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Abstract 

For worms with known signatures, properly configured 
firewalls can prevent infection of a network from the 
outside.  However, as several recent worms have shown, 
portable computers provide worms with an entry point 
into such networks, since these computers are connected 
behind the firewall.  Once inside, the firewall provides no 
protection against the worm's further spread.  Wireless 
networks are particularly dangerous in this regard, as the 
act of connection is often invisible, and improperly 
configured wireless networks will allow anyone within 
radio range to connect.  In this paper, we use real data on 
a large-scale wireless deployment to analyze the speed 
with which a worm could spread if it used only this 
propagation vector.  We discuss several possible solutions 
and provide analysis on how much protection those 
solutions would provide. 

 

1.  Introduction 

The worms that achieved the largest infected 
populations have been designed to spread across arbitrary 
networks.  In most cases, they travel from one wired node 
through the Internet to another wired node.  Along the 
way, they are likely to either pass through or be rejected 
by a firewall that separates the target node from the rest of 
the Internet.  Since worms typically make use of known 
vulnerabilities, rather than zero-day exploits, one method 
of controlling their spread is to install filtering rules in 
firewalls that look for either particular worm payloads or 
attempts to exploit known vulnerabilities.  Substantial 
research is ongoing in developing methods to 
automatically detect and analyze worm behavior, with a 
goal of spreading signature information to firewalls, 
which can then stop further infections by filtering on the 
signature. 

The Blaster and Sasser worm events, however, 
demonstrated that this approach is not sufficient.  Sites 
whose firewalls were fully cognizant of the infection 
vector and well prepared to reject any such messages still 
found their internal networks infected by these worms.   

Why?  In general, not because of imperfections in the 
firewalls, but rather because mobile computing allows 
nodes to move from network to network without 
traversing any firewall.  A mobile computer is plugged 
into an already infected or unprotected network, is 
infected with the worm, and is then disconnected.  Later it 
is brought into a protected office environment, where it 
connects to the network behind the firewall.  Its packets 
are never examined for the worm, since they don’t go 
through the firewall, and it is thus free to infect the entire 
network.  Many sites had serious problems with these 
worms for precisely this reason. 

Further, many of the proposed solutions to detecting 
and handling worms are based on the presumption that the 
worm is both aggressive and noisy.  By acting in 
characteristically different ways than the infected node 
would ordinarily behave, in its attempt to infect as many 
nodes as possible, as quickly as possible, the worm offers 
defenders an opportunity to detect its presence and take 
responsive measures.  Some have postulated that if 
effective defenses of this type are built, they could be 
stymied by a worm that was slower, more careful, and 
less aggressive [1].  Propagating only on human 
movement is one simple way to achieve that effect. 

These problems are unlikely to go away.  In fact, they 
will get worse.  With wired networks, there is an explicit 
step that a user takes to connect up to the protected 
network: he plugs in a cable.  Perhaps users can be 
educated to regard this as an event with security 
significance, requiring them to perform extra actions, 
such as a virus scan. 

With wireless networks, there is no such user-initiated 
event.  Typically, wireless nodes automatically detect and 
join local wireless networks.   The user does not 
necessarily even know it has happened.  Wireless 
networks are becoming increasingly common, and 
wireless advocates are working diligently towards a world 
with nearly ubiquitous coverage and transparent mobility 
from network to network.  In addition to the popularity of 
wireless PDAs and laptop computers, cell phones 
powerful enough to download and run Java code are 
widespread [2], increasing their utility and offering users, 
as well as malware authors, many new possibilities. 



Existing research has modeled the spread of worms 
that rely on the standard method of using some IP 
transport protocol to move across arbitrary networks, but 
it has not yet provided any insight on how fast and how 
far a worm could spread by making use of mobile 
computers and wireless networks.  This paper addresses 
that question.  We use existing data of real users working 
in a campus-wide wireless environment over the course of 
several months to provide realistic data on mobility and 
connectivity patterns.  We perform simulations based on 
this data to observe how a worm might propagate using 
only local wireless connections and human user mobility.  
Further, since various groups are already building 
defenses against this form of infection based on 
examining and quarantining dangerous machines as they 
enter networks behind the firewall, we analyze several 
strategies of this kind of defense. 

2.  Worm Models 

As detailed in [1] and [3], an Internet worm such as 
Code Red can be modeled by applying the Susceptible-
Infected (SI) epidemic formula, deriving an equation for 
the number of infected users over time based on an 
average contact rate.  Moore et al went on to define this 
rate for Internet worms as the product of scanning 
frequency and the probability of finding a vulnerable host 
in the search space (232 when scanning the entire IP 
address range), but a worm written specifically with 
behavior for wireless environments would take a different 
approach to infecting other hosts. 

The intensive scanning performed by normal Internet 
worms would quickly give away their presence on a 
bandwidth-constrained device.  In order to avoid 
detection, a worm on a mobile host would try to limit 
scanning of the wide area network and focus on peers 
with the assumption that eventually those peers would 
travel behind security boundaries and allow it to reach 
more hosts.  If the worm has multiple attack vectors, it 
might switch to a more aggressive one suitable for a wired 
environment once it found an unprotected or particularly 
well-connected point. 

For our theoretical worm, the average contact rate 
becomes a function of variables such as the number of 
access points users visit, their session lengths, the number 
of users per access point or subnet, and whether the worm 
can monitor the channel to discover new targets.  Many of 
these factors lead back to mobility, and users currently 
seem to use the network in highly variable ways – large 
differences may exist between users or even in the same 
user’s behavior over time.  As wireless networks become 
more widely used and reliable models of mobility are 
discovered, a formula for the contact rate of our 
hypothetical worm should emerge.   Work has already 
begun on extracting mobility models from traces gathered 
by Dartmouth College. [4] 

In our work, we use a simple model of worm activity.  
The worm only propagates across wireless networks.  
Whenever a worm successfully associates with a new 
subnet, it attempts to infect any other nodes already 
associated with that subnet.  The access points themselves 
cannot be infected.  In our analysis, we assume that all 
other devices in the simulation are susceptible to the 
exploit the worm uses to attack new machines, and that 
once a machine is infected, it continues to try to spread 
the infection until the machine is disinfected and patched. 

In our simulations, we always assume that only a 
single user in the system starts off with the infection, 
received either by contact with a hypothetical host outside 
the scope of the simulation or through some other attack 
vector.  This assumption may not be realistic, as it would 
be likely that a successful worm might enter a population 
of mobile wireless users through several hosts.  We plan 
to examine the effects of multiple infection points in 
future experiments. 

Similarly, there are many other variants of worm 
behavior that could be studied this way, including a worm 
that sometimes propagates stealthily across wireless 
networks and sometimes propagates rapidly when well 
connected.  A comprehensive analysis of these variants is 
beyond the scope of this paper, but several will be 
addressed in future work. 

3.  Dartmouth Trace Description and 
Interpretation 

Performing our simulations required a source of data 
describing how users move between different access 
points.  Rather than use a synthetic model of user 
mobility, we relied on extensive traces of real behavior. 

Kotz and Essien presented a detailed study of traces for 
Dartmouth College’s 802.11b campus network for the 
Fall 2001 semester in [5], and have continued to collect 
and make available large amounts of data online.  The 
trace archive now contains full system logs from early in 
2001 through the present with few interruptions, making 
it the largest public source available for studying real user 
behavior.  These logs contain records of many events of 
interest in the wireless networks they studied, some of 
which are precisely the data we needed for our 
simulations. 

The Dartmouth campus environment is especially 
useful for user mobility research since it spans 200 acres 
and over 160 buildings, and is saturated with 802.11b 
connectivity throughout.  All students are required to have 
computers, and 70% of students purchasing computers 
from the campus store in 2001 bought laptops, all of 
which had 802.11b adapters. 



3.1.  Dartmouth System Logs 

The system logs available from the Dartmouth archive 
were altered by Kotz et al to add timestamps, sanitize 
client MAC addresses, and change the names of access 
points to a format that identifies the class of building 
(academic, residential, etc).  

We interpreted the entries closely following the 
methods in [5], including adjusting deauthentications due 
to user inactivity and  removing users when access points 
rebooted.   

3.2.  Filtering 

The system logs of the trace, covering September 23, 
2003 through December 10, 2003 (Fall 2003 semester), 
were filtered as follows.  We discarded entries with 
corrupted data, those with MAC addresses not in the trace 
format, and messages that do not represent one of the 
above user events.   

Since the logs do not provide information about the 
organization of the network, we chose to form subnets out 
of the set of access points in each building.  Network 
cards can freely switch access points if they find a 
stronger signal, but reassociating with an AP out of the 
subnet would interrupt the user’s experience.  Grouping 
our access points this way makes an association with a 
new subnet more closely correspond to a change in 
location.  Using building scope is also practical since the 
outer walls would affect signal strength. 

While [5] performed a more sophisticated session 
analysis, we assume that as long as the user stays within 
one subnet, the session continues until a disassociate or 
deauthenticate message appears from the AP with which 
the user was last connected.  Thus, the user’s machine 
remains addressable at the same network location and any 
connections with other computers continue even if the 
network card reassociates with a stronger AP signal 
within the building. 

Our resulting data set had 6630 unique MACs which 
we assume correspond to unique users, 165 subnets 
(buildings), 3,746,005 entries, 2,590,365 unique 
timestamps at the granularity of seconds, 1,164,458 
Associates, 1,753,640 Reassociates, 380,159 
Deauthenticates, 446,501 Disassociates, and 175 Reboots. 

3.3.  General Analysis 

Since user mobility and sharing of access points are the 
main drivers behind the spread of our envisioned worm, it 
is helpful to look at related features in the trace. 

Our median user visited just over 9 buildings, had a 
session length of 16.21 minutes, initiated 82 sessions 
during the simulation, and shared a subnet with 892 other 
unique users.  Time spent online varied widely, with the 

median user active 582 hours, and including 14% who 
used the network less than 10 hours.   

The subnets in the trace had a median of 17 maximum 
simultaneous users, received a median of 7,073 visits, and 
saw a median of 228 unique users.  These numbers 
provide hints as to how likely an infected user would be 
able to come in contact with others, and thus contribute to 
forming the average contact rate.  Interestingly, even 
when only simulating at the access point level so that each 
AP was its own subnet and movements to other APs 
broke connections, the infection results were equally 
severe. 

Obviously, this trace and our use of it represent only 
one model of mobility and access point sharing.  
However, the trace is real, fairly recent, and 
representative of a reasonably large class of users whose 
mobile computing experience is largely limited to one 
large area.  These experiments could obviously be run 
with other mobility models based on different 
assumptions or traces, likely yielding different results.  
Such investigations must be deferred to future work, 
however. 

4.  Worm Simulation 

After filtering the trace, we ran a custom simulator 
written in Java to determine how worms would behave in 
this environment.  For each of the 6630 users in the trace, 
we performed a simulation of what would happen if that 
user began the semester infected with a idealized worm 
that required 30 seconds to scan and infect the other 
machines on the subnet, and was capable of infecting any 
uninfected target, but not the APs.  Even if the worm 
couldn’t switch its host’s network adapter to promiscuous 
mode to monitor new connections, since the maximum 
number of simultaneous users at any subnet in the 
simulation was 334 (at a library), the subnets would 
probably be small enough to scan quickly for susceptible 
hosts. 

Figure 1 shows the resulting maximum, median, and 
lower quartile curves of the number of infected hosts over 
time.  Please note that the x-axis has been normalized 
such that 0 is the first appearance of the initial infecting 
user.  This allows us to compare infection rates across 
initial infectors. 

The normalized curves show that the idealized worm 
exhibits similar infection behavior to the SI model, with a 
rapid jump in victims followed by a smoothing out as the 
worm finds fewer and fewer new targets.  [1] discussed 
the reaction time of a containment system necessary to 
limit an infection to a given proportion of users.  For the 
median curve of Figure 1, such a system would need to 
react within 1 hour and 50 minutes to contain the 
infection to 10% of the population and within 34 hours to 
contain it within 50%. 



This is considerably better news for network 
administrators than the “Warhol worm” described in [3] 
that could infect all vulnerable hosts on the Internet in just 
minutes, and reflects the contagion approach of our 
hypothetical wireless worm. 

Since mobility patterns and different patterns of use of 
the network clearly affect how likely this form of worm is 
to spread widely, we also present data on how many users 
would ultimately be infected given different users who 
were the original point of the infection.  We found that 86 
of the 6630 users in the semester were poor infectors, 
incapable of infecting any other systems due to low 
and/or short contact with peers.  For the following results, 
we removed the simulations where one of these users was 
chosen as the initial infector. 

As Figure 2 shows, even with just a single initial 
infector, most users are capable of causing near total 
contamination of the network.  83% of the users were able 
to infect over 90% of their peers.  Except for the 86 users 
who had almost no contact with anyone on the network, 
almost all of the users were able to infect two thirds of the 
overall population.  Clearly, while this method of 
spreading a worm is not incredibly fast, it can be 
extremely effective. 
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Figure 1.  Plot of max, median, and lower quartile 
summaries of infection over time when there are no 
defense mechanisms. 

 

No Patching/Defenses: Total Infections

Total Infections

N
um

be
r 

of
 S

im
ul

at
io

ns

0 1000 2000 3000 4000 5000 6000 7000

0
10

00
20

00
30

00
40

00

 

Figure 2. Histogram of total number of users infected 
across simulations of the 6544 initial infectors. 

5.  Defense Systems 

How can a worm that uses this type of propagation be 
stopped?  We modeled a variety of types of defense 
systems to see how well they contain the threat, 
performing tens of thousands of simulations per type.  For 
all simulations, we assume that users run virus-scanning 
software and disinfect before installing patches. 

One important note is that due to the fact that we are 
replaying recorded trace log data in hopes of having an 
accurate user mobility model, we are ignoring the 
possibility that the users would change their network 
usage when infected or when interacting with one of the 
defense systems.  For instance, if a defense that denied 
access to infected users were only partially deployed, 
infected users might decide to walk to a location that 
didn’t have it after being denied access at locations that 
do. 

We simulated random 25% deployments of the defense 
models across the subnets, as well as the combination of 
users patching their own systems with the infrastructure 
solutions.  We evaluate the results based on four metrics: 
percent of simulations where the worm never infected 
more than 1% of the users, the number of total infections 
that occurred, the number of infected users who remain 
infected by the end of the semester, and the general shape 
of the infection over time plots. 

The following are descriptions of the models and their 
individual results, with comparison and analysis in section 
6.  Figures 3, 4, and 5 compare data for the several 
models. 

5.1.  Unpatched User Shunning (US) 

These systems are capable of detecting that a user is 
vulnerable and send him a warning message that if he 
doesn’t install the patch within a certain period of time, he 
will be shunned from using the network, presumably until 



he fixes his system and reports to an administrator to 
request removal from the shun list.  This model allows 
infections on its subnet and communication between its 
users.   We used the following parameters:  The users 
were given 5 days to patch, 95% would patch some time 
within that period, and all the users who became shunned 
would patch within 3 days.  We also assumed that the 
shun list is global – all the installations of this system are 
coordinated by a campus-wide administrator. 

For 25% deployment, in about 2.5% of the simulations, 
the US defense model contained the infection to less than 
1% of the users.  In the median case, it still allowed a total 
89% of the users to become infected.  Figure 4 shows that 
it flattens the infected population, keeping up the rate of 
disinfection with the worm, until eventually all the users 
who are going to travel to one of the US systems do so 
and the infectable population is exhausted. 

5.2.  Infected/Unpatched User Shunning (IUS) 

This model is the same is the Unpatched User 
Shunning case except it also prevents infections attempted 
at defense locations, warns infected users, and then adds 
them to the global shun list.  An IUS system might 
actively analyze traffic looking for signatures or 
anomalies and be able to cut off an infected system before 
it contaminates others.  We assumed that all users warned 
that they are infected will disinfect and patch within 24 
hours. 

IUS performed much better in containing the threat to 
less than 1% of the users, doing so in almost 20% of the 
simulations.  It allowed 65% of users to become infected 
in the median case, and flattened the infected population 
to about 25%. 

5.3.  Active Disinfect/Patch (Active) 

In an active defense model similar to [6], users who 
connect to the network are quarantined until they prove 
that they are up to date with the latest patches and are 
uninfected.  Infected users are disinfected and unpatched 
users are provided the patch.  In our simulations, we 
assumed 10 seconds are required to disinfect and patch an 
infected user.  Infected users who leave the network 
before the time is up are not disinfected.  Thus, in most 
cases an infected machine will be disinfected if it ever 
visits a location where the defense is deployed. 

Active reduced the infected population by the end of 
the simulation to about the same level as IUS; however it 
was able to contain the threat to less than 1% of the 
population in almost 27% of the cases and reduced the 
number of users ever infected to 51% in the median case.  
This suggests that it did its work faster and was more 
likely to prevent the outbreak in the first place.  
Nonetheless, even a strong and aggressive defense of this 
kind can frequently permit a high degree of infection if its 

deployment is limited to merely 25% of all systems.  
Clearly, higher degrees of deployment will be required to 
achieve greater protection, rather than merely more 
sophisticated defenses at a limited number of locations. 
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Figure 3. Maximum infection over time curves for US, 
IUS, and Active at 25% deployment. 
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Figure 4. Median infection over time curves for US, 
IUS, and Active at 25% deployment. 
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Figure 5. Lower quartile infection over time curves for 
US, IUS, and Active at 25% deployment. 

5.4. Proactive Patching 

Since most popular consumer operating systems now 
support automatic warnings of new vulnerabilities and 
make it easy to install patches, we expect more users will 
keep their systems up to date.  To examine the impact of 
this effect, we used the following schedule for patch 
installation starting at the beginning of the trace data: 
50% of users patch some time within the first 7 days, 25% 
in the next 7 days, 10% in the third 7, and finally 15% 
will never patch on their own.  Users were allowed to 
patch even if they were not on the wireless network, since 
we generally assume that they have other sources for 
network connectivity. 

If users patch their own systems according to the 
schedule we devised, they can have a significant effect.  
However, the worm is still fast enough to infect a large 
percentage of the population.  In less than 1% of the 
simulations, the worm was contained to 1% or less of the 
users, and in the median case, 63% of the users were 
infected, though only 15% were still infected by the end 
of the simulation due to our schedule.  One of the curves 
on Figure 6 shows the effect of relying only on patching 
(with this pattern) to combat a worm. 

5.5. Combining Proactive Patching and 
Infrastructure Defense 

While the combination of proactive patching with the 
defense systems had significantly better results than any 
single system alone, the relative performance of US, IUS, 
and Active remained about the same.  Due to space 
constraints, we will only show the infections over time 
graph of the median cases, and present a complete 
summary in section 6.  Note that even the best combined 
defense still left around 250 users infected in the median 
case. 
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Figure 6.  Median infection over time plots for the 
combination of Proactive Patching and the three 
defense systems at 25% deployment. 

6. Comparison and Analysis 

Tables 1, 2, and 3 summarize results for three of our 
metrics.  The two most important results are for the 
percentage of simulations for which the defense contained 
the infection to less than 1% of the population and the 
total number of users infected.  With a random 25% 
deployment, the best solution across all our metrics is the 
combination of proactive patching plus an active network 
defense system. 

 
Table 1  

Percentage of simulations in which the defense 
strategy contained the threat to 1%, 25%, and 50% of 

the total users. 

Containment 1% 25% 50% 
No Protection 0.02% 0.05% 0.17% 
US25 2.56% 4.99% 21.07% 
IUS25 19.67% 24.35% 39.07% 
Active25 26.68% 31.92% 49.35% 
Patching 0.93% 9.36% 20.19% 
P + US25 3.54% 16.18% 26.80% 
P + IUS25 20.56% 32.21% 56.45% 
P + Active25 28.28% 41.47% 96.10% 

 



Table 2  

Summaries of the total number of users infected 
during each type of simulation. 

 Max 3rd Qu. Median 1st Qu. Min 
No Protect. 6541 6538 6506 6282 2 
US25 6487 6335 5912 3644 1 
IUS25 6295 5380 4292 1736 1 
Active25 6034 4430 3353 1 1 
Patching 4390 4241 4188 3722 1 
P + US25 4263 4106 4016 3094 1 
P + IUS25 4099 3528 3202 574 1 
P + Active25 3841 2852 2230 1 1 

 

Table 3  

Summaries of the number of infected users who 
remained infected at the end of the simulation. 

 Max 3rd Qu. Median 1st Qu. Min 
US25 4384 2622 2303 1980 0 
IUS25 3881 2032 1643 1113 0 
Active25 4008 1992 1567 0 0 
Patching 1098 989 968 946 0 
P + US25 708 385 337 288 0 
P + IUS25 589 306 246 165 0 
P + Active25 599 298 233 0 0 

 

7.  Future Work 

It remains to be seen whether results from the 
Dartmouth traces are applicable to other large wireless 
networks, such as those at other universities or those from 
commercial providers such as T-Mobile.  More traces 
must be gathered and analyzed to develop credible 
mobility models.  Alternately, mobility models developed 
from traces that are not directly available could be used to 
drive the simulation, instead of actual traces.  In addition, 
as the number of wireless access points increases and 
devices that use network resources become more 
ubiquitous, early models of user behavior may become 
irrelevant.  Therefore, work on determining how changing 
models of user mobility and behavior affect worm 
propagation should continue.   

The results shown here obviously suggest that a higher 
degree of defense employment than the 25% tested here is 
needed to really stop spread of this kind of worm.  We 
must perform further experiments to determine the degree 
of deployment required to stop worms reliably for various 
forms of defense.  

One approach to getting more value from the defense 
systems is to strategically place them on subnets based on 
heuristics such as the maximum number of simultaneous 
users, number of unique users seen, and number of visits.  
Initial results suggest that a good heuristic can improve 
defense by over 50% for the same percentage of 
deployment. 

For a given wireless network trace, more work can be 
done to identify what aspects of user mobility are the 
greatest contributors to the contact rate parameter of the 
SI epidemic model, thus yielding a contact rate formula 
for the network.  Another approach might be to look at the 
“infection potential” of users based on aspects of their 
mobility or their system configurations, and explore the 
ways that an attacker could most efficiently achieve a 
large infection base in the shortest amount of time 
through releasing the worm at targeted locations or hosts. 
A larger experiment could be conducted to take random 
users at random times as the initiators of the infection, 
allowing multiple infectors.  This might provide a 
stronger guarantee of the effectiveness of the defense 
systems. 

As mentioned earlier, studies of worms that combine 
different modes of infection depending on circumstances 
are needed.  A simple example is a worm that spreads at 
high speed to random addresses when it has infected a site 
with a high speed wired link, but spreads more slowly 
when connected only to a wireless network.  Another 
example is making use of two entirely different types of 
wireless connection, such as Bluetooth and 802.11, to 
spread.  Other varying patterns are also possible and 
worthy of study. 

Finally, the simulations run here generated a vast 
amount of data, only some of which was presented in this 
paper.  Closer examination of this data might well reveal 
other interesting phenomena, such as the relationship of 
worm infection rates to real world events.   

8.  Related Work 

After the seminal paper on worm models [3], others 
have looked at worm modeling.  [7] describes their 
general-purpose simulator for worm propagation. It is 
unclear whether their model would capably support a 
wireless environment simulation.  [8] uses measurements 
to show that active worms seem to propagate slightly 
slower than standard models indicates, but have a very 
similar, if more limited, overall behavior.  [9] discusses 
the spread of the Slammer worm. They do not provide a 
model, but show that more damaging worms can similarly 
propagate quickly throughout the Internet.  [10] uses a 
somewhat different quarantine model to study protection 
against standard worms in a wired environment. 

In addition to Kotz et al, others have analyzed different 
networks for user mobility and performance, and have 
made their own trace data available from the Dartmouth 
trace archive.  Tang and Baker have examined several 
levels of networks, from a single wireless LAN [11] to a 
seven-week trace of a large metropolitan Ricochet-based 
network called Metricom with nearly 25,000 users. [12].  
Balazinska and Castro analyzed SNMP records from a 
corporate LAN in [13], and Balachandran, Voelker, Bahl, 
and Rangan looked at traces recorded at the ACM 



SIGCOMM'01 conference [14]. These studies could be 
used to examine the worm discussed here in other 
environments. 

Inspired by recent worm incidents, a number of parties 
have examined systems that quarantine and sometimes try 
to disinfect mobile computers brought into a network 
behind the normal firewall.  The best known is Cisco's 
Network Admission Control [15].   InfoExpress, 
ZoneLabs,  Sygate, Symantec, Network Associates, and 
other companies and research groups offer products with 
functionality of this kind, as well, differing in ways not 
relevant to this paper [16]. 

9.  Conclusion 

The increasing penetration of wireless networks and 
mobile computing are likely to make these technologies 
attractive to those who write worms.  As shown by 
previous worms, mobility offers a back door for entry into 
otherwise protected networks, and wireless networks 
exacerbate the problem.  To understand how to combat 
this propagation vector, we must first understand the 
characteristics of worms that use it.  This paper is a first 
step towards such an understanding. 

Our results, based on simulations using real trace data 
gathered at Dartmouth College from wireless networks 
supporting mobile computers, suggest that a worm using 
this attack vector would have a characteristic infection 
curve similar in shape to that of other worms, but would 
spread much more slowly However, given sufficient time, 
even a single infected user is highly likely to infect 
virtually the entire susceptible population. 

The combination of users proactively patching their 
machines plus an active network defense system that 
prevents infection, disinfects the infected, and patches the 
unpatched can significantly reduce the reach of the worm 
we modeled.  But with defense deployment limited to 
25% of susceptible systems, worms can still frequently 
achieve high infection rates. 

All of these results are based, of course, on a single set 
of mobility data.  More study is required to generalize 
these results to the wider community, but the initial 
results are promising.  Dartmouth's situation matches 
many other institutions that are installing widespread 
wireless networking, and their users are likely to behave 
in similar ways.  Generally, more study is needed on the 
likely infection rates and patterns of worms using 
different infection strategies, and on the effects of 
deploying varying kinds of defenses to stop them. 
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