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Abstract -?One approach to detecting insider misbehavior is to 
monitor system call activity and watch for danger signs or 
unusual behavior.  We describe an experimental system 
designed to test this approach.  We tested the system’s ability to 
detect common insider misbehavior by examining file system 
and process-related system calls.  Our results show that this 
approach can detect many such activities. *  

I. INTRODUCTION 

While attacks on computers by outside intruders are more 
publicized, attacks perpetrated by insiders are very 
common and often more damaging.  Insiders represent the 
greatest threat to computer security because they 
understand their organization's business and how their 
computer systems work.  They have both the 
confidentiality and access to perform these attacks.  An 
inside attacker will have a higher probability of 
successfully breaking into the system and extracting 
critical information. The insiders also represent the 
greatest challenge to securing the company network 
because they are authorized a level of access to the file 
system and granted a degree of trust. 
 
In this paper we will present our analysis results on raw 
system call traces to see if it is possible to detect insider 
threats by monitoring file access and process activity.  
Many intrusion systems have already been developed by 
building profiles on the system call traces.  However most 
of them only look at the system call level or session level.  
In this paper, we want to look at these raw data in a 
different manner: the relationships between users and 
files, users and processes, and processes and files.   
 
By analyzing these models and relationships, we want to 
learn whether it is possible to build an effective insider 
threat detection system for each of these relationships.  If 
any of our models do not work, we want to discover the 
reasons and all technical difficulties behind the problem.  
Furthermore, we want to discover any characteristics or 
promising approaches that can help to build good profiles 
for users and processes. 
 
As a proof of concept, we implemented a small detection 
system that use one of these profiles to detect a large set 
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of buffer-overflow attacks.  The goal is not to build a 
perfect system, but to demonstrate how one can easily use 
a simple profile of process execution to effectively detect 
many buffer-overflow attacks. 

II. RELATED WORK 

Many intrusion detection systems have been developed.  
MIDAS [10] is an early intrusion detection system based 
on rules for discovering anomalous behavior.  It uses 
events generated by the system, such as login time, 
number of bad logins, attempts to run special suid 
commands, etc.  This approach is simple, but not effective 
against professional intruders.   
 
NSM [9], Network System Monitor, was among the first 
systems using network traffic as the audit data.  This tool 
looks at the data-path communication and the protocols to 
build a profile.  Lee later suggested using a data-mining 
approach on raw audit data of network traffic [6, 7, 8].  
He defined some attributes of network traffic, such as 
service types, timestamp, src_bytes, dst_bytes and built 
rules from these attributes.  This approach requires 
“sufficient” training data that covers as much variation of 
the normal behavior as possible [7].  
 
DPEM [3] is an intrusion detection tool that uses program 
execution traces to derive a policy for the correct behavior 
of some special privileged Unix processes.  If a program 
execution varies from the policy, it will raise an alarm.  
This tool only protects a list of predetermined programs.  
If different programs are exploited, the tool does not 
notice.  Moreover, the policy is too specific and 
specialized for each program. 
  
System call traces and rule learners have also been used to 
detect possible intrusion [2, 5, 11].  The approach is to 
detect if the next system call is abnormal from the 
sequence of previous system calls.  Such tools focus on 
the system call level and only work for certain attacks. 
  
Because many attacks originate from buggy software, 
Wagner et al. proposed a solution to detect buffer 
overflow bugs by analyzing the source code of the 
software [12].  This approach requires software to be 
analyzed before coming to production and generates a 
large number of false alarms.   

Detecting Insider Threats by Monitoring System Call Activity  
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The major difference between our approach and that of 
other tools (like DPEM) is to build the profile such that it 
is generic and easy to configure.  By analyzing the system 
traces, we want to create a profile that is not specific to 
any particular program.  Thus, tools that use our profile 
can detect a large set of attacks instead of only an 
individual attack.  Moreover, the profile can be built 
automatically and does not require human intervention.   
 
Another difference is that we look at this raw data 
differently, examining the relationships between users and 
files, users and processes, processes and files.  Some 
existing tools [2, 3, 7, 11] look at these raw data at the 
system call level.  For example, by using some expert rule 
learner, they want to guess the next system call from the 
sequence of previous system calls made.  The problem of 
this approach is that the false alarm rates are often very 
high due to the large possibility of system calls and 
arguments.  Moreover, most of these systems use 
sequences of system call traces, recorded for a specific 
version of the software, as the training data.  As a result, 
the learning rules are too specific to that program, and the 
tool can only detect well-known or individual attacks. 
 
Our goal is not to prove that our approach is better than 
these existing tools.  Instead, we want to see if our 
models, based on the relationships between users and 
files, users and processes, and processes and files, can 
reveal good results and promising direction toward 
intrusion detection.  From these results, we hope a 
sophisticated data-mining algorithm can be applied to 
build a good intrusion detection system.   

III. RESEARCH APPROACH 

In modern computers and operating systems, practically 
nothing of significance can be done without accessing 
files and running programs.  The file system is a basic and 
fundamental mechanism for storing information; all users 
need to access file systems to do their work. A 
programmer creates and saves her program in files; a 
secretary saves and loads his office work in document 
files.  File system access also happens when the user is 
not even aware of it; e.g., when the user surfs the web, 
cached information is stored in files.  Many low-level 
system events, such as accessing networks and other 
devices, may require accessing files for determining the 
configuration of devices.   
 
Process execution is also an important event.  All 
executable software on a computer, including parts of the 
operating system, is organized into processes, each of 
which is responsible for a certain task.  For example: 
when user A logs in, a process displays the login prompt.  
If the user logs in successfully, another process is 
executed to let the user begin working.   

Because both file access and process execution are so 
crucial and unavoidable for the user, they can be excellent 
candidates for reflecting user behaviors.  Thus, one 
particularly promising approach to detecting insider 
misbehavior is to trap and analyze file and process events.  
Based on the results, we can develop a model of the 
appropriate behavior of each individual user.  By 
comparing ongoing activity against the predicted model, 
we can detect any deviation from the model and 
consequently signal an alarm.  This type of detection is 
often referred to as anomaly detection. 
 
To analyze file access and process execution, we needed a 
log of system activity.  Fortunately, we already had a 
large database of system call traces, collected for the 
project using software developed for Seer [4].  The traces 
were collected from ten machines with twenty users over 
two years. 

IV. ANALYSIS RESULTS 

A. File Access 

Our approach for analyzing file access was to develop 
patterns for two models: user-oriented and process-
oriented.   
 
In the user-oriented model, we tried to find access 
patterns that could be useful for building a profile for each 
user.  We believe that each user normally does certain 
types of tasks, and thus has certain file access patterns 
that represent his normal behavior.  For example, if user 
A is a programmer, he normally accesses files in his 
project directory.  If he attempts to access files in another 
user’s directory, that might be a signal of misbehavior. 
 
In the process-oriented model, we looked at how 
processes access files.  In many cases, the file access 
profile of a program is even more telling than the file 
access profile of a user.  An insider may use the privileges 
of a program to access files in which he is interested.  In 
other words, as he forces the program to behave in 
uncharacteristic ways, its file access profile will change.  
For example, a web server program normally accesses 
files in the public_html   directory.  As the attacker 
compromises it, the program begins to access files in 
other system directories such as /etc or /var.  (e.g., buffer-
overflow attacks on the IIS and Apache web servers). 

1. User-Oriented Model 

When analyzing patterns for each user, we decided to 
categorize the users into two sets: system users and 
normal users.  Normal users are human, whereas system 
users are predefined users of the system such as bin, 
daemon, xfs, nobody, etc.  Users from these two sets have 
diffe rent characteristics because of their nature.  Human 
users are more interactive, and thus their behaviors are 



 Proceedings of the 2003 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2001 
 

ISBN 555555555/$10.00  ?  2003 IEEE 

more dynamic and complex.  System users are often 
dedicated to only a certain task, and thus they have a more 
static behavior with small working sets.  Moreover, 
system users have certain privileges that are very specific 
to their job: the web server user has access to the 
public_html directory, whereas the xfs user can access X 
fonts and X-Window files.  These system users have 
important system privileges, yet they also often interact 
with human users in normal operation.  Misusing these 
interactions offers a misbehaving insider an opportunity 
to improperly expand his access privileges.  Many attacks 
have been reported on the xfont, nobody and web users.  
Many administrators often only focus on human user 
activities and do not pay attention to the system user.  
This is dangerous because it opens a door for the attacker 
to gain access to the system. 

a) Human Users 

From our analysis, we observed that each user has a fairly 
static working set of files.  For example: user A, a 
programmer, always accessed his project and mail 
directories; user B, an administrative user, always 
accessed his mail and document directories.   
 
Therefore, we calculate each user’s number and 
percentage of daily accesses to each file and directory, on 
both his personal laptop system and on the server.  We 
expected that these numbers would be somewhat constant 
for each day; however, the results were unexpected.  
Figures 1 to 3 show the directory usage in percentage for 
each user on his personal laptop environment.  For each 
day, we counted the percentage of times each directory 
was accessed.  Due to the space limit, the chart only 
shows some of the top directories in the file system 
hierarchy.  The irregular shape of the graph shows that the 
directory usage is very dynamic.  This also applies to the 
file usage.  One reason is that directory and file usage 
depend heavily on the programs run by the users.  In other 
words, some programs  access larger numbers of files than 
others, and thus when the user executes these programs, 
the distribution of file usage changes dramatically.   
 
Figure 4 shows the total number of file accesses for the 
same three users.  The graph is also very irregular.  This is 
also due to the different execution of programs performed 
by users.  Other users experienced similar patterns. 
 
Besides looking at each user’s personal machine, we also 
measured the activity of each user on a shared server.  
Figures 5 to 7 show the directory usage for each user on 
the same server.  The directories shown here are chosen to 
be the same as Figures 1 to 3 for comparison.  The graph 
is steadier in this case because the users often used the 
server for side-work such as checking mail, checking 
schedules, etc.  Compared to the numbers in Figures 1 to 
3, the numbers in Figures 5 to 7 reflect user activity less 

accurately because the users often did the majority of 
their work on personal laptops. 
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Figure 1.  Directories accessed daily for user A 
(on his personal machine) 
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 Figure 2.  Directories accessed daily for user B 
(on his personal machine) 
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 Figure 3.  Directories accessed daily for user C 
(on his personal machine) 

 
Finally, because the percentage of accesses is not steady 
enough, we cannot use this measurement to build profiles 
for each user.  There are several reasons for this large 
variance on the file accesses.  As we stated above, files 
accessed are affected heavily by the program execution.  
If the users execute some program that accesses files 
more often, the percentage will be changed.  Second, 
some file accesses are not interesting or important.  For 
example, when a program is executed, some ld_library 
files are almost always accessed.  If we can differentiate 
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between important and unimportant accesses, the 
statistical result on file accesses can give a more 
meaningful result.  However, this kind of task faces some 
problems, which are discussed in section VI. 
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 Figure 4.  Files accessed daily for users 
(on their personal machine) 
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 Figure 5.  Directories accessed daily for user A 
(on the server) 
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 Figure 6.  Direct ories accessed daily for user B 
(on the server) 
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 Figure 7.  Directories accessed daily for user C 
(on the server) 

b) System Users 

In contrast to human users, system users have rigid 
working set behavior patterns.  Figure 8 shows the 
number of files that each system user accesses during a 
three-month period.  We can see that these users access a 
very small list of files, ranging from 2 to 10 files per user.  
Moreover, these files are very specific to the task of each 
user.  These characteristics suggest a method of building 
profiles for system users by keeping track of the list of 
files that each user is allowed to access.  Therefore, if the 
attacker gains access to these privileged accounts, we can 
detect the intrusion immediately because the attacker will 
be accessing files that are not on the authorized list for 
that specific account.   
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Figure 8.  File set for special users 
 

Not only do these users have a small list of files, the 
percentage of accesses  to these files by system users is 
very steady.  Figure 9 illustrated the percentage of file 
usage for system users.  We can see that the percentage 
stays almost constant in some cases.   This is reasonable 
because the number of files accessed by system users is 
very small.  This also recommends another method for 
detecting malicious attacks on system users – that of 
checking the percentage of file accesses.  If the 
percentage goes outside the expected range, an anomaly is 
signaled.   
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Figure 9.  File usage daily for user “xfs” 

Finally, some of the files are correlated to each other.  In 
other words, when file A was accessed, file B was 
accessed as well.  For example, user nobody often 
accesses two files, “/etc/hosts.deny” and 
“/etc/hosts.allow” together.  These patterns could be used 
to detect attempts to misuse programs run by these users. 

 
In summary, an attack on system users can be detected 
based on the following events: accessed files not in the 
normal list, frequency of access to files in the list, and 
changes in the correlation of files 

2. Process-Oriented Model 

According to our analysis, a process-oriented model gives 
better statistical results for user behavior.  We found that 
92% of the processes traced have a fixed list of files that 
they access.  Moreover, in most cases, the percentage of 
accesses to different files on this list varies, but rarely by 
more than 20%.  Thus, if an attacker attempts to 
compromise a program in this large class of processes, the 
detection system will be able to identify the anomaly 
behavior immediately as the attacker forces the process to 
access files outside of its fixed list, or access files on the 
list in improper proportions.  
 
From this analysis, we also see the correlation between 
files accessed by each process.  Many programs access 
files in particular patterns: first A, then B, then C, and so 
forth.  For example, a shell typically opens a set of files in 
the sequence: “profile”, “/etc/localtime,” “csh.cshrc.”   
Another example is that a programmer typically uses “vi” 
to opens file with the extension “.c” and “.h”.  If a user 
runs such a program multiple times, we also expect to see 
correlations between the numbers of user accesses to files.  
Thus, if a user typically spends much of his time on 
coding and compilation, we expect to see correlations that 
match those activities.   

B. Process Execution 

Because the traces provide detailed information whenever 
a process forks a child or executes a program, we are able 
to reconstruct the whole image of the process hierarchy of 
the system at any given time.  By comparing different 

process trees over a long period of time, we expected to 
uncover interesting patterns related to process execution.  
 
We began by looking at the list of all processes that are 
forked or executed by each program.  The results are 
collected from a one-month trace period on a server with 
a total of 250 programs and 1 billion forks.  According to 
our analysis results, the list of possible child processes for 
a given process is nearly as predictable and stable as the 
process’s list of files accessed.  92% of all programs run 
in the traced environment have a fixed list of possible 
child processes (among these, 25% do not fork any 
children).  Most programs, in other words, will only 
create a limited and highly predictable set of child 
processes.  This information allows us to detect whenever 
a process has forked a child process when it usually does 
not do so.  For programs in these classes, it is a sign of 
suspicious behavior if a child is  created that is not in their 
normal set.   
 
This statistic implies a method for detecting a very 
common class of vulnerability: buffer overflows.  Buffer 
overflows account for more than 50% of today ‘s 
vulnerabilities, and this ratio seems to be increasing over 
time [12].  For this type of attack, the intruder attempts to 
stuff more data into a buffer than it can handle.  As a 
result, data that goes beyond the size of the buffer will 
overwrite the stack and thus allow the attacker to cause 
the instruction pointer (IP) to point to his malicious code.  
By doing this to a privileged program, the attacker can 
force the program to execute other programs that allow 
him to change the system configuration or create damage.  
Many privileged programs are inherently capable of doing 
very limited things, but if the attacker can convince them 
to fork a general execution shell under their privileged 
identity, the attacker can gain general privileged access. 
 
Thus, as the buffer-overflow attack occurs, we can 
immediately detect if the new child process of the 
exploited program is not on the authorized list.  An 
authorized list is the list of child processes that the 
program normally forks.  When a buffer overflow attack 
occurs and the exploited program starts to fork a new 
program (like shell), we can signal a possible intrusion 
alarm.  Since more than 90% of processes have a 
deterministic set of authorized children, we can detect 
many buffer overflow attacks. 
 
Observing process creation behavior allowed us to 
develop other models that are useful in detecting 
suspicious user behavior.  For example, just as users have 
characteristic working sets of files used, they have 
favorite programs.  Figures 10 and 11 depicted the 
favorite programs of two users on three continuous days 
(statistics are similar for the entire month).  The average 
number of executions per day in the graph is 159 for user 
A and 9123 for user B. 
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 Figure 11.  Favorite programs of user B 
 
Figures 10 and 11 show that the frequency of use for 
these programs is quite stable.  If a user decides to 
misbehave, in many cases he is likely to use different 
programs to do so.  If he needs extra privileges, he will 
have to find vulnerabilities in privileged programs; this 
will generally require him to work with programs beyond 
the normal set that he uses.  In many situations, the 
intruder often has to run attack toolkits that probe a large 
number of programs, most of which are not widely used 
by typical users.  Moreover, he may have to repeat the 
attacks many times before he can successfully break the 
system.  Such behavior would be far outside our models 
of proper behavior.  Even if the user is working within his 
normal privileges, but in a dangerous manner, there is a 
good chance that the damaging acts he intends to perform 
will cause him to use programs he normally does not use, 
or at least cause him to use his favored set in different 
proportions.   
 
The race-condition attack is an excellent example.  It 
requires repetitively running programs that have 
probabilistic flaws until the attacker gains control.  By 
counting the number of typical executions of particular 
programs over time for individual users, we can easily 
determine that a user is attempting to use this technique. 

V. BUFFER-OVERFLOW DETECTION SYSTEM (BDS) 

Based on the analysis described above, we have 
developed a viable system to detect insider threats.  The 
purpose of this system is a proof-o f-concept.  Thus, in this 
version of the system, we only demonstrate that we can 
detect intrusion using the analysis results of Section IV.  
The current implementation of the system focuses on 
buffer-overflow and well-known vulnerabilities such as 
symlinks and race-conditions.  We decided to concentrate 
on the buffer-overflow vulnerability since it is the most 
common type of attack (even though it has been around 
for many years).  These attacks can be found in many 
crucial and popular applications, such as email servers, 
cron, web servers, ssh, etc.   
 
One important point that BDS illustrates is that it is not 
designed for a specific exploit.  Instead it tackles the 
whole class of buffer-overflow attacks, and thus can be 
used to detect new or unseen exploits.  

A. Design of the System  

BDS is built on top of the FSOBSERVER kernel, a 
modified version of the original Linux kernel.  It was 
originally implemented as part of the Seer toolkit [4] and 
later extended.  The code is patched at the entry and exit 
point of all system calls.  All system calls made by users 
are recorded by the FSOBSERVER.   
 
BDS is an agent placed in the kernel that can watch all 
system calls to determine if any are hazardous.  If an 
intrusion is detected, BDS will raise an alarm to the 
system administrator.  When the system is first started, it 
reads from its database  (e.g., a file) the profile of a 
program’s execution.  This database of profiles is created 
from an analysis of the trace files.  The database also gets 
updated when the agent detects a new type of profile.   
 
This database contains a list of relationships.  A 
relationship is defined as {X, y1, y2, .., yn}, where X is 
the program name and yi is an authorized child.  For 
example, a valid relation is {netscape, netscape}.  This 
specifies that the program named “netscape” can only 
execute another “netscape” but nothing else.  The system 
reads the input file and stores it in local hash tables.  
Whenever a process attempts to execute another child, the 
system will compare the child’s name against its database.  
If the child is not a legitimate process, the system will 
raise an alarm. 
 
There are two types of intrusion detection systems: 
passive and active [1].  In the active system, whenever an 
intrusion is detected, the malicious action is stopped and 
an alarm is ra ised.  In contrast, the passive system only 
records actions in the system log and does not try to stop 
the action.  Each system has different drawbacks.  In the 
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active system, if the action is a real intrusion, the system 
can stop the intruder immediately.  However, if it is a 
false alarm, it can create deadlock or suspend legitimate 
users.  On the other hand, the passive system cannot stop 
the intruder, but it reduces any damage and inconvenience 
caused by the false alarm.  In our system, we decided to 
use the passive method because stopping a system call is 
such a serious action that it may cause the system to 
become nonfunctional.  Since we decided to use the 
passive approach, we assumed that the log file was 
written into a non-rewritable media.  In other words, the 
intruder cannot suppress the alarm by erasing the log files. 

B. False Positive and False Negative Rate 

As more than 90% of the programs have a fixed list of 
children, the system should have low false positive and 
false negative rates.  We tested the system with different 
lengths of knowledge input files.  The system was 
installed and ran in the background of user’s personal 
machine for three weeks to measure the false alarm rates.  
The system was fed with the knowledge of different 
lengths of historical system call traces.  As shown in 
Figure 12, when the system has three months of 
knowledge, the system performs with a zero false positive 
rate.   
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 Figure 12.  False alarm rate of the buffer overflow detection system 
 
Since each version of the operating system experiences 
different kinds of exploits, we needed correct versions of 
the OS and library packages to test particular exploits.  
New versions of the OS often have been debugged and 
have less vulnerabilities to test.  Moreover, it is difficult 
to retrieve the exploitation code for current versions of an 
OS because they are not posted for the public due to 
security concerns.  Therefore, we decided to test our 
system using an old version of the OS (RedHat 6) in order 
to have enough vulnerabilities to test. 
 
We downloaded and performed seven attacks for RedHat 
6 successfully.  There are many more attacks involving 
buffer overflows, but they require different versions of the 
library and environments.  Out of these seven exploits, the 
system was able to detect six.  The system was not 
designed specifically for any of these attacks.  Our tool is 
designed to catch all buffer overflows as long as the 
attack occurs in the set of programs that have a fixed list 
of children.  There was one exploit that we were unable to 
detect.  This is not surprising, as it was a buffer-overflow 

for “xterm,” and this program does not have a fixed list of 
children.  Thus, this attack was not covered in the scope 
of our system.  Due to the small number of attacks being 
tested, the success rate cannot be used to deduce a false 
negative rate.   

C. Known Disadvantages of the System 

As we mentioned above, if the buffer overflow occurs on 
a program that does not have a fixed list of children (such 
as shell, xt erm, etc.), the system will not be able to detect 
the attack.  These programs, by nature, can fork any kind 
of program at will, and thus it is hard to tell if the child 
process is legally forked.  From our analysis in Section 
IV, these programs make up about 8% of the frequent-use 
programs in the system. 

VI.  TECHNICAL DIFFICULTIES 

We first thought that the percentage of directories 
accessed by each user could be a good measure for 
detecting abnormal behavior.  For example, if a user 
attempts an attack by searching different directories, the 
percentage of accesses per directory will change.   
However, the percentage of directory usage per directory 
for each user does not stay constant.  In fact, it varies 
widely.  One reason is that the file usage depends heavily 
on the process execution.  For example, if a user runs 
process A only a little bit more than usual, the usage can 
change dramatically if the process opens many files.  This 
is true when the process needs to open different 
configuration files (or open them repeatedly).  Thus, if we 
build a system based on the percentage of files accessed, 
the false positive or negative rate will be high.   
 
Another reason that the model is ineffective is that the 
number of files opened is on the scale of thousands per 
day.  Thus, an attacker can easily fool the system by only 
opening a small number of files without affecting the 
accessed percentage rate. 
 
Another model we considered involves focusing on the 
importance level of files in the system and removing 
unnecessary files from the analysis.  From the trace data 
collected, we concluded that most of the files will open 
library files such as /etc/ld_cache.so.  In fact, these files 
occupy more than 20% of accesses if the user executes a 
lot of programs.  These files are normally unimportant 
and can therefore be removed.   However, this approach is 
not desirable as it requires that we build a database of 
unimportant files.  This is OS-specific and not portable as 
the system changes or upgrades.  Also the database can 
grow quickly as the number of files in the system is 
immense.  Moreover, some files are important in some 
cases and are not in other cases.  For example, some 
processes often open /etc/passwd to get the current 
working directory of the user.  In this case, the file access 
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can be considered as unimportant.  However, how could 
the system distinguish between that case and the case 
where the process opens /etc/passwd to break the 
password information? 
 
Because it is undesirable to use the percentage of 
directories accessed per user, we used a different model – 
one where we look at the percentage of files accessed per 
process.  This approach faces a challenging issue: many 
processes open a large number of files, and the system is 
required to understand the meaning of the files.   
 
Many traces were collected from laptops, and the working 
style depicted by the traces is highly dynamic since it 
depends on user mobility.  Many users do not have any 
fixed pattern of working time, and it is very difficult to 
define a good time window for analysis.  Currently we 
use one day as our window time.  However, this is not a 
perfect solution since some users work past midnight.  

VII. CONCLUSION 

The work described here indicates some promising 
directions for detecting misbehavior by insiders, as well 
as intruders whose initial penetration has gone unnoticed.  
The patterns of file accesses by many programs are 
sufficiently regular that attackers trying to misuse them 
will quickly be noticed.  Similarly, process-calling 
behavior is sufficiently regular for large classes of 
programs to serve as a good indicator of misbehavior. 
 
Other patterns of file systems access and process behavior 
do not appear to be good candidates for detecting attacks.  
Individual users have too much variability in their access 
patterns to allow simple statistical methods to detect 
suspicious changes in behavior, without also triggering 
alerts in many innocuous situations.  Similarly, some 
processes, by their nature, tend to fork a wide variety of 
other processes.  
 
Thus, a system that merely implemented the effective 
tools discussed in this paper would not catch all attacks.  
However, these techniques do appear to be useful 
candidates to include in a system that monitors computers 
for possible misbehavior.  Our experience with the data 
gathering and monitoring steps shows that the necessary 
data can be gathered and threats checked without causing 
noticeable delays to the user.  There are challenges to 
collecting and managing the large quantities of data 
necessary to build good models, but these challenges can 
be overcome. 
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