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Abstract. Active networks and adaptive middleware can improve network service
through data adaptation and data rerouting. Automated distribution of adapters is
desirable, because choosing proper adapters (from a large set) to handle arbitrary
network conditions is complex. The paper presents an automated planning system that
helps an active network system choose adapters and their locations. The paper
describes the design and implementation of this system and provides performance data
on its costs and benefits.

1 Introduction

Modern networks vary considerably in bandwidth, latency, jitter, reliability, etc.
Wireless LANS, telephone lines, cellular telephony, and new devices lead to a wide
variety of network conditions. One approach to handling such heterogeneity is to
adapt data streams. If the sending and consuming applications can handle different
forms of data, they can adapt transmissions to current conditions. However, while
many applications have some flexibility about the type of data they consume, few are

capable of negotiating prope r versions of data streams with their providers.

An alternate solution is to use middleware to perform such adaptations. A simple
form of such middleware is a proxy server that adapts data sent over wireless. More
powerful alternatives like active networks allow adaptation at multiple points.

The adapters used by such middleware handle network problems using different
methods to adapt user data  Some adapters handle limited bandwidth, e.g.
compressors that run lossless compression algorithms or distillers that drop inessential
portions of the data. Encryption adapters handle untrustworthy links. Caches and
prefetchers can store user data at middleware adaptation sites. Wireless interface
schedulers save power by frequently turning off their radios. Unreliable links can be
improved by applying forward-error-correction (FEC) adaptation to user data.

Open network architectures (ONA) combine adapters to address multiple network
problems, handling dynamic adapter deployment. This paper discusses planning in
active networks, but the results can be applied to other ONA systems.

Choosing adapters and their locations is complex. The right adapters must be
chosen in the right order, since misordered adapters can be counterproductive. For
example, applying encryption before compression renders compression ineffective. If



multiple active network nodes are available, choosing which of them to host adapters
is also difficult. Some choices will provide better efficiency and latency than others.

These problems are solved by creating a plan describing which adapters to run, in
what order, and where. The problem is too complex for users, and too dynamic to be
preprogrammed. This paper presents the design, implementation, and measured
performance of an automated planning system that serves unicast connections by
applying distributed adaptation to adaptation-unaware real-time applications.

2 The Planning Problem

Consider a user viewing confidential large images over several links. A wireless link
is low bandwidth, insecure, and unreliable. An Internet link is insecure. The
connection will benefit if compression, prioritization, encryption, and packet-level
FEC [15] are applied to the wireless link and encryption applied to the Internet link.

Compression, encryption, and FEC have paired adapters. The first adapter adapts
the data; the second adapter returns the data to its original state. In this example,
someone must order and distribute nine adapters on three connection nodes.
Exhaustive search of possible plans requires two seconds on a Dell Inspiron 333 MHz
computer to examine 9600 plans, too long for many real-time applications.

In another example, field archeologists collect graphical images, video clips, and
teleconferencing materials at an excavation area and exchange this data with remote
colleagues [1]. Video data is sent via wireless to a nearby base station, connected to
the Internet via DSL. This communication requires teleconferencing QoS.
Confidentiality is important. Thus, the wireless link requires compression, encryption,
and packet level FEC. The DSL link has lower bandwidth, requiring distilling and
compression. The archeologists sacrifice video stream quality for teleconferencing
real-time guarantees. The Internet link requires encryption. In this example, we must
order and distribute eleven adapters across four nodes. Checking all of the hundreds of
thousands of possible plans requires tens of minutes, an unacceptable latency.
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Fig. 1. Exhaustive search on a plan space

Figure 1 shows the size of plan spaces for differing numbers of connection nodes
and adapters. Adapters are deployed in order, i.e. compressor upstream, decompressor



downstream, etc. The plan space grows exponentially with the number of nodes and
adapters, making exhaustive search infeasible, even for realistic examples. With the
growth of ad hoc networking, the number of nodes in a connection will grow (and with
it, presumably the number of available ONA nodes), making exhaustive search
planning even less suitable. The number of minutes shows the latency of exhaustive
search for connections with 10 adapters.

One planning method is to use a small number of precalculated plan templates
containing ordered dummy adapters assigned to virtualnodes. Real adapters and actual
nodes are substituted at connection establishment. The planner chooses an appropriate
plan template for current conditions, adds real adapters, and adjusts the template to the
connection.

A simpler version puts all adapters on nodes adjacent to the problem links. The
resulting plan may inefficiently use an adaptation multiple times. In Figure 2,
compression is inefficiently applied twice on adjacent low-bandwidth links. Another
simplification is to put all adapters on t he end nodes of a connection (Figure 3). Two
adjacent links require compression and encryption. The end nodes should run both
adaptations, but those nodes lack the resources to do so. Thus, the plan calculated with
this method is unusable.

Link characterigtics:

L ow bandwidth L ow bandwidth
Naive
Compress 83%?31%5 Decompress
Optimal
Compress Decompress

Fig. 2. Example 1 of simple template planning
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Fig. 3. Example 2 of simple template planning

Full-scale template planning is not flexible enough to handle the entire problem.
The more templates the planner has, the more flexible a plan, but harder it gets to find



it. Assume N links in a connection and P problems on the connection links. Then 2 ™
possible link situations can occur in a connection. Either an exponential number of
templates must be provided, or some possible situations will not be handled properly.
The number of possible adapter locations adds complexity. Node resource constraints
may make a template unusable. The more complexities added, the less advantage one
gets from the supposed simplicity of template planning.

This paper presents another approach that avoids the combinatoric explosion of the
planning problem. In this approach, the planner calculates a plan online during the
connection establishment using a heuristic search in the plan sp ace.

3 The Planner Design

Our planner had to meet several requirements. It had to be fast, to serve real-time
applications. Its plans had to use adapters consistently so that no adapter inhibits the
work of another adapter or destroys the semantics of u ser data. The planning system
had to be extensible, allowing later addition of new adapters.

The planner uses adapter descriptions, which contain the following data:

Problem ID. Network problems are described with unique problem identifications,
e.g. low bandwidth, insecurity, etc. Problem ID is used to match observed problems to
suitable adapters.

Method of resolution. A given problem can be solved in more than one way. For
example, the low-bandwidth problem can be solved by compression, distilling,
prioritization, etc.

Adaptation effect. The properties of applying an adapter, such as estimated
efficiency of adaptation. The planner uses this adapter efficiency attribute to choose
between two adapters that solve the same problem. The data size imp act describes the
adapter’s effect on data throughput, and whether it is lossy. A compressor reduces the
amount of data sent, while FEC increases it. The planner extends the effect of the
adapters that reduce data volume over more connection links. The planner prefers
lossless adaptation to lossy adapter.

Adaptation cost. Adapters have costs: CPU, memory, etc. Adapters use can also
have monetary or deployment latency costs. The planner will try to minimize these
costs.

Preconditions of adapter use. Some adapters require that certain pre-conditions be
satisfied, such as data must be in a particular format. Once a Lempel Ziv compressor
or encryption is applied, another Lempel Ziv compression becomes useless. We use
various compressabilities as preconditions that characterize whether a particular
compressor can be applied to user data.

Postconditions of adapter use. Adapter postconditions describe the properties of
the data after adapter application, allowing them to be matched to the next adapter’s
pre-conditions.

The planner requires some information to calculate a plan. Planning data consists
of stream characteristics, stream requirements, user preferences, link conditions, and
node resources.

Stream characteristics. These describe the user data stream, such as format of data
and whether the data is compressed or encrypted by the user application that generated
the stream.



Stream requirements. These show the minimal useful throughput of the stream,
confidentiality requirements, etc.

User preferences. Users can optionally choose a particular problem solution (e.g.,
dropping video stream resolution instead of color), or require the use of a particular
adapter.

Link conditions. Link conditions affect the data transfer. The planner compares
stream conditions, stream requirements, and link conditions to detect problems and
select remedies. Link conditions include bandwidth, jitter, latency, reliability,
security, etc. Small fluctuations in a link attribute can be handled by choosing
adapters able to handle a wide range of conditions.

Node resources. A plan’s use of node resources must be verified as feasible during
plan calculation. An ONA node’s policy on resource sharing (priority, client quotas,
purchased levels of service) affects feasibility, preventing one connection from
hogging all node resources. Node resources consist of CPU, hard drive, memory,
associated costs, etc.

The planner uses heuristic search in the plan space to calculate a plan, executing
three consecutively executed processes: adapter selection, adapter ordering, and plan
optimization.

Adapter selection allows the planner to verify plan feasibility at any point, since it
is working with real adapters. But if the wrong adapter is selected, it will affect all the
following planning steps, and changing the adapter requires starting the entire process
over again.

Adapter ordering uses precalculated templates. These are used exclusively to
determine acceptable ordering of adapters, avoiding the earlier -mentioned problems of
template planning.

After adapters are selected and ordered, the plan is optimized.

Dividing planning into these steps reduces the search space. Some early choices
affect further steps, which could prevent finding the best plan. The planner does not
guarantee optimality. The selection of effective heuristics is the key issue for the
heuristic search. We verify our heuristic choices through comparison with exhaustive
search.
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Adapter selection. Adapter selection is the first step of planning (Figure 4). The
planner analyzes stream characteristics, stream requirements, and link resources to
detect problems, and uses problem IDs to select the adapters. The planner searches its
database by problem ID, step 1. Adaptation package records (APRs) are associated
with a problem ID, which also contains the package’s location and an interface to the
package’s own database. More than one APR can be returned to the planner for a single
problem ID, step 2. The planner uses various techniques to choose adaptation packages, such as
self-learning or always choosing a preferred package.

The planner uses the chosen APR’s interface to query the adaptation package
database, which returns the real adapter data step 3 and 4. The adaptation package
database is provided by the adapter designer. This two-level access to adapter data
allows the planner and adaptation designers to work independently, relying on the
interface to reconcile their requirements. This process produces an unordered set of
adapters associated with nodes adjacent to the problematic links.

Adapter ordering. Partial-order plan templates are calculated off-line. The
adapters in the templates are represented by adapter methods that def ine proper adapter
order (e.g., Figure 5). Some adapters are arranged sequentially, such as distilling,
compression, encryption, and FEC. Other adapters are arranged in parallel, such as
format conversion, data storage, and filtering; their order is determined later, as
described below. A format converter can be applied to data before or after distilling,
as long as the data format is recognizable. Caching should be applied before FEC, to
avoid wasting caching resources. Format-insensitive filtering is not limited by order.

—» Format
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»  Caching

Encrypt —Pr FEC

| g Filter

Fig.5. An example of partial-order template plan for adapter ordering

The planner then replaces adapter methods with real adapters. Parallel orderings
are resolved using additional constraints of the real environment, such as application
requirements, adapter pre- and postconditions, and network conditions.

Adapter conflicts are detected by analyzing their pre- and postconditions. The
planner resolves conflicts by changing the adapter order if possible, or it adds a format
conversion adapter to resolve the conflict. If a conflict cannot be resolved, the
planning process must restart with adapter selection.

Adapter selection and ordering produces a chain of local plans where every adapter
is selected, ordered, and located in the nodes adjacent to the link with the problem.
Figure 6 shows an example from the archeology scenario. This plan can be used, but it
may be inefficient. It may include redundant adapters (see Section II). Or link
resources can be wasted when compression is applied to one link and not to others.



Plan optimization. Plan optimization uses a variant of a recursive best -first search
algorithm. The initial point is the chain of local plans described above. The
optimization algorithm applies transformations to the current point, evaluating each
transformation’s value and feasibility. If a transformation produces a better value of
the evaluation function and the new plan is feasible, the plan is recorded as a potential
solution. The goal is to find the minimum of the evaluation function. The
transformations are based on merging neighboring plans, preserving the order of
adapters from both plans. Merging two plans involves three nodes: the node common
to both plans (the median point) and two other end nodes. Merging moves adapters
from the median point to the end nodes. After all adapters are moved, redundant
adapters are dropped, resulting in a new plan to be merged with its neighboring plan.
The goal is to merge as many plans as possible—ideally all plans of the connection.

Internet
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Fig. 6. The result of adapter selection and ordering: the chain of local plans

Plan merging can be interrupted for various reasons, including a wor se evaluation
function value, insufficient node resources, or unrecoverable adapter conflict. If
merging is interrupted in one place, it can be resumed in another place in the chain of
plans. If time runs out, the merging process stops and the best plan found so far is
chosen. An example of creating an optimal plan by merging for our archeological
scenario is presented in Figures 7 and 8. First the plans on links AB and BC are
merged, then the resulting merged plan is merged with the CD link plan.

We use an evaluation function to drive the optimization process:

link node
links resources nodesrresources

=y Y adrry 3 Boor,

where Ir and nr are link and node resources, and @ and [ are normalizing weight
coefficients. We optimize the plan by minimizing the link and node resources usedyb
the connection. Although the function does not contain latency explicitly, dropping
the redundant adapters reduces adaptation latency.
Feasibility verification involves comparing the resources required by the adapters
to available node resources at the locations where these adapters must be executed.
Thus, the planning algorithm contains the following steps:



1. Detect network problems by analyzing the application stream characteristics and
requirements and available link resourc es.

2. Select adapters that solve any detected problems.

3. Order the chosen adapters on the nodes adjacent to problematic links using the
partial-order plan template.

4. Merge the first two plans from the resulting chain of plans.

5. Evaluate the result with the evaluation function.

6. Verify the consistency of adapters.

7. Verify the feasibility of the resulting plan.

8. If the plan is better according to the optimization function, if the adaptations are
consistent, and if the plan is feasible, record it.

9. Merge the plan that is the result of the previous merging with the next-neighbor
plan. If all plans are merged, return the last recorded plan and stop.

10. Go to step 5.
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Fig.7. Merging plans AB and BC in archeology example
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Fig. 8. Merging plans AC and CD in archeology example

The result of adapter selection and ordering is a plan that can be used as a solution.
The transformations change the state of one potential solution to another potential
solution. The minimization of the ev aluation function helps to find the best solution,
but it may only find alocal minimum. The optimization produces a besteffort plan.

During the merging process we preserve the original order of adapters. However,
the consistency of adapters may be v iolated. Thus, we must verify adapter consistency
during plan merging. If it is violated, it must be restored using the techniques
described earlier. If adapter consistency cannot be restored, plan merging fails.

With p adapters and n nodes, the total merging complexity is O(pn). Each
optimization step has complexity O(n). Hence, the total complexity is O(pn’).



4 The Planner Implementation

The planner was implemented in the Panda active network middleware [5]. Panda
uses active network technology to serve adaptation-unaware applications. Panda
intercepts normal data packets set to a destination and converts them into active
packets, which are stored on the source node until a plan is calculated and deployed.
Panda collects the planning data, invokes plan calculation using the planner described
in Section III, and deploys the plan. The source node then sends the active version of
the application packets to the destination. They are intercepted at any Panda nodes
along the path that have had adapters deployed for this connection.

This planner can calculate a local plan for a particular connection link or a whole -
connection centralized plan for all links. In this implementation, local plans are
calculated as a fast, but often subotimal, solution to sta rt data transfer quickly. Local
plan calculation involves only adapter selection and ordering. A whole connection
plan is simultaneously calculated and ultimately replaces the local plan.

If Panda detects that the network conditions change sufficiently during a
connection that the existing plan cannot satisfy the connection requirements, Panda
replans, substituting a newer, more suitable plan for the old obsolete plan. The
unused adapters are garbage collected by Panda nodes later.

5 Performance

In this section we present some performance measurements of the planner and the
Panda planning implementation described above; more results are presented in [16].

We tested a Java implementation of the planner on 333 MHz Dell Inspiron laptops.
Connections were generated in a randomized fashion. The links between the nodes
were randomly assigned bandwidths of 10 Mbps, 2 Mbps, or 100 Kbps. Moving data
over a 10-Mbps link required no adaptation. Moving it over a 2-Mbps link required
Lempel-Ziv compression. Moving it over a 100-Kbps link required both lossy
filtering and LZ compression. Each link was designated secure or insecure, requiring
no adaptation or encryption and decryption, respectively. We generated a resource
availability for each node, expressed as the number of adapters the node could run.

Figure 9 shows the latency ratio between heuristic and exhaustive search for
differing numbers of connection nodes and adapters. For small cases (e.g., three
nodes, 4 adapters), exhaustive search is better, but the planning latency is less than 10
milliseconds here. For larger cases, heuristic search was better, and had larger
latencies. Exhaustive search becomes infeasible as the number of nodes and adapters
grows. A hybrid approach could use exhaustive search for small numbers of nodes
and adapters, but the relatively low cost of heuristic search in such cases might make
the extra complexity of supporting both styles of search unnecessary.

Figures 10 and 11 show that the latency of heuristic planning is below 90
milliseconds for 6 nodes with 14 adapters, and below 160 milliseconds for 12 nodes
with 9 adapters. Exhaustive search would require many hours or days in these cases.
Heuristic search failed to find the optimal plan for a four-node connection in only one
case of 1000 tests, and in only three of 1000 tests for a five node connection. In 1
percent of the cases for six -node connection that were tested, an optimal plan was not



found. Thus, in 99+ percent of realistic cases, the heuristic search plan ner found the
optimal plan. The cases where it was not found by heuristic search occur when the
majority of connection nodes are able to run a very limited numbers of adapters.
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200
150

T(H)
(msa) 100
50

™ 4 adapters
O 6 adapters

B 9 adapters

1 2 3 4 5 6 7 8 9 11 12
Number of nodes
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The Panda planning system was tested on true real-time applications. A video
stream was generated by the WaveVideo multimedia package [3] and sent to a
destination using a connection of HP 500 MHz machines running Panda. The
efficiency of the transmission is measured in dB of PSNR (peak signal -to-noise ratio).



The graph in Figure 12 demonstrates the advantages of adapting video streams in low-
bandwidth, often-insecure network links. The darkest bars represent a connection not
using Panda. This connection’s PSNR is 10dB lower than the Panda-adapted
connections on low-bandwidth (150, 800 kbps) links. Even when Panda adds other
benefits (encryption), the PSNR is still significantly better than not using Panda.

= No Panda
6 m Panda & resolution-drop
@ Panda, resolution-drop & encryption
@5
T4 7
m [
Z3 T T L
? T :
2 1
1 -
0 ‘
15 80
Throughput

Fig.12. PSNR (luminance) of adapted and unadapted (no Panda) video streams.

Figure 13 shows the advantages of centralized planning. One link has insufficient
bandwidth, another is insecure. If the first link needs encryption and the second needs
filtering, then the incremental plan puts an encryptor on the source node and a
decryptor and a filter on the next node. This is worse than the optimized plan that puts
the filter and encryptor on the source node and the decryptor on the next node. In the
latter case, encryption and decryption are applied to fewer packets. This difference is
measurable (Figure 14). Centralized planning displays better PSNR than local
planning, and adaptation shows better PSNR than no adaptation.
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6 Related Work

Many ONA technologies require applications to do their own planning, including
ANTS [19] and SwitchWare [8], and the Rover tool kit [10]. Providing benefits to
ONA-unaware programs usually require explicit user or system administrator
configuration. In the Berkley proxy system [4], Protocol Boosters [13], and Odyssey
[14], the services are typically simple and must be prelocated.
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Fig.14. PSNR of non-adapted, local planning, and centralized planning video streams.

Choi [2] uses automated planning route through the network. Their planning
problem has the same complexity as the graph shortest-path problem. MediaNet [9]
uses stream characteristics, user preferences, and templates to build a simple plan
based on resource scheduling to improve performance and utilization. Conductor [20]
is able to plug in a variety of plan formulation algorithms, but so far uses a relatively
cheap and simple planning algorithm. The Panda planning approach is consistent with
Conductor’s planning model. CANS [6] plans based on high-level specifications of
component behavior and network routing characteristics. The CANS algorithm
complexity is O(p’n®), while our algorithm has a lower complexity of O(pi.

Planning is well studied in artificial intelligence and operational research [17].
Approaches include partial order planning in a solution space [18], recursive best-first
search [12], and genetic algorithms [11].

7 Conclusions

This paper has demonstrated that it is possible to build a quick, effective, extensible
automated planning system to bring the benefits of active networks to applications not
written to use them. This system out -performs alternatives such as exhaustive search
or treating the problems of each link separately. The system can be thousands of times
faster than exhaustive search, and can handle problems too large for exhaustive search.
Our system produced plans up to 100% better than incremental planning. The system
can significantly improve the observable performance of real-world applications. Our
Panda-based automated planner provided more than 10 dB PSNR improvement over



an unadapted data stream. These measurements also show the value of a sophisticated
planning algorithm. The central plan produced by our complete algorithm provided
around a 7 dB improvement over unsophisticated per-link planning. This planner
could beused in a wide variety of open network architecture systems.

This planner is of particular value for peer systems. Such systems are likely to face
multiple network problems on severa different links, since each peer might be using a
wireless network, a modem, or other problematic link. Peer systems often belong to
unsophisticated users, and are unlikely to have good means of handling dynamic
problems. Automated planning of adaptati ons avoids many such shortcomings.
Automated planning might assist design of distributed component systems, especidly
when they face unpredicteble and dynamic conditions. For example, automated
planning may support roaming services with drasticaly changing conditions. Our
experience suggests that leveraging specifics of the problem space is vitd to achieve
success. While the planner outlined here is directly usable, the ideas and techniques
used to create this planner may prove more even widely applicable.
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