

An Active Self-Optimizing Multiplayer Gaming Architecture

V. Ramakrishna, Max Robinson, Kevin Eustice and Peter Reiher
Laboratory for Advanced Systems Research

Department of Computer Science
University of California, Los Angeles, CA 90095

{vrama, max, kfe, reiher}@cs.ucla.edu

Abstract

Multiplayer games are representative of a large class

of distributed applications that suffer from redundant
communication, bottlenecks and poor reactivity to chang-
ing network conditions. Many of these problems can be
alleviated through simple network adaptation at the in-
frastructure level. In our model, game packets are di-
rected along the edges of a tree connecting the players,
aggregated and multicast as necessary. This tree is heu-
ristically formed, and is dynamically adjusted in response
to changes in network conditions.

We have designed and implemented a prototype using
ANTS that performs these adaptations for unmodified
DOOM clients. Active networks is currently the only open
architecture suitable for these types of applications. We
present analytical results that illustrate the reduction in
communications overhead, and show that the tree can
quickly adjust to changing network conditions. The over-
head of the active networks layer is acceptable, especially
in wide-area networks.

1. Introduction

In recent years, the multiplayer gaming industry has
exploded, enabling millions of gamers around the world
to play games like EverQuest, StarCraft and Quake with
one another. Each of these games supports thousands of
players. These games typically have real-time constraints.

Much work has gone into improving the performance
and scaling of these games, largely focusing on improv-
ing response time while maintaining consistent state
among player nodes assuming unreliable packet delivery
[1,2]. As graphics and animation quality improve, deliv-
ering only the essential data for an individual client has
been an important research focus. Little work has been
done to improve the underlying game network infrastruc-
ture, which could not only provide throughput gains but
also improve consistency and interest management.

Traditionally, game world designers have used one of
two models: peer-to-peer or client-server. In the former,

each player performs multiple unicasts of the game state
to all other players; this provides optimal response time to
the players and is feasible in a broadcast medium like a
LAN, but fails to scale much beyond that. Also, identical
game state is sent repeatedly, resulting in redundant
communication. In client-server architectures, each player
sends updates to a server, which computes new state and
sends relevant information to all the players. The average
response time perceived by players is sub-optimal, but
this approach scales well. Unfortunately, the server be-
comes a bottleneck and a single point of failure. Nonethe-
less, this model is popular with game companies since it
allows them to retain administrative control.

Response times in these architectures tend to be highly
skewed in favor of some players. The structures are also
static, and cannot respond well to changes in network and
node conditions, and players joining and leaving.

Our approach retains most of the virtues of both the
models and eliminates many of their drawbacks. We con-
struct a multicast tree connecting the players that has a
low average node-to-node latency. A tree is rooted at a
centrally located node. Player packets are aggregated at
the tree branch points and propagated upwards. The root
multicasts an aggregated packet to the clients, who extract
the game packets. The root monitors network conditions
and changes the tree structure, relocating the root, when
conditions change. This infrastructure is hidden from the
application, so that the game need not be modified. This
infrastructure enhances reliability and performance.

These techniques can be applied to a larger class of
applications, including interest management in distributed
simulations [3] and publish-subscribe systems.

We use active networks [4] to enable computation at
both end nodes and intermediate nodes through the use of
injected code. The intermediate nodes in a connection can
perform computation on the data stream, in addition to
routing packets. Active networks facilitate dynamic code
execution, new protocol deployment and creation of over-
lay networks and support load-balancing.

2. Related Work

Our work has been influenced by two systems previ-
ously designed in our lab. Panda [5] is an active net-
works-based adaptation framework that enables intelli-
gent adaptation of unaware network applications. Panda
responds in real-time to changing network conditions and
deploys active network adapters to optimize UDP com-
munications. Conductor [6] is a TCP-based open architec-
ture framework that provides a distributed, coordinated,
application-transparent adaptation facility.

Various projects use active networks to perform rout-
ing adaptations, including multicasting. The ARRCANE
project [11] investigates active routing in mobile ad-hoc
networks, which are in constant flux; the protocol is resil-
ient to changes in network conditions. Reliable and cus-
tomized multicasting using active networks have been
investigated in [12,13]. Gathercast, similar to packet ag-
gregation in our middleware, has been implemented using
active networks [14].

Much work has been done to improve gaming architec-
tures. The MiMaze architecture [7] is based on a peer-to-
peer model, but uses IP multicast for packet delivery; its
topology is very static, reliability is not a concern, and its
traffic reduction is sub-optimal. The design of a mirrored-
server architecture that uses a reliable multicast protocol
(CRIMP) for packet delivery and a mechanism for clients
to locate the servers nearest to them is described in [8]. A
common drawback of all these systems is that they re-
quire the game to be extensively re-modeled.

There is much work in building dynamic and fault tol-
erant multicast trees. Revere [9] builds overlay networks
that forward security updates, handling reconfiguration
for broken connections and failed nodes. [10] describes a
distributed algorithm for building multicast trees that
adapt to group members joining and leaving the tree dur-
ing execution. Most other reliable multicast work has
focused on ensuring that each packet eventually reaches
each group member [16]. We aim for something weaker;
a small amount of packet loss is not a concern so long as
the tree is repaired (or just adjusted) quickly.

3. Design

3.1. Gaming Infrastructure

The gaming infrastructure combines the benefits of the

peer-to-peer and the client-server models while eliminat-
ing some of their drawbacks. We connect all the game
nodes to form a tree network, similar to building a multi-
cast tree. One of these nodes, at a “central” location with
respect to all the player nodes, is selected to be the root of
the tree, similar to the core in a core-based multicast tree.
The definition of central could vary; in our case, we use

latency to measure distance between nodes. The center
must be chosen to minimize its latency from all players.
This heuristic ensures that none of the players perceive
much worse response time from the average, and that all
game packets pass through this node.

Figure 1 illustrates how packets are routed in this

model. Each player sends out a packet containing its up-

date of the game state along its upward link, i.e., the link
along the path to the root of the tree. When a branch node
on the tree receives packets from each of its incoming
links, it aggregates them into a single packet and forwards
them along its upward link. This routing goes on until the
root node receives packets from each incoming link. It
aggregates these packets into a single packet and multi-
casts them to the player nodes; duplicating received pack-
ets at every branch node on the tree and sending them
along all downward links of that node, i.e. those links that
are not an upward link. Since each leaf node must be a
player, this process terminates when each leaf receives an
aggregated packet. This packet is deaggregated into indi-
vidual game packets and delivered to the game client.

Figure 1. A tree connecting game players

3.2. Tree Building and Center Location

Multicast trees are of two types: source-specific and
group-shared. In the former, a single node is the only
multicast traffic source, while group-shared multicast
trees allow every multicast group member to be a poten-
tial source. Most multicast routing protocols in use today
are source-specific, but the latter is more suitable for our
application, where every player must deliver packets to
the other players and determining the optimal location of
the root (server) is part of the problem. The general prob-
lem of finding an optimal, minimal delay, group-shared
multicast tree is a well known NP-complete problem
known as the Steiner tree problem [17].

A simple, O(n3) heuristic solution in the worst case, is
twice as bad as the optimal, NP-Complete, solution [18].
Our algorithm is an iterative application of Dijkstra’s
single-source shortest path algorithm to build shortest-
path trees to the multicast group members for every po-
tential source, selecting the optimal tree out of the set of

potential trees. A min-priority queue implementation of
Dijkstra means each iteration is O(n2).

Once the multicast tree has been built for the given set

of game players, a center node is picked to be the root.
The eccentricity of a graph vertex is the longest distance
from that vertex to any other node in the graph. The ra-
dius of a graph is the smallest value of eccentricity among
all vertices. The center of a graph is a subset of its verti-
ces that have their eccentricity equal to the radius; there
are at most two center vertices for a tree. We mark the
center of the multicast tree as the root; if there are two
candidates, one is chosen at random.

3.3. Network Monitoring

The multicast tree infrastructure performs continuous

network monitoring to detect when the current tree struc-
ture becomes suboptimal with respect to average latency
between nodes. When a change in network conditions is
detected, a new tree is constructed and a new root is
marked; the player nodes remain where they were before,
but could play different roles in the new tree, for example,
a player who was a leaf in the old tree could be a branch
point performing aggregation and duplication in the new
tree. The entire multicast tree is now relocated to the new
one, which becomes a routing medium as soon as all
nodes have been given the updated information.

It is the responsibility of the root node to monitor net-
work conditions, and also execute the tree building and
the root location algorithms. As this root performs more
work than the other nodes in the tree, it can be visualized
as a virtual server, and the modification of the tree can be
considered to be a server relocation operation. After the
initial tree is formed, no external intervention is needed.

3.4. Role of Active Networks

This infrastructure is built using active networks. Tree
building requires knowledge of a set of active nodes as
input along with the location of the players. All nodes in
the tree must be active; this is necessary for them to be
able to perform the necessary functions.

Game packets will be intercepted by the active net-
works-based middleware and queued to the virtual (over-
lay) network layer, which performs packet forwarding
independent of the lower IP layer. The game packet is
encapsulated as an active packet, the only addition being
a header that contains application-specific information.
Adapter code is deployed at every active node, which is
executed upon receiving an active packet. In our infra-
structure, aggregators, duplicators and deaggregators are
deployed at the nodes. Each node knows its immediate
neighbors in the tree and has routing information for
them. The node also has a set of roles, i.e. that of a

player, a branch point or a monitor. It can take on any
subset of these roles. The node also maintains game state.
If it is performing aggregation, it needs to wait for pack-
ets to arrive from all its children; it queues them for ag-
gregation until all arrive. At this point, packets are aggre-
gated and sent to the parent. Duplication and deaggrega-
tion are performed just from the knowledge of its roles.

4. Implementation

The target multiplayer game was DOOM. The game

protocol proceeds in lock-step. Each player computes its
state periodically and sends it to other players. When a
player has received an update from every other player, his
game state advances. A fast-paced game, DOOM requires
real-time updates to maintain a smooth flow.

We chose a peer-to-peer, UDP-based version of
DOOM, due to the relative ease of adapting peer-to-peer
games rather than server-based ones, and because one of
our goals was to eliminate a centralized server; also, we
could examine the routing infrastructure in isolation.

We used the ANTS active networks platform [15], a
Java-based toolkit that provides an execution environ-
ment and a protocol programming model allowing cus-
tomization of packet forwarding. We implemented under
Linux, using the IPcept kernel module designed for Con-
ductor and Panda to perform transparent socket proxying
and masquerading.

A typical system contains a set of ANTS-enabled
nodes, including the game clients. Initially a static tree
must be built, with roles assigned to each node, and a root
node chosen manually. Each active node stores the
adapter code and maintains a routing table for known
active nodes, as well as a neighbor list consisting of ac-
tive nodes located one hop away. All the active nodes in
the vicinity interested in participating in the infrastructure
must send registry capsules to the root.

When the DOOM client sends out multiple packets to
other players, these packets are intercepted by IPcept,
which passes them to the middleware layer. Since these
packets contain identical data with only the destination
address being different, only one packet is actually encap-
sulated and forwarded; the tree structure is responsible for
sending the packet to all the other clients. When capsules
containing game packets reach a tree branch point, they
are aggregated into a single capsule; aggregation consists
of extracting the game packets from the received cap-
sules, concatenating them and appending the capsule
header. Every nodes performing aggregation maintain an
ANTS-defined NodeCache object, in which packets can
be temporarily stored until it is time for aggregation. Be-
cause of real-time constraints, we have set a timeout pe-
riod; if all expected packets do not arrive within that pe-
riod, the existing packets are aggregated and forwarded.
Deaggregation is the reverse of aggregation: the ANTS

header is stripped off and the game packets are extracted
based on knowledge of their sizes (for DOOM, they are
typically 16 bytes).

For latency monitoring, each node “pings” its active
neighbors periodically and sends its observations as cap-
sules to the root. The root now has a set of nodes and
edges with weights to work with. Each edge has two
weight values, as perceived by the two end-points; we
take the conservative approach of choosing the higher
value. Based on this information, the root executes the
tree building algorithm as outlined in Section 3.2. If the
new tree is different from the existing one, control cap-
sules are sent to the new tree nodes asking them to as-
sume their new roles. Once all the updates have been re-
ceived, the new tree comes into effect and packets are
routed through it. The old tree nodes are not deactivated,
so any packets still in flight will be routed to the clients,
preventing any packet loss.

5. Analysis of Benefits

Our architecture achieves reduction in data communi-

cation compared to both existing models.
Consider the total number of packets that game players

send out into the network, given that the number of game
players is n. For a pure peer-to-peer model, each player
must send n-1 packets, one to every other node. The total
number of packets sent out into the network is)1(−∗ nn ,
which is O(n2). In a client-server model, each player
sends one packet to the server, which then sends n pack-
ets, one to each client. The total number of packets is
O(n). In our dynamic multicast tree, each player sends out
one packet, so the total number of packets is O(n).

The network traffic generated per round of game state
updates is the total number of packets traversing network
links. This metric is difficult to measure, since it is highly
topology and routing table dependent; we demonstrate
this through an example. Figure 2 shows a network of
nodes, with a tree connecting the player nodes. (Note:

This tree is not representative of the actual one that would
be constructed using our algorithm). Consider the packet

communication during one round of updates for each
model, and assume the tree root for the dynamic multicast
acts as the server in the client-server case. Except for the
dynamic multicast case, all communication take place
along the shortest path between peers or from client
server. Table 1 shows the reduction in network traffic that
dynamic multicasting achieves.

 Peer-to-Peer Client-Server Dynamic
Multicast

packets sent
out by parties 56 16 8

packets in
the network 207 40 26

The amount of transmitted data can vary depending on
the size of the packets. Aggregation achieves packet re-
duction, but the total byte content remains the same (in
fact, it increases slightly due to the appended capsule
headers). Thus our comparison of the client-server model
with the multicast model is not strictly fair, since multiple
packets transmitted over a link in the former case might
contain less data than an aggregated active packet. But
aggregation reduces the number of packets, and real-time
games packets are the order of a few tens of bytes (16
bytes in DOOM), so there is less chance of congestion
with an aggregated packet, unless the number of players
is very large. Fewer packets also means less work at
routers, so the overall latency is reduced. For large num-
ber of nodes, the packets could be aggregated only so
long as they remain with a fixed size limit. A server in the
client-server model would rarely be in the same place as
the root of a multicast tree constructed by our algorithm,
because it is static and not chosen relative to the position
of the clients. Therefore, packets may traverse more edges
than in our multicast tree, leading to increased traffic. In
the worst case, the multicast tree root may have to handle
as much data as the server in a client-server model, creat-
ing a potential bottleneck.

Table 1. Comparison of models based on
network in Figure 2

Figure 2. A multicast tree

The dynamism and self-adjustment of the game infra-
structure is a step towards ubiquitous gaming environ-
ments. Fault-tolerance is also enhanced. With small ad-
justments, this architecture could handle failure of the
active nodes and the virtual links between them. If reli-
ability can be increased to a great extent, it would offset
the disadvantages of the tree adjustment overhead.

There is no centralized server node in our infrastruc-
ture that is absolutely essential for game play. The root is
a type of server, but with very restricted functionality that
can be easily moved from one site to another.

The average response time latency is nearly equal, on
average, for all players, because of the central root loca-

tion. All packets pass through this root, ensuring that two
players never perceive widely inconsistent game state due
to very different response times.

6. Experimental Results

We have designed and implemented a prototype of the

middleware in our laboratory. This middleware was de-
ployed on HP-Omnibook 4150 laptops running the Linux
operating system. The operating system kernels were
hacked to provide support for the IPcept module that per-
forms transparent proxying and masquerading of asock-
ets. (This functionality can also be performed in kernels
of version 2.4.x and higher using the netfilter framework
and setting suitable firewalling rules using the IPtables
toolkit). The laptops communicated with each other
through the UCLA CS department ethernet.

We performed a variety of tests using the test bed de-
scribed above. A variety of network topologies of active
nodes were tried out, with a subset of them being the
game players. These nodes and connections were defined
in an ANTS-understandable manner, with the routing
tables being constructed automatically by the toolkit.
(This user-level routing table functionality was also used
extensively in our middleware for tree building).

We were most interested in observing and measuring
the performance gains from two perspectives: one, how
our dynamic multicasting framework compared with the
traditional peer-to-peer and client-server models, and two,
how feasible is active networks as a platform for building
these kinds of frameworks. To measure the former, we
considered network traffic as a metric, an informal argu-
ment about which was made in the previous section. To
measure the latter, we considered the overhead incurred
by the system in time units; we were also able to observe
how quickly the tree modified itself when needed.

The technique used for measuring architectural and ac-
tive networks performance also varied. The system per-
formance could be measured using the resources we had,
i.e. a few laptops. On the other hand, network traffic
measurements would be meaningful only if the number of
nodes was reasonably large; simulation was the only was
to perform this task.

The results of the experiments we performed are given
below.

To measure the base cost of using the middleware, we
used a simple topology that directly connected game
playing nodes as described in Figure 3. The comparison
was made between the middleware and no-middleware
cases. First, without the middleware, the average time
difference between successive packets received by a
DOOM client was observed to be about 28.5 msec. With
the middleware in place, this time difference rose to about
31 msec on average, though this varied widely; the reason
for this variation can be traced to the fact that a bunch of

packets reach the middleware at the client node, which
are then serialized and queued immediately to DOOM.
Thus, an overhead of about 1.5 msec was observed on
average; this could rise under certain circumstances, as
we shall explain later.

Network Link Middleware

DOOM
Client

DOOM
Client

Middleware

Figure 3. Simple topology for overhead meas-

urement

This overhead was also measured in another way, by

noting the execution time of the middleware layer; this
turned out to be about 1.3 msec on average, though it var-
ied widely between 1 to 2 msec. This reading seems to
agree with the one observed above.

We must also mention that hardly any difference in
quality was perceived when DOOM was played over ac-
tive networks; the game playing experience remained
almost as good as it was without the middleware.

Similar observations were made for other topologies
consisting of more nodes. With a network of 3 nodes
connected in a chain, with the end nodes being game
players and the middle one being the root, the overhead
suffered by the middleware at the game clients still re-
mained about 1.3 msec. The aggregation and duplication
adapters at the root node incurred about 2 msec overhead.

We also observed that the overhead could increase
much beyond the average value. At the points where the
monitoring of network conditions is done, the overhead
could rise to a few tens of milliseconds, very rarely being
as much as 50 msec. Also, game players observed slight
jitter during these instants. The reason for this is that our
network monitoring code is implemented entirely at the
user level process; we are confident that using a kernel
daemon to do this would yield much better results.

Another observation we were very interested in was
the smoothness of transition from one tree to another.
Network condition change was emulated and the time
taken to transition from one tree root to another was
measured for the topology in Figure 4 using the same
techniques as outlined above. Again, there was an ob-
servable jitter, with transition overhead being a few hun-
dred milliseconds, with the maximum observed being 700
msec.

Old Root New Root

Figure 4. Topology for testing transition over-

head; bottom three nodes are players

To analyze the above observations, we must keep in

mind that these observations were made in a LAN envi-
ronment, where the average node-to-node latency was
under 1msec on average. The comparison between
adapted and unadapted DOOM was all the more pro-
nounced. For MANs and small WANs, where the com-
munication latency could run into tens of milliseconds,
the observed overhead would be negligible. Also, consid-
ering that the overhead at an individual active node re-
mained somewhat constant for different topologies, a case
could be made for the scalability of our approach.

 (a)

The other experiment performed was a simulation to

measure benefits in communication overhead, measured
as the total number of packets seen by the network during
a single round of message passing. Firstly, algorithms for
peer-to-peer and client-server models were implemented,
in addition to the multicasting framework. For the client-
server case, the server was selected to be the same node
as the root of the multicast tree. In addition to the network
traffic, average node-to-node latency was also measured
just to get an idea of how multicasting suffers as com-
pared to peer-to-peer broadcast, which uses shortest paths
for communication.

For simulation of graphs and multicast groups, we
used the Georgia Tech topology generator. We designed
four random weighted graphs of 250 nodes each: two of
them were transit-stub graphs, one was a purely random
graph using a Waxman model for connections, and an-
other a 3-level hierarchical graph. All nodes of the graphs
were considered active for the purpose of simulation.
Multicast group size varied from 5 to 30, with a hundred
random groups chosen for each size and the average read-
ing taken. The comparison of network latency and aver-
age latency for the four graphs are shown in the figures
below.

(b)

Figure 5. Transit-Stub graph: One transit domain
with 5 nodes on average; each transit node has 7 stub
graphs on average; each stub domain has 7 nodes on

average

(a) (a)

(b) (b)

Figure 6. Transit-Stub graph: 2 transit domains with
5 nodes on average; each transit node has 6 stub

graphs on average; each stub domain has 4 nodes on
average

Figure 7. Random graph: 250 nodes and 1260
edges; Waxman parameters 0.3 and 0.2

(a)

(b)

Figure 8. 3-level hierarchical graph: 5 nodes with

edge prob. 0.4 at the highest level; 5 nodes on aver-
age with edge prob. 0.3 at the next level; 10 nodes on

average with edge prob. 0.6 at the bottom level

Figures 5(a) to 8(a) show conclusively that our model

performs better than client-server and much better than
peer-to-peer for all multicast group sizes and the differ-
ence increases with increase in that size. On the other
hand, the average node-to-node latency is somewhat
lower in all cases for the peer-to-peer model, which is to
be expected. This difference remains almost constant for
all group sizes, and the latencies of both models are of the
same order. Considering the huge gains in communica-

tion given by dynamic multicast over the peer-to-peer
framework, this latency difference is a small price to pay.
Also, it will not affect game-playing experience in any
noticeable manner.

6. Future Work

There are various directions in which our system could

be extended. Tree building methodology need not be
based only on link latency; other factors like load the dif-
ferent nodes, congestion along links could be used to op-
timize the tree.

The current reliability of the system can be enhanced
by replicating the monitor at multiple sites. If one monitor
fails, others will take over and obtain a new position for
the root. Scalability can be increased by replicating the
root functionality at multiple nodes. Intermediate nodes
could perform filtering and interest management, with
more knowledge about the game, reducing the data to be
communicated. Our architecture allows players to join
and leave easily, but DOOM does not support this.

With wide deployment of active networks, independ-
ent game clusters could be built based on node proximity.
These clusters could be formed without any manual inter-
vention, with the tree roots deciding whether to admit a
new player, and connecting him to his closest cluster.

7. Conclusion

We have designed and implemented a self-adjusting ar-

chitecture for multiplayer games that can be deployed on
both local and wide area networks. We have shown that
active networks can be used to perform routing adapta-
tions for multiplayer games, as we have seen in section 6.
Our simulation results also prove conclusively the bene-
fits in communication overhead over traditional models.
As our techniques are application-transparent, the model
is applicable to both new and legacy games. We believe
that a wide variety of multiplayer games will benefit from
using our architectural model. With currently available
technology, it would possibly be a better option to im-
plement a custom infrastructure, maybe at the network
layer, in order to obtain better performance. Active net-
works, though, is still an evolving technology; we could
expect that in a few years, it would become the de facto
platform for deployment of new protocols.

Our approach is not restricted to the gaming world; it
can also benefit a wider class of applications like distrib-
uted simulations. The performance impact on non-real
time applications will be even greater than for multiplayer
games.

8. References

[1] J. Steinman, J.W. Wallace, D. Davani and D. Elizandro,
“Scalable distributed military simulations using the SPEEDES
object-oriented simulation framework”, Proc. of Object-
Oriented Simulation Conference (OOS’98), pp. 3-23, 1998.

 [2] E. Cronin, B. Filstrup, A.R. Kurc, S. Jamin, “An efficient
synchronization mechanism for mirrored game architectures”,
Proc. Of the first workshop on Network and system support for
games, pp. 67-73, 2002.

[3] K.L. Morse, “Interest Management in Large-Scale
Distributed Simulations”, Technical Report ICS-TR-96-27,
Dept. of Information & Computer Science, Univ. of California
at Irvine, 1996.

[4] D. Tennenhouse and D. Wetherall, "Towards an Active
Network Architecture," ACM Computer Communication Re-
view, Volume 26, No.2, pp. 5-18, April 1996.

[5] V. Ferreria, A. Rudenko, K. Eustice, R. Guy, V. Rama-
krishna and Peter Reiher, "Panda: Middleware to Provide the
Benefits of Active Networks to Legacy Applications," DANCE
02 , May 2002.

[6] M. Yarvis, P. Reiher and G. Popek, “Conductor: A Frame-
work for Distributed Adaptation”, Proc. 7th Workshop on Hot
Topics in Operating Systems, 1999.

[7] MiMaze - http://www-sop.inria.fr/rodeo/MiMaze/Archi.html

[8] E. Cronin, B. Filstrup and A.R. Kurc, “A distributed multi-
player game server system”, UM EECS589 Course Project re-
port, http://www.eecs.umich.edu/~bfilstru/quakefinal.pdf, May
2001.

[9] Revere project - http://lever.cs.ucla.edu/revere/

[10] F. Adelstein, G. Richard III and L. Schwiebert, “Building
Dynamic Multicast Trees in Mobile Networks”, ICPP Work-
shop, pp. 17-, 1999

[11] ARRCANE project - http://www.docs.uu.se/arrcane/

[12] L. H. Lehman, S. J. Garland and David L. Tennenhouse,
"Active Reliable Multicast", Proc. of the 17th INFOCOM, pp.
581-589, March 1998.

[13] S. Ramabhadran and J. Pasquale, “A framework for appli-
cation-specific customization of network services”, Proc. of the
Fourth Annual International Workshop on Active Middleware
Services, pp. 35-40, July 2002.

[14] Y. He, C.S. Raghavendra and S. Berson, “Gathercast with
Active Networks”, Proc. of the Fourth Annual International
Workshop on Active Middleware Services, pp. 61-66, July 2002.

[15] D. Wetherall, J. Guttag and D. Tennenhouse, "ANTS: A
toolkit for building and dynamically deploying network proto-
cols," Ph.D. dissertation, University of Washington, 1998.

[16] B. Levine and J. J. Garcia-Luna-Aceves, "A comparison of
reliable multicast protocols", Multimedia Systems, Volume 6,
No. 5, pp. 334--348, 1998.

[17] R. M. Karp, Complexity of Computer Computations, New
York: Plenum, pp. 85-103, 1972.

 [18] S. Ali and A. Khokhar, “Distributed Center Location Algo-
rithm for Fault-Tolerant Multicast in Wide-Area Networks,”
Workshop on Advances in Parallel and Distributed Computing,
IEEE Symposium on Reliable Distributed Computing, Oct.
1998.

http://www.eecs.umich.edu/~bfilstru/quakefinal.pdf

