
 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

Nam Nguyen and Peter Reiher
Computer Science Department

University of California, Los Angeles
{songuku, reiher}@cs.ucla.edu

Geoffrey H. Kuenning
Computer Science Department

Harvey Mudd College
geoff@cs.hmc.edu

Abstract -?One approach to detecting insider misbehavior is to
monitor system call activity and watch for danger signs or
unusual behavior. We describe an experimental system
designed to test this approach. We tested the system’s ability to
detect common insider misbehavior by examining file system
and process-related system calls. Our results show that this
approach can detect many such activities. *

I. INTRODUCTION

While attacks on computers by outside intruders are more
publicized, attacks perpetrated by insiders are very
common and often more damaging. Insiders represent the
greatest threat to computer security because they
understand their organization's business and how their
computer systems work. They have both the
confidentiality and access to perform these attacks. An
inside attacker will have a higher probability of
successfully breaking into the system and extracting
critical information. The insiders also represent the
greatest challenge to securing the company network
because they are authorized a level of access to the file
system and granted a degree of trust.

In this paper we will present our analysis results on raw
system call traces to see if it is possible to detect insider
threats by monitoring file access and process activity.
Many intrusion systems have already been developed by
building profiles on the system call traces. However most
of them only look at the system call level or session level.
In this paper, we want to look at these raw data in a
different manner: the relationships between users and
files, users and processes, and processes and files.

By analyzing these models and relationships, we want to
learn whether it is possible to build an effective insider
threat detection system for each of these relationships. If
any of our models do not work, we want to discover the
reasons and all technical difficulties behind the problem.
Furthermore, we want to discover any characteristics or
promising approaches that can help to build good profiles
for users and processes.

As a proof of concept, we implemented a small detection
system that use one of these profiles to detect a large set

? * This research was supported by DARPA Grant
F33615-00-C-1746

of buffer-overflow attacks. The goal is not to build a
perfect system, but to demonstrate how one can easily use
a simple profile of process execution to effectively detect
many buffer-overflow attacks.

II. RELATED WORK

Many intrusion detection systems have been developed.
MIDAS [10] is an early intrusion detection system based
on rules for discovering anomalous behavior. It uses
events generated by the system, such as login time,
number of bad logins, attempts to run special suid
commands, etc. This approach is simple, but not effective
against professional intruders.

NSM [9], Network System Monitor, was among the first
systems using network traffic as the audit data. This tool
looks at the data-path communication and the protocols to
build a profile. Lee later suggested using a data-mining
approach on raw audit data of network traffic [6, 7, 8].
He defined some attributes of network traffic, such as
service types, timestamp, src_bytes, dst_bytes and built
rules from these attributes. This approach requires
“sufficient” training data that covers as much variation of
the normal behavior as possible [7].

DPEM [3] is an intrusion detection tool that uses program
execution traces to derive a policy for the correct behavior
of some special privileged Unix processes. If a program
execution varies from the policy, it will raise an alarm.
This tool only protects a list of predetermined programs.
If different programs are exploited, the tool does not
notice. Moreover, the policy is too specific and
specialized for each program.

System call traces and rule learners have also been used to
detect possible intrusion [2, 5, 11]. The approach is to
detect if the next system call is abnormal from the
sequence of previous system calls. Such tools focus on
the system call level and only work for certain attacks.

Because many attacks originate from buggy software,
Wagner et al. proposed a solution to detect buffer
overflow bugs by analyzing the source code of the
software [12]. This approach requires software to be
analyzed before coming to production and generates a
large number of false alarms.

Detecting Insider Threats by Monitoring System Call Activity

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

The major difference between our approach and that of
other tools (like DPEM) is to build the profile such that it
is generic and easy to configure. By analyzing the system
traces, we want to create a profile that is not specific to
any particular program. Thus, tools that use our profile
can detect a large set of attacks instead of only an
individual attack. Moreover, the profile can be built
automatically and does not require human intervention.

Another difference is that we look at this raw data
differently, examining the relationships between users and
files, users and processes, processes and files. Some
existing tools [2, 3, 7, 11] look at these raw data at the
system call level. For example, by using some expert rule
learner, they want to guess the next system call from the
sequence of previous system calls made. The problem of
this approach is that the false alarm rates are often very
high due to the large possibility of system calls and
arguments. Moreover, most of these systems use
sequences of system call traces, recorded for a specific
version of the software, as the training data. As a result,
the learning rules are too specific to that program, and the
tool can only detect well-known or individual attacks.

Our goal is not to prove that our approach is better than
these existing tools. Instead, we want to see if our
models, based on the relationships between users and
files, users and processes, and processes and files, can
reveal good results and promising direction toward
intrusion detection. From these results, we hope a
sophisticated data-mining algorithm can be applied to
build a good intrusion detection system.

III. RESEARCH APPROACH

In modern computers and operating systems, practically
nothing of significance can be done without accessing
files and running programs. The file system is a basic and
fundamental mechanism for storing information; all users
need to access file systems to do their work. A
programmer creates and saves her program in files; a
secretary saves and loads his office work in document
files. File system access also happens when the user is
not even aware of it; e.g., when the user surfs the web,
cached information is stored in files. Many low-level
system events, such as accessing networks and other
devices, may require accessing files for determining the
configuration of devices.

Process execution is also an important event. All
executable software on a computer, including parts of the
operating system, is organized into processes, each of
which is responsible for a certain task. For example:
when user A logs in, a process displays the login prompt.
If the user logs in successfully, another process is
executed to let the user begin working.

Because both file access and process execution are so
crucial and unavoidable for the user, they can be excellent
candidates for reflecting user behaviors. Thus, one
particularly promising approach to detecting insider
misbehavior is to trap and analyze file and process events.
Based on the results, we can develop a model of the
appropriate behavior of each individual user. By
comparing ongoing activity against the predicted model,
we can detect any deviation from the model and
consequently signal an alarm. This type of detection is
often referred to as anomaly detection.

To analyze file access and process execution, we needed a
log of system activity. Fortunately, we already had a
large database of system call traces, collected for the
project using software developed for Seer [4]. The traces
were collected from ten machines with twenty users over
two years.

IV. ANALYSIS RESULTS

A. File Access

Our approach for analyzing file access was to develop
patterns for two models: user-oriented and process-
oriented.

In the user-oriented model, we tried to find access
patterns that could be useful for building a profile for each
user. We believe that each user normally does certain
types of tasks, and thus has certain file access patterns
that represent his normal behavior. For example, if user
A is a programmer, he normally accesses files in his
project directory. If he attempts to access files in another
user’s directory, that might be a signal of misbehavior.

In the process-oriented model, we looked at how
processes access files. In many cases, the file access
profile of a program is even more telling than the file
access profile of a user. An insider may use the privileges
of a program to access files in which he is interested. In
other words, as he forces the program to behave in
uncharacteristic ways, its file access profile will change.
For example, a web server program normally accesses
files in the public_html directory. As the attacker
compromises it, the program begins to access files in
other system directories such as /etc or /var. (e.g., buffer-
overflow attacks on the IIS and Apache web servers).

1. User-Oriented Model

When analyzing patterns for each user, we decided to
categorize the users into two sets: system users and
normal users. Normal users are human, whereas system
users are predefined users of the system such as bin,
daemon, xfs, nobody, etc. Users from these two sets have
diffe rent characteristics because of their nature. Human
users are more interactive, and thus their behaviors are

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

more dynamic and complex. System users are often
dedicated to only a certain task, and thus they have a more
static behavior with small working sets. Moreover,
system users have certain privileges that are very specific
to their job: the web server user has access to the
public_html directory, whereas the xfs user can access X
fonts and X-Window files. These system users have
important system privileges, yet they also often interact
with human users in normal operation. Misusing these
interactions offers a misbehaving insider an opportunity
to improperly expand his access privileges. Many attacks
have been reported on the xfont, nobody and web users.
Many administrators often only focus on human user
activities and do not pay attention to the system user.
This is dangerous because it opens a door for the attacker
to gain access to the system.

a) Human Users

From our analysis, we observed that each user has a fairly
static working set of files. For example: user A, a
programmer, always accessed his project and mail
directories; user B, an administrative user, always
accessed his mail and document directories.

Therefore, we calculate each user’s number and
percentage of daily accesses to each file and directory, on
both his personal laptop system and on the server. We
expected that these numbers would be somewhat constant
for each day; however, the results were unexpected.
Figures 1 to 3 show the directory usage in percentage for
each user on his personal laptop environment. For each
day, we counted the percentage of times each directory
was accessed. Due to the space limit, the chart only
shows some of the top directories in the file system
hierarchy. The irregular shape of the graph shows that the
directory usage is very dynamic. This also applies to the
file usage. One reason is that directory and file usage
depend heavily on the programs run by the users. In other
words, some programs access larger numbers of files than
others, and thus when the user executes these programs,
the distribution of file usage changes dramatically.

Figure 4 shows the total number of file accesses for the
same three users. The graph is also very irregular. This is
also due to the different execution of programs performed
by users. Other users experienced similar patterns.

Besides looking at each user’s personal machine, we also
measured the activity of each user on a shared server.
Figures 5 to 7 show the directory usage for each user on
the same server. The directories shown here are chosen to
be the same as Figures 1 to 3 for comparison. The graph
is steadier in this case because the users often used the
server for side-work such as checking mail, checking
schedules, etc. Compared to the numbers in Figures 1 to
3, the numbers in Figures 5 to 7 reflect user activity less

accurately because the users often did the majority of
their work on personal laptops.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day

percent

/etc /dev /usr home /proc /tmp

Figure 1. Directories accessed daily for user A
(on his personal machine)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day

percent

/etc /dev /usr home /proc /tmp

 Figure 2. Directories accessed daily for user B
(on his personal machine)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day

percent

/etc /dev /usr home /proc /tmp

 Figure 3. Directories accessed daily for user C
(on his personal machine)

Finally, because the percentage of accesses is not steady
enough, we cannot use this measurement to build profiles
for each user. There are several reasons for this large
variance on the file accesses. As we stated above, files
accessed are affected heavily by the program execution.
If the users execute some program that accesses files
more often, the percentage will be changed. Second,
some file accesses are not interesting or important. For
example, when a program is executed, some ld_library
files are almost always accessed. If we can differentiate

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

between important and unimportant accesses, the
statistical result on file accesses can give a more
meaningful result. However, this kind of task faces some
problems, which are discussed in section VI.

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
day

number
of file

 accesses

User A User B User C

 Figure 4. Files accessed daily for users
(on their personal machine)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12
day

percent

/etc /dev /usr home /proc

 Figure 5. Directories accessed daily for user A
(on the server)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12
day

percent

/etc /dev /usr home /proc /tmp

 Figure 6. Direct ories accessed daily for user B
(on the server)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12
day

percent

/etc /dev /usr /proc

 Figure 7. Directories accessed daily for user C
(on the server)

b) System Users

In contrast to human users, system users have rigid
working set behavior patterns. Figure 8 shows the
number of files that each system user accesses during a
three-month period. We can see that these users access a
very small list of files, ranging from 2 to 10 files per user.
Moreover, these files are very specific to the task of each
user. These characteristics suggest a method of building
profiles for system users by keeping track of the list of
files that each user is allowed to access. Therefore, if the
attacker gains access to these privileged accounts, we can
detect the intrusion immediately because the attacker will
be accessing files that are not on the authorized list for
that specific account.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9
machine number

number
of

files

bin deamon nobody xfs

Figure 8. File set for special users

Not only do these users have a small list of files, the
percentage of accesses to these files by system users is
very steady. Figure 9 illustrated the percentage of file
usage for system users. We can see that the percentage
stays almost constant in some cases. This is reasonable
because the number of files accessed by system users is
very small. This also recommends another method for
detecting malicious attacks on system users – that of
checking the percentage of file accesses. If the
percentage goes outside the expected range, an anomaly is
signaled.

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

0

20

40

60

80

100
1 3 5 7 9

11 13

day

percent

font

/proc/meminfo

/etc/localtime

/etc/mtab

/dev/null

Figure 9. File usage daily for user “xfs”

Finally, some of the files are correlated to each other. In
other words, when file A was accessed, file B was
accessed as well. For example, user nobody often
accesses two files, “/etc/hosts.deny” and
“/etc/hosts.allow” together. These patterns could be used
to detect attempts to misuse programs run by these users.

In summary, an attack on system users can be detected
based on the following events: accessed files not in the
normal list, frequency of access to files in the list, and
changes in the correlation of files

2. Process-Oriented Model

According to our analysis, a process-oriented model gives
better statistical results for user behavior. We found that
92% of the processes traced have a fixed list of files that
they access. Moreover, in most cases, the percentage of
accesses to different files on this list varies, but rarely by
more than 20%. Thus, if an attacker attempts to
compromise a program in this large class of processes, the
detection system will be able to identify the anomaly
behavior immediately as the attacker forces the process to
access files outside of its fixed list, or access files on the
list in improper proportions.

From this analysis, we also see the correlation between
files accessed by each process. Many programs access
files in particular patterns: first A, then B, then C, and so
forth. For example, a shell typically opens a set of files in
the sequence: “profile”, “/etc/localtime,” “csh.cshrc.”
Another example is that a programmer typically uses “vi”
to opens file with the extension “.c” and “.h”. If a user
runs such a program multiple times, we also expect to see
correlations between the numbers of user accesses to files.
Thus, if a user typically spends much of his time on
coding and compilation, we expect to see correlations that
match those activities.

B. Process Execution

Because the traces provide detailed information whenever
a process forks a child or executes a program, we are able
to reconstruct the whole image of the process hierarchy of
the system at any given time. By comparing different

process trees over a long period of time, we expected to
uncover interesting patterns related to process execution.

We began by looking at the list of all processes that are
forked or executed by each program. The results are
collected from a one-month trace period on a server with
a total of 250 programs and 1 billion forks. According to
our analysis results, the list of possible child processes for
a given process is nearly as predictable and stable as the
process’s list of files accessed. 92% of all programs run
in the traced environment have a fixed list of possible
child processes (among these, 25% do not fork any
children). Most programs, in other words, will only
create a limited and highly predictable set of child
processes. This information allows us to detect whenever
a process has forked a child process when it usually does
not do so. For programs in these classes, it is a sign of
suspicious behavior if a child is created that is not in their
normal set.

This statistic implies a method for detecting a very
common class of vulnerability: buffer overflows. Buffer
overflows account for more than 50% of today ‘s
vulnerabilities, and this ratio seems to be increasing over
time [12]. For this type of attack, the intruder attempts to
stuff more data into a buffer than it can handle. As a
result, data that goes beyond the size of the buffer will
overwrite the stack and thus allow the attacker to cause
the instruction pointer (IP) to point to his malicious code.
By doing this to a privileged program, the attacker can
force the program to execute other programs that allow
him to change the system configuration or create damage.
Many privileged programs are inherently capable of doing
very limited things, but if the attacker can convince them
to fork a general execution shell under their privileged
identity, the attacker can gain general privileged access.

Thus, as the buffer-overflow attack occurs, we can
immediately detect if the new child process of the
exploited program is not on the authorized list. An
authorized list is the list of child processes that the
program normally forks. When a buffer overflow attack
occurs and the exploited program starts to fork a new
program (like shell), we can signal a possible intrusion
alarm. Since more than 90% of processes have a
deterministic set of authorized children, we can detect
many buffer overflow attacks.

Observing process creation behavior allowed us to
develop other models that are useful in detecting
suspicious user behavior. For example, just as users have
characteristic working sets of files used, they have
favorite programs. Figures 10 and 11 depicted the
favorite programs of two users on three continuous days
(statistics are similar for the entire month). The average
number of executions per day in the graph is 159 for user
A and 9123 for user B.

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

0

5

10

15

20

25

sh sed
tr

stt
y

eg
rep

ho
stn

am
e

una
me id

Day 1

Day 2

Day 3
percent

Figure 10. Favorite programs of user A

0

5

10

15

20

25

30

35

sed

ho
stn

am
e rm

eg
rep csh

ls

Day 1

Day 2

Day 3

 Figure 11. Favorite programs of user B

Figures 10 and 11 show that the frequency of use for
these programs is quite stable. If a user decides to
misbehave, in many cases he is likely to use different
programs to do so. If he needs extra privileges, he will
have to find vulnerabilities in privileged programs; this
will generally require him to work with programs beyond
the normal set that he uses. In many situations, the
intruder often has to run attack toolkits that probe a large
number of programs, most of which are not widely used
by typical users. Moreover, he may have to repeat the
attacks many times before he can successfully break the
system. Such behavior would be far outside our models
of proper behavior. Even if the user is working within his
normal privileges, but in a dangerous manner, there is a
good chance that the damaging acts he intends to perform
will cause him to use programs he normally does not use,
or at least cause him to use his favored set in different
proportions.

The race-condition attack is an excellent example. It
requires repetitively running programs that have
probabilistic flaws until the attacker gains control. By
counting the number of typical executions of particular
programs over time for individual users, we can easily
determine that a user is attempting to use this technique.

V. BUFFER-OVERFLOW DETECTION SYSTEM (BDS)

Based on the analysis described above, we have
developed a viable system to detect insider threats. The
purpose of this system is a proof-o f-concept. Thus, in this
version of the system, we only demonstrate that we can
detect intrusion using the analysis results of Section IV.
The current implementation of the system focuses on
buffer-overflow and well-known vulnerabilities such as
symlinks and race-conditions. We decided to concentrate
on the buffer-overflow vulnerability since it is the most
common type of attack (even though it has been around
for many years). These attacks can be found in many
crucial and popular applications, such as email servers,
cron, web servers, ssh, etc.

One important point that BDS illustrates is that it is not
designed for a specific exploit. Instead it tackles the
whole class of buffer-overflow attacks, and thus can be
used to detect new or unseen exploits.

A. Design of the System

BDS is built on top of the FSOBSERVER kernel, a
modified version of the original Linux kernel. It was
originally implemented as part of the Seer toolkit [4] and
later extended. The code is patched at the entry and exit
point of all system calls. All system calls made by users
are recorded by the FSOBSERVER.

BDS is an agent placed in the kernel that can watch all
system calls to determine if any are hazardous. If an
intrusion is detected, BDS will raise an alarm to the
system administrator. When the system is first started, it
reads from its database (e.g., a file) the profile of a
program’s execution. This database of profiles is created
from an analysis of the trace files. The database also gets
updated when the agent detects a new type of profile.

This database contains a list of relationships. A
relationship is defined as {X, y1, y2, .., yn}, where X is
the program name and yi is an authorized child. For
example, a valid relation is {netscape, netscape}. This
specifies that the program named “netscape” can only
execute another “netscape” but nothing else. The system
reads the input file and stores it in local hash tables.
Whenever a process attempts to execute another child, the
system will compare the child’s name against its database.
If the child is not a legitimate process, the system will
raise an alarm.

There are two types of intrusion detection systems:
passive and active [1]. In the active system, whenever an
intrusion is detected, the malicious action is stopped and
an alarm is ra ised. In contrast, the passive system only
records actions in the system log and does not try to stop
the action. Each system has different drawbacks. In the

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

active system, if the action is a real intrusion, the system
can stop the intruder immediately. However, if it is a
false alarm, it can create deadlock or suspend legitimate
users. On the other hand, the passive system cannot stop
the intruder, but it reduces any damage and inconvenience
caused by the false alarm. In our system, we decided to
use the passive method because stopping a system call is
such a serious action that it may cause the system to
become nonfunctional. Since we decided to use the
passive approach, we assumed that the log file was
written into a non-rewritable media. In other words, the
intruder cannot suppress the alarm by erasing the log files.

B. False Positive and False Negative Rate

As more than 90% of the programs have a fixed list of
children, the system should have low false positive and
false negative rates. We tested the system with different
lengths of knowledge input files. The system was
installed and ran in the background of user’s personal
machine for three weeks to measure the false alarm rates.
The system was fed with the knowledge of different
lengths of historical system call traces. As shown in
Figure 12, when the system has three months of
knowledge, the system performs with a zero false positive
rate.

0
5

10
15
20
25

1 Week 1 Month 2 Month 3 Month 5 Month
Knowledge Size

False
Alarm

 Figure 12. False alarm rate of the buffer overflow detection system

Since each version of the operating system experiences
different kinds of exploits, we needed correct versions of
the OS and library packages to test particular exploits.
New versions of the OS often have been debugged and
have less vulnerabilities to test. Moreover, it is difficult
to retrieve the exploitation code for current versions of an
OS because they are not posted for the public due to
security concerns. Therefore, we decided to test our
system using an old version of the OS (RedHat 6) in order
to have enough vulnerabilities to test.

We downloaded and performed seven attacks for RedHat
6 successfully. There are many more attacks involving
buffer overflows, but they require different versions of the
library and environments. Out of these seven exploits, the
system was able to detect six. The system was not
designed specifically for any of these attacks. Our tool is
designed to catch all buffer overflows as long as the
attack occurs in the set of programs that have a fixed list
of children. There was one exploit that we were unable to
detect. This is not surprising, as it was a buffer-overflow

for “xterm,” and this program does not have a fixed list of
children. Thus, this attack was not covered in the scope
of our system. Due to the small number of attacks being
tested, the success rate cannot be used to deduce a false
negative rate.

C. Known Disadvantages of the System

As we mentioned above, if the buffer overflow occurs on
a program that does not have a fixed list of children (such
as shell, xt erm, etc.), the system will not be able to detect
the attack. These programs, by nature, can fork any kind
of program at will, and thus it is hard to tell if the child
process is legally forked. From our analysis in Section
IV, these programs make up about 8% of the frequent-use
programs in the system.

VI. TECHNICAL DIFFICULTIES

We first thought that the percentage of directories
accessed by each user could be a good measure for
detecting abnormal behavior. For example, if a user
attempts an attack by searching different directories, the
percentage of accesses per directory will change.
However, the percentage of directory usage per directory
for each user does not stay constant. In fact, it varies
widely. One reason is that the file usage depends heavily
on the process execution. For example, if a user runs
process A only a little bit more than usual, the usage can
change dramatically if the process opens many files. This
is true when the process needs to open different
configuration files (or open them repeatedly). Thus, if we
build a system based on the percentage of files accessed,
the false positive or negative rate will be high.

Another reason that the model is ineffective is that the
number of files opened is on the scale of thousands per
day. Thus, an attacker can easily fool the system by only
opening a small number of files without affecting the
accessed percentage rate.

Another model we considered involves focusing on the
importance level of files in the system and removing
unnecessary files from the analysis. From the trace data
collected, we concluded that most of the files will open
library files such as /etc/ld_cache.so. In fact, these files
occupy more than 20% of accesses if the user executes a
lot of programs. These files are normally unimportant
and can therefore be removed. However, this approach is
not desirable as it requires that we build a database of
unimportant files. This is OS-specific and not portable as
the system changes or upgrades. Also the database can
grow quickly as the number of files in the system is
immense. Moreover, some files are important in some
cases and are not in other cases. For example, some
processes often open /etc/passwd to get the current
working directory of the user. In this case, the file access

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00 ? 2003 IEEE

can be considered as unimportant. However, how could
the system distinguish between that case and the case
where the process opens /etc/passwd to break the
password information?

Because it is undesirable to use the percentage of
directories accessed per user, we used a different model –
one where we look at the percentage of files accessed per
process. This approach faces a challenging issue: many
processes open a large number of files, and the system is
required to understand the meaning of the files.

Many traces were collected from laptops, and the working
style depicted by the traces is highly dynamic since it
depends on user mobility. Many users do not have any
fixed pattern of working time, and it is very difficult to
define a good time window for analysis. Currently we
use one day as our window time. However, this is not a
perfect solution since some users work past midnight.

VII. CONCLUSION

The work described here indicates some promising
directions for detecting misbehavior by insiders, as well
as intruders whose initial penetration has gone unnoticed.
The patterns of file accesses by many programs are
sufficiently regular that attackers trying to misuse them
will quickly be noticed. Similarly, process-calling
behavior is sufficiently regular for large classes of
programs to serve as a good indicator of misbehavior.

Other patterns of file systems access and process behavior
do not appear to be good candidates for detecting attacks.
Individual users have too much variability in their access
patterns to allow simple statistical methods to detect
suspicious changes in behavior, without also triggering
alerts in many innocuous situations. Similarly, some
processes, by their nature, tend to fork a wide variety of
other processes.

Thus, a system that merely implemented the effective
tools discussed in this paper would not catch all attacks.
However, these techniques do appear to be useful
candidates to include in a system that monitors computers
for possible misbehavior. Our experience with the data
gathering and monitoring steps shows that the necessary
data can be gathered and threats checked without causing
noticeable delays to the user. There are challenges to
collecting and managing the large quantities of data
necessary to build good models, but these challenges can
be overcome.

VIII. REFERENCES

[1] S. Axelsson. Intrusion Detection Systems: A Survey
and Taxonomy. Technical Report. Department of

Computer Engineering, Chalmers University of
Technology, Sweden, March 2000.

[2] S. A. Hofmeyr, S. Forrest, A. Somayaji. Intrusion
Detection Using Sequences of System Calls. Journal of
Computer Security, 6(3): 151-180, 1998.

[3] C. Ko, M. Ruschitzka, and K. Levitt. Execution
Monitoring of Security-Critical Programs in Distributed
Systems : A Specification-Based Approach. In
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, Vol. ix, pp. 175-187, Oakland, CA, USA,
May 1997.

[4] G. Kuenning, G. Popek. Automated Hoarding for
Mobile Computers. In 16th ACM Symposium on
Operating System Principles, pp. 264-175, 1997.

[5] S. Kumar, and E. Spafford. A Pattern Matching Model
for Misuse Intrusion Detection. In Proceedings of the 17 th
National Computer Security Conference, pp. 11-21,
October 1994.

[6] W. Lee. A Data Mining Framework for Constructing
Features and Models for Intrusion Detection Systems.
PhD Thesis, Computer Science Department, Columbia
University, 1999.

[7] W. Lee, S. J. Stolfo. Adaptive Intrusion Detection: A
Data Mining Approach. In Artificial Intelligence Review,
14:533-567, 2001

[8] W. Lee, S. J. Stolfo, K. Mok. A Data Mining
Framework for Building Intrusion Detection Models. In
IEEE Symposium on Security and Privacy, Berkeley,
California, May 1999.

[9] B. Mukherjee, L. Heberlein, and K. Levitt. Network
Intrusion Detection. IEEE Network, June 1994.

[10] M. Sebring, E. Shellhouse, M. Hanna, and
Whitehurst. Expert Systems in Intrusion Detection: A
Case Study. In Proceedings of the Summer USENIX
Conference, pp. 74-81, Baltimore, Maryland, 17-20
October 1988.

[11] R. Sekar, T. Bowen, M. Segal. On Preventing
Intrusions by Process Behavior Monitoring. In
Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, April 1999.

[12] D. Wagner, J. Foster, E. Brewer, A. Aiken. A First
Step Towards Automated Detection of Buffer Overrun
Vulnerabilities. In Proceeding of the Year 2000 Network
and Distributed Systems Security Symposium, 2000.

