how multicasting suffers as com-
pared to peer-to-peer broadcast, which uses shortest paths 
for communication. 

For simulation of graphs and multicast groups, we 
used the Georgia Tech topology generator. We designed 
four random weighted graphs of 250 nodes each: two of 
them were transit-stub graphs, one was a purely random 
graph using a Waxman model for connections, and an-
other a 3-level hierarchical graph. All nodes of the graphs 
were considered active for the purpose of simulation. 
Multicast group size varied from 5 to 30, with a hundred 
random groups chosen for each size and the average read-
ing taken. The comparison of network latency and aver-
age latency for the four graphs are shown in the figures 
below. 

(b) 
 

Figure 5. Transit-Stub graph: One transit domain 
with 5 nodes on average; each transit node has 7 stub 
graphs on average; each stub domain has 7 nodes on 

average 



  
(a) (a) 

  
(b) (b) 

  
Figure 6. Transit-Stub graph: 2 transit domains with 
5 nodes on average; each transit node has 6 stub 

graphs on average; each stub domain has 4 nodes on 
average 

Figure 7. Random graph: 250 nodes and 1260 
edges; Waxman parameters 0.3 and 0.2 

 

 



 
(a) 

 
(b) 

 
Figure 8. 3-level hierarchical graph: 5 nodes with 

edge prob. 0.4 at the highest level; 5 nodes on aver-
age with edge prob. 0.3 at the next level; 10 nodes on 

average with edge prob. 0.6 at the bottom level 
 
Figures 5(a) to 8(a) show conclusively that our model 

performs better than client-server and much better than 
peer-to-peer for all multicast group sizes and the differ-
ence increases with increase in that size. On the other 
hand, the average node-to-node latency is somewhat 
lower in all cases for the peer-to-peer model, which is to 
be expected. This difference remains almost constant for 
all group sizes, and the latencies of both models are of the 
same order. Considering the huge gains in communica-

tion given by dynamic multicast over the peer-to-peer 
framework, this latency difference is a small price to pay. 
Also, it will not affect game-playing experience in any 
noticeable manner. 
 
6. Future Work 

 
There are various directions in which our system could 

be extended. Tree building methodology need not be 
based only on link latency; other factors like load the dif-
ferent nodes, congestion along links could be used to op-
timize the tree. 

The current reliability of the system can be enhanced 
by replicating the monitor at multiple sites. If one monitor 
fails, others will take over and obtain a new position for 
the root. Scalability can be increased by replicating the 
root functionality at multiple nodes. Intermediate nodes 
could perform filtering and interest management, with 
more knowledge about the game, reducing the data to be 
communicated. Our architecture allows players to join 
and leave easily, but DOOM does not support this. 

With wide deployment of active networks, independ-
ent game clusters could be built based on node proximity. 
These clusters could be formed without any manual inter-
vention, with the tree roots deciding whether to admit a 
new player, and connecting him to his closest cluster.  

 
7. Conclusion 

 
We have designed and implemented a self-adjusting ar-

chitecture for multiplayer games that can be deployed on 
both local and wide area networks.  We have shown that 
active networks can be used to perform routing adapta-
tions for multiplayer games, as we have seen in section 6. 
Our simulation results also prove conclusively the bene-
fits in communication overhead over traditional models. 
As our techniques are application-transparent, the model 
is applicable to both new and legacy games. We believe 
that a wide variety of multiplayer games will benefit from 
using our architectural model. With currently available 
technology, it would possibly be a better option to im-
plement a custom infrastructure, maybe at the network 
layer, in order to obtain better performance. Active net-
works, though, is still an evolving technology; we could 
expect that in a few years, it would become the de facto 
platform for deployment of new protocols. 

Our approach is not restricted to the gaming world; it 
can also benefit a wider class of applications like distrib-
uted simulations. The performance impact on non-real 
time applications will be even greater than for multiplayer 
games. 
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