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Abstract—Rapid and widespread dissemination of security
updates throughout the Internet will be invaluable for many
purposes, including sending early-warning signals, updating
certificate revocation lists, distributing new virus signatures,
etc.  Notifying a large number of machines securely, quickly and
reliably is challenging.  Such a system must outpace the
propagation of threats, handle complexities in a large-scale
environment, deal with interruption attacks on dissemination,
and also secure itself.

Revere addresses these problems by building a large-scale,
self-organizing and resilient overlay network on top of the
Internet.  We discuss how to secure the dissemination procedure
and the overlay network, considering possible attacks and
countermeasures.  We present experimental measurements of a
prototype implementation of Revere gathered using a large-
scale-oriented approach.  These measurements suggest that
Revere can deliver security updates at the required scale, speed
and resiliency for a reasonable cost.

Index Terms—network security, overlay network,
overloading-based measurement, resiliency, security update

I. INTRODUCTION

here is often an urgent need for sending early warning
signals, distributing firewall or intrusion detection

system updates, invoking extensive certificate revocation,
disseminating new virus signatures, and delivering many other
security updates.  Is it feasible to deliver security updates to
most of the connected nodes of an Internet-scale computer
network very rapidly, resiliently, and securely?  Can it be
done without huge, powerful server systems?  How rapidly
can it be done?  Within seconds, for example?

A. Challenges
Any system that attempts to deliver rapid security updates

at high scale must overcome several difficult challenges.   
1) Speed.  Security updates must be delivered faster than

attacks.  Recent studies show that attacks can spread in
minutes or even tens of seconds [1].  Early this year the
slammer worm spread worldwide in about 5 minutes [2].  If a
node cannot receive the most recent security updates, it
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becomes highly susceptible to potential threats.  
2) Scalability.  With potentially millions of participants, it

is daunting for a single machine, or even dozens of machines,
to store up-to-date global knowledge concerning all
participants.  Any centralized management is difficult, if not
impossible. Further, high scale ensures that significant
numbers of nodes will be disconnected at the moment a
security update is being disseminated, so any solution must
handle node disconnection as a norm, rather than an exception.

3) High dissemination assurance.  Nodes assisting in
dissemination may be compromised, resulting in dropped,
misdirected or damaged security updates.  Encryption,
authentication, and digital signatures do not help ensure
message delivery at all.  Authenticated acknowledgements
help, but do not scale well, and typically retransmitted
messages are still subject to interruption.

4) Security.  Last but not least, the system itself must be
secure.  A system handling millions of machines is a
tempting target.  If the system is corrupted, not only will the
machines in the system be broken, but even larger numbers of
machines.  Furthermore, a sound security solution must
support large-scale heterogeneous nodes, where each could
enforce a very different set of security schemes.

B. Possible Approaches
One approach is to require a user to pull information from a

dissemination center either manually or according to a specific
schedule.  However, this pulling-based approach results in a
dilemma: not pulling frequently will leave a user’s machine
not instantaneously updated, whereas attacks may come at any
moment [1, 2]; pulling frequently will incur high bandwidth
cost, both at each participant and throughout the network, and
it can create a flash crowd at the center, probably slowing
down the center or even making it inaccessible.

Viewed in the most general context, security update
delivery fits within the broad scope of information
distribution.  The simplest approach is to unicast, but it is not
scalable to unicast security updates to millions of nodes from
a dissemination center, one by one.  Another approach is to
broadcast, but broadcast is primarily meant for a subnet or a
small collection of subnets.  Still another approach is to use
IP multicast, but IP multicast still faces many problems for
deployment at a large scale, and cannot distribute to all
recipients unless they are all connected simultaneously.
Reliable multicast (probably at the application layer for easy
deployment) is better, but it mainly handles packet loss
caused by transmission errors, not loss caused by attacks such
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as interruption threats; on a reliable multicast tree, all the
descendents of a compromised node are cut off.

At a higher layer, protocols such as smtp, nntp, ftp and
http all provide certain distribution capabilities, but it is
difficult to tailor these capabilities to meet the challenges of
providing a successful security update dissemination service.
For example, none of these provide a resilient network to
address man-in-the-middle delivery threats, none consider both
connected nodes and disconnected nodes for best large-scale
delivery coverage, and none fully address security.  Event
notification services, which usually adopt a centralized
approach, focus on different issues and often view the
mapping between event subscribers and event publishers as a
key issue [3, 4].  Much research has also been done on content
delivery networks (CDN), using distributed caching or overlay
techniques.  Whereas security updates are usually of small size
and low frequency, CDN usually handles large blocks of data.

When considering special-purpose applications, virus
signature distribution is probably most similar to security
update delivery service.   The pulling-based approach has been
widely used in this context; recognizing its drawbacks
mentioned earlier, some groups set up central servers to
automatically broadcast new virus signatures to every
individual user, but difficulty in managing user records at the
central servers grew quickly as more users participated in a
dynamic way.  Peer-to-peer technology has been used to
address some of these problems, where information can be
forwarded along a chain of recipients [5]; however, the design
technology to handle disconnected nodes, strengthen security
(including combating interruption threats), and maintain the
chains has not been reported.  

C. Revere Overview
To address these challenges, Revere builds a large-scale,

self-organizing and resilient overlay network on top of the
Internet at the application level.  This overlay approach
provides flexibility, while requiring no changes to existing
network infrastructure (Revere is currently implemented as a
Java application on participating nodes).  Individual nodes can
join and leave a Revere overlay network; once joined, nodes
on an overlay will receive security updates and every non-leaf
node will also forward updates—nodes can also query and pull
updates if needed.

While various overlay networks have been proposed in the
past [6, 7, 8, 9, 10, 11], the special requirements and
challenges of disseminating security updates requires that
Revere builds its own overlay.  Although Revere allows a
node to join or leave a Revere overlay network at its own
discretion, as do many other overlay networks, Revere’s
overlay network is built and maintained differently.  

To combat attempts to interrupt dissemination, Revere uses
a redundant overlay network for a more resilient delivery.
Since Revere is designed to handle a low volume of relatively
small but highly important messages, the redundancy makes
great sense.  A Revere overlay also handles an Internet-scale
number of participants, and equally important, is self-
organized.  Furthermore, Revere enforces stringent security for
both the dissemination process through a Revere overlay

network and the overlay itself.  An interesting tradeoff
employed by Revere is to support a relatively heavy overlay
management (construction, management, security, etc.) in
order to support a simple, lightweight dissemination process.

D. Paper Outline
Section II discusses the Revere overlay network,

emphasizing its self-organization, resiliency and scalability.
The dissemination procedure is discussed in Section III.  We
identify security issues and discuss our approaches in Section
IV.  Section V reports on measurement results.  Section VI
summarizes related work.  Section VII is on future work and
we conclude the paper in Section VIII.

II. RBONE: A SELF-ORGANIZED RESILIENT OVERLAY
NETWORK

A Revere overlay network, also called an RBone, organizes
itself.  Using a straightforward user interface, Revere allows
individual nodes to join or leave an RBone with no further
human intervention.  Through a simple but effective three-
way-handshake protocol, a node can attach itself as a child of
other existing Revere nodes to become part of an RBone.  In
particular, parent selection allows a node to select multiple
parents to achieve superior resiliency as well as efficiency.
Revere can also detect problematic nodes and handle broken
links, causing nodes to reattach themselves as required.  

An RBone can contain millions of nodes, so scalability
requires that all RBone management operations be simple and
rely only on a small amount of partial knowledge at each
node.  In Revere, each node only keeps information about its
parents, its children, and the dissemination center.

For convenience, we assume that a different RBone rooted
at a specific dissemination center will be built for every
different type of security update.  Sharing a common RBone
for different types of security updates and/or different centers
is possible, but it leads to complexities not addressed in this
paper.

In this section we assume all Revere nodes are benign (not
corrupted).  RBone security will be discussed in Section IV.

A. Three-Way-Handshake Protocol
To join an RBone, a new node needs to locate existing

Revere nodes first.  Various methods can be employed, such
as using configured knowledge (for example, the address of
the dissemination center or a local designated Revere node),
contacting a directory service, applying a multicast-based
expanding-ring or expanding-wheel search [12], etc.  In fact,
the discovery of Revere nodes falls into a more generalized
problem of scalable resource discovery in a large-scale
network, and any approach to resource discovery can be
adopted by an individual Revere node to locate other Revere
nodes at its own discretion.  A node discovery mechanism is
not hardwired into Revere and is not a core component of
Revere per se (note that a non-scalable resource discovery
mechanism, if adopted, could affect Revere’s scalability).   

The new node then can negotiate with those existing nodes
to attach itself to some of them as a new child.  The
negotiation between a potential child and a potential parent is
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a reciprocal selection procedure.  An existing node needs to
determine whether it wants to add the new node as a child.
The new node, on the other hand, needs to determine whether
it wants the existing node to be its parent.  

The negotiation applies a three-way-handshake protocol
(Fig. 1).  A potential child sends an attach request to a
potential parent.  The potential parent decides whether to
adopt the applicant as a new child, and sends back an
acknowledgement.  The child adoption decision is machine-
specific: some machines may only check to see if they have
reached the maximum number of children that can be
accommodated; some machines may require more information.
Revere supports pluggable machine-specific child-adoption
modules.  For example, because a mobile node is often
disconnected, it may choose to be only a leaf node, and not
accept attaching requests.  Or a multicast-capable node may
prefer nodes that can hear multicast messages, allowing it to
reach all children with a single multicast message.  If the
potential parent accepts the new child, it adds the applicant as
a pending child and replies with a positive acknowledgement
to indicate approval (otherwise, it will send back a negative
acknowledgement).  

Upon receipt of a positive acknowledgement, the new node
decides whether to accept this potential parent (the decision
procedure will be discussed in Section B).  If yes, it will send
back a confirmation.  The parent, upon the receipt of the
confirmation, will convert this pending child to a regular
child.

A timer-based error recovery is also designed.  After
initiating a request, a potential child will set up a timer to
await an acknowledgement from its potential parent.  If the
request or the acknowledgement is lost, or the potential parent
refuses to respond, this timer will expire and the potential
child will retransmit another request, this time possibly
toward a different potential parent.  Similarly, after sending a
positive acknowledgement toward a pending child, a potential
parent will also bind a timer with that child when waiting for
possible confirmation.  In case the acknowledgement or the
confirmation is lost, or the potential child does not confirm,
this timer will also go off and the pending child will be

discarded.  Note that after sending the confirmation, the child
will enter the RBone maintenance procedure (to be described
in Section C) since the child has formally added a new parent.  
More analysis on three-way-handshake robustness is presented
in [13].

A new node typically needs multiple parents.  Therefore,
the new node needs to continuously search for candidate
parents until it has attached itself to some predefined
minimum number of parents.

During the join procedure, the transmission mechanism that
the new parent uses to forward security updates can also be
negotiated.  The (positive) acknowledgement can contain an
ordered list of transmission mechanisms preferred by the
potential parent, and the confirmation message can carry the
transmission mechanism selected by the child.

B. Parent Selection
In this section we discuss how to select parents to achieve

the best possible efficiency and resiliency.  Every Revere
node, at its own discretion, can select more than one parent,
typically with one of the parents providing the fastest security
update delivery and the rest delivering copies along paths as
disjoint as possible.  A node will only miss security updates
if all its paths are broken. (Because Revere works at the
application level, the RBone built by Revere achieves
resiliency at the same level.  Achieving hardware-level disjoint
paths is a topic of future research.)

1) Path Vector: We introduce path vector to describe a
potential path for delivering security updates from a
dissemination center to a node.  While many properties may
be defined, a path vector has two important parameters: a
latency value, and an ordered list of nodes to cross.  Note that
a path vector includes both the center and the destination
node.

We further introduce two different types of path vectors:
parent path vector (PPV).  A PPV is associated with a

particular parent of a node. A node n’s PPV for parent p,
denoted as ppv(n, p), corresponds to the fastest path along
which p must be the previous hop before reaching n.  

node path vector (NPV). A node n’s NPV, denoted as
npv(n), is the fastest PPV among all node n’s parents.

Clearly, ppv(n, p) is the concatenation of npv(p) and the
link connecting p to n, as shown in Fig. 2.  

2) Parent Resiliency Comparison: When selecting parents, a
node will choose the fastest parent first, and then choose other
parents primarily based on their contributions to the node’s
resiliency.  For the former, the node can simply select a parent
that maps to the fastest PPV.  For the latter, however, to
compare the resiliency contribution that every parent provides
is somewhat tricky.  We adopt the following approach:

Step 1: Using the fastest parent as the reference, a node
compares every other parent’s PPV with the fastest parent’s
PPV (which is also the node’s NPV) in terms of the number
of overlapping intermediate nodes between the two paths.
Here, a higher overlapping degree is assumed to lead to a
weaker resiliency.

Step 2: For parents that end up with the same resiliency
level in step 1, further comparison is needed.  Now, the node

Potential child Potential parent

Locate 
existing 
nodes

Process 
attach 
request

Select
parents

Attach
new
child

New child New parent

AttachReq

AttachConfirm

AttachAck

Fig. 1.  Three-way-handshake protocol.



JSAC Paper #3654 4

uses the most resilient parent obtained in step 1 as a new
reference (if there are more than one eligible to be the
reference, choose the fastest), and compares the PPV of each of
those parents in question with the PPV of this new reference
parent, using the same procedure as in step 1.  

Step 3: Repeat step 2 until all parents are ordered according
to their resiliency contributions.

Strictly speaking, a higher overlapping degree does not
always leads to a weaker resiliency.  Other factors may also
affect the resiliency of a path, such as the number of hops, the
stability or connection quality of each node on the path, the
probability that a node is compromised, etc. But a "perfect"
solution would require a path vector to carry much more
information in order to consider every factor that might affect
the resiliency, some of which is hardly possible to obtain.  
On balance, we believe the heuristics we adopt in the above
steps are reasonable in terms of their effect, and inexpensive to
compute.  Others can be substituted without altering the
substance of the design or its results.

3) Parent Selection Procedure: A child c selects a parent as
follows:

A potential parent x includes its NPV npv(x) in the positive
acknowledgement that it sends to node c.  

c evaluates the latency from x to itself.  To do this, c can
contact an existing service (such as [14]).  Or, with the
attaching request and the positive acknowledgement
timestamped, c can estimate the round-trip time between x and
itself, and use half of that value as the approximate latency
from x to c (which will be further refined during RBone
maintenance).  

Combining npv(x) and the latency from x to c, node c
derives ppv(c, x).  

Given ppv(c, x), node c determines whether adding x as a
parent improves its efficiency or resiliency, as depicted in Fig.
3.

C. Adaptive RBone Management
The changes to an RBone must be detected and quickly

dealt with.  Changes happen when a new node joins, when an
existing node crashes or leaves, when a parent or a child wants
to untie the connection, when the characteristics of a parent-
child connection change, when a parent is detected as
corrupted, when a better path is detected, or for any similar
reason.   

Managing an RBone is a distributed task.  While an RBone
can be comprised of a large number of nodes, a change may
only be detected by a few.  Moreover, because of the large
scale of an RBone, every node only has partial knowledge of
the whole RBone, mostly about its neighbors.  Each node has
to respond to changes autonomously, thus usually
asynchronously, based on its limited knowledge.

Revere supports two different mechanisms for detecting
changes: explicit notification and implicit detection.  With
explicit notification, a node can send a teardown message to a
parent (or a child), and remove that parent (or that child) from
its records.  With implicit detection, a node relies on heartbeat
messages to detect if its parents and children are still alive.
Each parent periodically sends heartbeats to its children, and
each child periodically sends heartbeats to its parents.  Lack of
heartbeats from a parent (or a child) will eventually lead to the
removal of that parent (or that child).  

Parent removal causes a node to adjust its data structures,
particularly its path vectors.  The PPV corresponding to a
removed parent will be discarded; if this PPV is the node’s
NPV, a new NPV must be determined.

The explicit teardown messages are not guaranteed reliable.
If a teardown message is lost, the heartbeat mechanism can
help.  For example, if a teardown notification from a parent P
to a child C is lost, although C will regard P as its parent for
some period, lack of heartbeats from P will cause C to remove
P.

Heartbeat messages carry other useful information as well.
They carry timestamps to estimate the round-trip time between
a node and a parent.  Once the NPV of a parent is changed, its
heartbeat toward the node will also carry the new NPV.  In

Fig. 2.  Path vector at node n. Node n has two parents: p1 and p2.  According
to the definition in Section II.B.1), ppv(n, p1) includes all nodes on npv(p1)
and n itself.  Furthermore, because ppv(n, p1) represents the fastest delivery
path for n (in this particular example ppv(n, p1) is assumed faster than ppv(n,
p2)), npv(n) is ppv(n, p1).

p2

n

npv(p1)

ppv(n, p1),
npv(n)

center

p1

Function boolean selectParent (ppv(c, x)) on node c:
whether to select node x as a new parent.
npv(c): current node path vector of node c.

1 if (npv(c) does not exist)  {/* c has no parent yet */
2 npv(c) ¨ ppv(c, x)
3 return true
4 } else if (ppv(c, x) is faster than npv(c)) {

/* x improves efficiency */
5 npv(c) ¨ ppv(c, x)
6 return true
7 } else if  (c has not obtained the required number of parents ) {
8 return true
9 } else if  ($ a parent m of node c, such that x, if
                       accepted as a parent, would have better
                       resiliency contribution than m according
                       to procedure in Section II.B.2)) {

/* x improves resiliency if replacing m*/
10 return true  /* m will be removed */
11 } else {

/* x improves neither efficiency nor resiliency
*/
12 return false
13 }

Fig. 3.  Parent selection based on path vector
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both cases, the node will update the parent’s PPV, and the
node’s NPV if this is the fastest parent.  If the node’s NPV
becomes slower than one of its other PPVs, this node replaces
its current NPV with its currently fastest PPV.  Clearly, this
NPV adjustment may further propagate.

III. DISSEMINATION PROCEDURE

Revere implements a dual mechanism to disseminate
security updates.  Pushing is the main method used to
broadcast security updates from a dissemination center across
an RBone to all nodes currently attached.  Pulling, as a
supplementary method, allows an individual node to pull
missed security updates from one or more selected
repositories.

Revere delegates the reliability provision to every
individual node instead of enforcing a strict global reliability.
It is up to individual nodes themselves to determine how
many delivery paths to obtain and maintain, to select proper
transmission mechanisms, to verify updates, and to retrieve
missed ones.

A. Pushing Security Updates
To begin pushing a security update, a dissemination center

adds a timestamp and a sequence number, signs the message
with a digital signature, and forwards it toward all its
children.  Every node processes the update and forwards it to
its own children.  While of critical importance, security
updates are usually small and infrequent, and Revere can
afford to deliver a copy of an update from every parent to
every child (assuming no failures).

A simple store-and-forward mechanism at each node uses
two types of jobs (input jobs and output jobs) and one main
data structure (a security update window) to handle updates.
An input job is responsible for receiving incoming updates
from parents, processing them, and buffering them into the
security update window.  An output job fetches updates from
the window and delivers them to local applications or its
children.  The transmission mechanism between a parent and a
child can be negotiated during the three-way-handshake to
tailor to local conditions or configurations.  Fig. 4 shows
those dissemination jobs and the security update window
when UDP is used for transmission.

One part of processing a security update is duplicate
checking.  Because of the redundancy built into an RBone,
nodes typically receive duplicate copies of security updates.
Duplicate copies are identified by the sequence numbers
carried in security updates and will be dropped.  In addition to
preventing local reuse and retransmission to children, this
mechanism avoids dissemination loops.  Another important
part of the processing is authenticating the update (covered in
Section IV).

B. Pulling Security Updates
During a pushing session, some nodes may not be

connected or may be temporarily turned off.  When they regain
connectivity, they will want to receive the missed security
updates; however, parents generally bear no responsibility for
keeping all missed updates, and the retransmission from the

center does not scale because every reconnected node can have
a different set of missed updates.  Reliable transmission
mechanisms (such as TCP) can help, but only for a short
disconnection.  A more general solution is to have
disconnected nodes inquire about security updates that
occurred during disconnections.  In Revere, repository servers
are used to store old security updates and respond to inquiries.  

1) Repository Selection: Revere employs a dynamic
repository selection, maintenance and notification mechanism.
First, every node on an RBone can nominate itself as a
repository to be selected or rejected.  Second, an existing
repository may fail (or decide to degrade itself into a normal
Revere node), which will be detected.  Third, whenever there
is a change to the set of repositories, Revere nodes will be
notified of the change.

In detail, when a node nominates itself as a repository
candidate, it will add itself to the repository candidate list and
piggyback that in the heartbeat messages toward every parent.
In turn, when a parent receives repository candidate lists from
its children, it will aggregate those lists to generate a new
candidate list, and piggyback the new list on its own heartbeat
message toward its own parent.  This repeats until the
dissemination center receives a final list of all repository
candidates.

If there are millions of nodes, each nominating itself to be a
repository, then the piggybacked lists will be huge, especially
when they get closer and closer to the dissemination center.
To address this scalability issue, every Revere node can filter
the piggybacked list if the list is longer than a threshold
value.  For example, for the longest IP address prefix that
contains multiple self-nominees, only select one of them
randomly; this can repeat recursively until the list length is
below threshold (this procedure can help uniformly distribute

Fig. 4.  UDP-based pushing operation.  Here, node R has two parents: P1 and
P2, and three children: C1, C2 and C3.

output
job

input
job

UDP
ports

C1 C2 C3

P1

security update window
R

P2
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repositories within the IP address space).
The center checks the repository candidate list and selects

some candidates to be the repositories (we omit the selection
details in this paper).  The center then propagates the new
results through heartbeat messages toward its children.  Every
child will record the list of new repositories and forward the
list toward its own children (again through heartbeat
messages).

Revere handles repository failures.  In addition to the
repository candidate list, a heartbeat from a child can also
carry the identities of current repository servers.  Similarly, a
parent can aggregate such information from all of its children,
and piggyback the aggregated result on its own heartbeat
message toward its own parent.  Since no heartbeat will be
reported from a failed repository, the center will receive a final
list of repositories still alive.  Changes, if any, will be
notified similarly as above.

This approach is made scalable by piggybacking repository-
related information in heartbeats and ensuring that every node,
including the center, only listens to its parents or children.
The drawback is that low-frequency heartbeats may result in a
relatively slow maintenance speed, but given that a node only
needs to pick a few repositories to query, the node can tolerate
relatively inaccurate knowledge of the whereabouts of all
current repositories.

2) Contacting Repository Servers: Since every node keeps a
local list of available repositories, it then can inquire about
missed security updates from one of those repositories.

Repositories bring other benefits as well.  If a node has
received updates n, but not update n-1 yet, it can always query
a repository.  If a node has not received any security updates
from its parents in a suspiciously long time, it can also check
with repositories, offering protection against the possibility
that all of a node’s parents were corrupted.

An issue here is the security of a pulling operation, since a
repository might very well be subverted itself.  We defer this
discussion to the next section.

IV. SECURITY

Given that some Revere nodes can be compromised, Revere
must secure itself.  After introducing possible threats to
Revere, in this section we address Revere’s security from two
aspects: (1) security of a dissemination procedure by
adopting a public key cryptography-based approach, as well as
handling key corruption at a dissemination center, and (2)
security of an RBone by enforcing trust management and
discretionary authentication, where for the latter we focus on
authentication scheme negotiation and pluggable security
boxes.

A. Threats
In this paper we consider the following threats:
Security update interception threat at Revere nodes.  This

includes dropping, misdirecting, delaying, damaging, forging
or replaying security updates.  For example, a replayed
security update, if not recognized, can cause a node to incur
extra CPU processing overhead; worse, a replayed security

update may be further propagated to thousands of other nodes,
sometimes circling around indefinitely. Depending on what
action is taken on receipt of a security update (which is,
strictly speaking, outside of Revere’s scope), delivering a
sufficiently stale replayed update could have arbitrarily bad
consequences, such as undoing a more recent security update
to a piece of software.  Designing systems to handle security
updates delivered by Revere will be much easier if they can be
built with a high assurance that the update Revere gives them
has not been replayed.

Corruption of a repository.  A compromised repository can
provide tampered or incomplete updates.

Key theft at a dissemination center.  If the key that a center
uses to sign security updates is stolen, an attacker can
impersonate the center.

RBone attack.  A malicious node may provide false RBone
information, replay previous control messages, or impersonate
another node.  One typical attack is to form a malfunctioning
RBone, such as a Sybil attack, where a few malicious nodes
tries to become parents of a great deal of benign nodes.

B. Dissemination Security
1) Security Update Protection: Revere protects security

updates by ensuring their integrity and authenticity,
strengthening their availability, and preventing replays.  (Note
that in light of Revere’s free subscription model, secrecy
protection is not needed.)  

Revere adopts a public key cryptography-based approach.
A dissemination center has a public key and a private key, and
signs security updates with its private key.  Every node uses
the public key of the dissemination center to verify that those
security updates have not been modified and are indeed
distributed by the center. (The public key of the center is
assumed to be wellknown.)  This approach prevents those
attacks that forge or damage security updates.  

Revere strengthens security update availability by ensuring
that an RBone is in a sound structure (whose protection is
addressed in Section C) and every node can choose to have
multiple resilient delivery paths (as described in Section II).
Attacks such as dropping, misdirecting, or seriously delaying
security updates have to compromise all delivery paths in
order to succeed.

The duplicate check at every node clearly prevents attacks
that replay security updates (Section III.A).

2) Subverted Repository: Although the security update
authentication mechanism in Section IV.B.1) ensures that a
subverted repository cannot forge false updates (since an
update still carries the signature of the center), the repository
could still easily fail to deliver some of the updates it had
received.  

Revere again employs redundancy to achieve high certitude
that all missed security updates have been retrieved: a node
can contact more than one repository.  As an optimization,
instead of literally pulling security update copies from each
contacted repository, a node can just pull security updates
from only one of them—a “master” repository, and contact
other “slave” repositories to check whether the master
repository provided a complete set of missed updates,
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typically done by comparing the range of sequence numbers of
recently disseminated updates.  For example, after retrieving
missed updates with sequence numbers 10 to 15 from the first
repository, if the second repository reports that it has updates
up to 17, the node can then try to pull security updates 16 and
17 from the second repository (and discover whether the first
repository was incomplete or the second one was cheating) .

3) Key Corruption Management: The private key of a
dissemination center must be carefully protected.  If, despite
such care, the private key of the center is compromised,
disastrous attacks can be launched since attackers can now
impersonate the center.  Four issues must be addressed:
impersonation detection (how can Revere detect that an
attacker is impersonating a center and sending forged
updates?), key invalidation (how can the current broken public
key be revoked?), key switch (how can nodes switch to the
next public key of the center?), and redelivery (should old
security updates be redelivered?).

a) Impersonation detection: Whereas out-of-band knowledge
can be used for this difficult problem, we are also
investigating a reverse traversal mechanism.  If a node is still
suspicious after verifying an update, the node can report this
update to all its parents.  Every parent will verify the reported
update and further forward to its own parent (only one copy of
an update will be reported).  This repeats until the reported
update reaches the center, which then can diagnose the
authenticity of the update.

b) Key invalidation: The dissemination center itself cannot
distribute a new public key to replace the old one, since an
attacker could then easily impersonate the center.  Instead, the
center sends out a key invalidation message to declare that its
current public key should be invalidated.  The invalidation
message is signed using the broken private key, and
disseminated in the same way as a normal security update.  

Here, the key invalidation message is really simple—it
does not contain any extra information.  The reason is that any
extra information cannot be trusted by a node at all, since the
attacker who has the private key can easily fabricate or change
those fields.  The key invalidation message is designed to
only pass a single fact to Revere nodes—a public key must be
invalidated, but nothing more than that.

If an attacker who has compromised the private key creates
its own invalidation message, it would destroy any benefit the
attacker received from cracking the key.  The attacker may try
to suppress the invalidation message, but an RBone is already
a resilient network with a built-in redundancy.

A repository keeps all key invalidation messages.  Upon
receipt of a pulling request for missed updates from a
reconnected node, the repository will determine whether a key
invalidation message should also be returned, as well as
missed updates.

c) Key switch: After key invalidation, a new pair of center
public and private keys must now be made current.  In our
existing implementation, every node pre-installs a series of
center public keys, and can now switch to the next version
public key in the series.  This switching mechanism is also
useful if every public/private key pair has a lifetime.

d) Redelivery: During the period between key compromise
and key invalidation, the security updates received at a node or
repository, even though verified as authentic, can be either
forgeries or valid updates.  The forgeries should be purged,
and the valid updates should be replaced with new versions
that are signed by the new private key.  To deal with this, the
center will conservatively estimate the key corruption time and
resend those updates that were sent during estimated key
corruption time and key invalidation, signed using the new
private key.

C. RBone Security
The goal of securing an RBone is to ensure a sound RBone

structure so that security updates can be delivered to a large
percentage of nodes, if not all.  Attackers, as described in
Section A, can try to compromise an RBone through false or
replayed RBone control messages, probably impersonating
another node.  To address this problem, we believe the
following requirements must be met: (1) a node can choose to
only rely on those it trusts; (2) a node can authenticate
whether another node is a trusted node as claimed; and (3) a
node can verify messages incurred during RBone operations.
(Note that even if a node can authenticate the identity of
another node, it does not mean that the former trusts the
latter.)  In this section we discuss trust management in
Section IV.C.1), and node authentication and RBone message
authentication in Section IV.C.2).  

1) Trust Management: The following trust relationships
need to be considered:

a) Whether a node trusts another node to be its parent
b) Whether a node trusts another node to be its child
c) Whether a node trusts another node to be its ancestor
d) Whether a node trusts an entity involved in key

management (such as a certificate authority)
Revere adopts a decentralized node-to-node trust

management to handle these trust relationships.  This allows
each individual node to set up its own rules for trust
judgment, avoiding the performance bottleneck and a single
point of failure in centralized control.  

This approach can also support richer trust functionalities
than can a centralized trust management.  A node’s trust of
another node can vary from complete trust, selective trust, and
no trust.  (In the selective trust relationship, a node is only
trusted by another at certain level and/or when performing
certain operations.)  Second, a node can determine its trust of
another node based on certain rules.  With a direct-trust rule, a
node only trusts another if it is specifically configured to do
so.  With an indirect trust rule, a node can either deduce its
trust of another node based on its trust of third parties (for
example, a chain-of-trust rule dictates that if A trusts B and B
trusts C, then A will trust C), or contact a trust authority
regarding whether or not a particular node should be trusted.
The trust authority is analogous to certificate authority and can
also be organized in a hierarchy, but the former certifies the
trustworthiness of nodes and helps trust management, and the
latter certifies the authenticity of nodes and helps node
identity authentication.

A Revere node must only select a trusted node to be its



JSAC Paper #3654 8

parent or its child.  Furthermore, nodes on the parent’s node
path vector also must be trusted.  If this node applies direct
trust or decides its trust by querying a trust authority, it
checks every node on the path vector.  If a node applies the
chain-of-trust rule, it checks the parent node only (since the
parent trusts its own parent, and this repeats recursively).

Good trust management makes attacks harder.  By only
allowing trusted nodes to be parents (or ancestors), it will be
hard for a few malicious nodes to become parents of numerous
benign nodes (as in Sybil attacks).  By only allowing trusted
nodes to be children, it is also hard for an attacker to launch
an attack through infinite joins, in which malicious nodes try
to occupy all the children slots of every existing node, thus
leaving new nodes no choice except attaching to those
malicious nodes.

Trust management toward key management entities is also
necessary since they participate in the node authentication
process (see Section IV.C.2)).  Similar trust management can
be applied.  Using certificate authorities as an example, a node
can only accept certificates from a trusted certificate authority.

2) Discretionary Authentication: While a node n can
determine whether it trusts another node x, node n still must
be able to (1) authenticate x’s identity and  (2) verify messages
claimed to be from x.  Both node authentication and message
authentication are key to RBone security.  However, due to
the large scale of an RBone, we do not assume that there is a
ubiquitous authentication scheme for all nodes.  Every node
may implement a different set of authentication schemes,
perhaps with different orders of preference.  In this section, we
describe how Revere achieves discretionary authentication at
each individual node with two key techniques: node-to-node
authentication scheme negotiation and pluggable security
boxes.

a)Node-to-node authentication scheme negotiation: A
node must select a supported authentication scheme for
exchanging messages with another node.  If necessary,
different schemes can be used for sending to and receiving
from a given node.  Choosing the appropriate schemes
requires a secure negotiation.  If the negotiation succeeds,
proper authentication schemes can be imposed on messages
exchanged between the nodes.

Authentication scheme negotiation is triggered when a node
wants to send another node a message, but finds that no
authentication scheme has been chosen to protect this
message.  Fig. 5 illustrates a negotiation procedure between
nodes A and B, initiated by node A.  The following is a
stepwise explanation of the negotiation:

Step 1: Node A first sends a negotiation_start message to B
in plaintext, indicating an ordered list of A’s preferred
authentication schemes for messages from B.  Note that this
can only be plaintext since A does not know what scheme B
requires.

Step 2: Node B selects a scheme from A’s list that B
supports.  Node B creates an authenticator for itself using this
scheme and sends it to A.  Using the signing algorithm of the
selected scheme, B also sends to A a signature of A’s

negotiation_start, and a signed negotiation_response
message.  The negotiation_response message contains the
scheme that B selected and an ordered list of B’s preferred
authentication schemes for messages from A.

Step 3: Node A authenticates B, verifies the signature of its
initial negotiation_start message to ensure it has not been
tampered with, and verifies the negotiation_response message.
If all are verified, A chooses a scheme from B’s list to protect
its messages toward B.  Node A sends an authenticator toward
B, using the scheme that was just selected.  To assure B that
its response was not tampered with, A sends back a signature
of the message.  Node A also sends a signed negotiation_done
message to B, indicating the scheme that A selected and
ending the negotiation.

If any of these steps fail, the negotiation will fail, and no
authentication scheme will be selected for communication
between the two nodes.  For example, if B cannot select a
scheme successfully, B will not respond to A’s negotiation
request, and A will finally time out and give up.  If all steps
succeed, the negotiation succeeds, and messages can begin to
be forwarded from A to B (such as message m in Fig. 5), or
vice versa, protected by using the selected authentication
schemes.  

During authentication scheme negotiation, a compromised
node may try to trick a benign node into using a weaker
scheme to verify the messages from the compromised node.
This cannot succeed because the compromised node, whether
the initiator or not, must use one of the schemes already
specified by the benign node to authenticate itself and sign its
response.  

b) Pluggable security boxes: Revere implements an
extensible architecture to support various authentication
schemes.  As in [15], each authentication scheme can be added
by plugging in a corresponding security box.

A security box can be viewed as a security monitor that is
responsible for node authentication and protection of RBone
activities such as the join procedure, repository selection or
RBone maintenance.  A security box allows a node to
authenticate other nodes or authenticate itself to another node,
and ensures that only authentic messages will be used.  

  All control messages must pass through the security box.

Node A Node B

The first 
message 
m to B

negotiation_start

B’s authenticator

negotiation_response (signed)signature of A’s negotiation_start

A’s authenticator

negotiation_done (signed)

signature of B’s negotiation_response

m (signed)

received 
m from A

Fig. 5.  Authentication scheme negotiation.
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Incoming messages are accepted or rejected based on trust and
authenticity.  Outgoing ones are inspected and stamped with
authentication information.  Every control message, including
heartbeats and those used in three-way-handshakes, is signed
by its sender’s security box and verified by its receiver’s
security box.  (Security updates do not pass through the
security boxes, since they are authenticated by a uniform
method for all nodes.)

Many security box implementations are possible, each
providing a different level of node authentication, message
verification, replay prevention, and possibly secrecy.  The
level of protection provided depends entirely on the particular
security box implementation.  

c) A security box example: One example security box is
based on a hierarchical infrastructure of public key certificate
authorities (CA), where recursively the CA at one level (the
parent) produces certificates for the next level down (the
child).  The public key for the CA at the root of the hierarchy
is universally known.  

Here, the verification of a node’s public key is
straightforward.  Further, other nodes can authenticate the
messages from this node using its public key if the messages
are signed using this node’s private key.  

Message replay can be prevented as well.  The signed
portion of a message can include a random number chosen by
the recipient, a standard solution to such problems.

V. MEASUREMENT

The goal of Revere is to provide a service for disseminating
security updates.  Dissemination speed describes the basic
behavior of Revere, but we must also determine dissemination
quality in the face of broken nodes to understand Revere’s
resiliency.  In addition, understanding RBone formation and
maintenance is important.  As discussed in Section II, an
RBone is gradually formed by a series of join procedures,
which are also employed when a node needs to adjust its
position during RBone maintenance.  As a result, performance
data on the join procedure is also key to the assessment of
Revere.

A. Metrics
The following metrics are important to evaluating Revere:
Join latency.  The time that a new node spends becoming a

participant in Revere (finding all parents).
Join bandwidth.  The bandwidth spent to join Revere.
Dissemination latency.  The latency for a security update to

reach an individual Revere node.  Also relevant is the time
needed to reach a certain percentage of all Revere nodes.

RBone resiliency.  The percentage of Revere nodes that still
receive security updates, given that every node has a particular
probability of failure.

Dissemination bandwidth. The bandwidth spent to
disseminate security updates.

Maintenance bandwidth.  The bandwidth spent to maintain
an RBone.

The last two metrics are easy to evaluate.  In a single round

of dissemination, the inbound dissemination bandwidth per
Revere node is the size of the security update multiplied by
the number of parents (under normal conditions).  The RBone
maintenance bandwidth per Revere node is mainly the size of
heartbeat messages during each period.  Both are of acceptable
size.

B. Overloading Methodology
Revere is designed for large scale.  Given that it is

prohibitive to run empirical measurements with more than a
few hundred machines, we adopted an overloading technique
to measure Revere, by which a physical machine can be
overloaded with multiple logical nodes, each still running the
real Revere code.  Using multiple machines can help achieve
even larger scale measurement.  

However, this approach raises two key questions: (1)
Topology constructionæsince logical Revere nodes are
overloaded on physical machines, they will have a different
topology than they would in the real world;  (2) Resource
contentionælogical nodes on the same physical node must
share both processor and memory, thus affecting (lengthening)
the processing time of individual nodes performing particular
tasks.

1) Topology construction: A virtual topology can be
employed to solve the topology problem.  Each node can be
viewed as attached to a particular location in a virtual
topology, communicating through this virtual topology with
another node in the same virtual topology.  Fig. 6 is an
example of 20 logical nodes (assigned to three physical
machines) communicating across multiple routers in a virtual
topology.

Using a virtual topology, a distributed Revere system can
be created.  After generating a virtual topology, each logical
node in this topology is treated as an individual Revere node.
For each logical node, a Revere instance is run on top of a
physical machine, where multiple instances of Revere software
may be invoked on the same machine.

Many results obtained in a virtual topology will not differ
from those obtained by running on top of a real topology with
the same structure.  For example, whether the underlying
topology is real or virtual, the storage cost or bandwidth cost

Fig. 6.  A virtual topology with Revere nodes.
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incurred at an individual Revere node will typically be the
same.  

The characteristics of the communication paths between any
two Revere nodes can be determined based on the specification
of a virtual topology.  For instance, if the length of every link
in a virtual topology is known, the shortest path between any
two nodes on the virtual topology can be calculated using the
Dijkstra algorithm [16], instead of being measured.

2) Resource Contention: Three approaches can be taken to
handling resource contention. The first approach is to remove
the resource contention.  If only a single node is allowed to
proceed with full use of resources at a given time, the time
spent by this node on a task should incur approximately the
same amount of time as it would in the real world.  A Revere
node may have to wait for access to the resources to perform a
particular task.  The second approach uses a divide-and-
conquer method, dividing the task to be measured into several
disjoint subtasks that are easier to measure.  Here, (1) subtasks
must be independent, (2) subtasks must not overlap in terms
of processing latency, and (3) the sum of all subtasks must be
the total processing latency.  The third approach is to calculate
a slow-down factor and apply that to the measured processing
latency.  This approach is not used in measuring Revere.

C. Measurement Procedure
Our measurements used a testbed that consisted of ten

machines, overloaded with up to 3000 Revere nodes.  Every
machine was equipped with an AMD Thunderbird 1.333 GHz
CPU, 1.5GB SDRAM, and a 100 Mbps Ethernet interface.

Every virtual topology was created as follows.  We used
GT-ITM [17] to generate a router-level topology, then
assigned certain numbers of Revere nodes (hosts) to each stub-
domain router on that topology. Finally, a topology server
assigned the same number of Revere nodes to every testbed
machine.

The following configurations are used: (1) every Revere
node must have 2 parents and no more than 10 children, (2)
UDP is used for security update forwarding from parent to
child, (3) both security updates and RBone messages are
protected using RSA-based public key cryptography with a
three-level certificate authority hierarchy.  Note that such a
configuration is purely for providing insights on Revere
performance, and may not be applicable in all real situations.

We artificially divided the lifetime of Revere into three
phases: the join phase, the dissemination phase, and the
resiliency test phase.  In real use, these three phases would
overlap, but measuring them separately captures most costs
appropriately.  During the join phase, nodes sequentially join
Revere and gradually form an RBone. The system then
advances into the dissemination phase, during which the
center disseminates security updates through the RBone to
individual nodes for ten rounds.  Finally, in the resiliency test
phase, dissemination is tested in the face of broken nodes.

During the join phase, when every physical machine is
overloaded with several Revere nodes, join bandwidth should
be unaffected, but join latency will be artificially increased.
Using the first approach from Section V.B.2), we applied a
token-controlled mechanism to ensure that at any time during

the joining phase only one node will be in the join procedure,
thus evaluating a particular scenario where all nodes join
sequentially.  Other nodes may be temporarily activated when
requested to interact with the joining node.  The results
should be approximately the same as the real cost of a single-
node joining.

During the dissemination phase, each node behaves in a
store-and-forward manner.  However, because many Revere
nodes are running on a physical machine, simply measuring
the interval between sending an update and receiving it cannot
reflect the true dissemination latency.  Given the artificially
heavy load on the physical machine, both the processing delay
and the kernel-space-crossing delay1 will be lengthened.

We solved this problem using the divide-and-conquer
method.  The latency of disseminating an update is divided
into three parts: the processing delay at each hop, the
transmission delay of crossing the virtual topology, and the
kernel-space-crossing delay.  Each part is evaluated separately.
The processing delay per hop can be measured in a separate
experiment without overloading a physical node.  The kernel-
space-crossing delay per hop can be measured in the same
way.  The communication latency can be calculated using the
Dijkstra algorithm over the virtual topology graph.  Note that
with a given RBone structure, the hops that an update travels
to reach a node are invariant, no matter how many nodes are
simultaneously running on the same physical node.  By
multiplying the processing delay per hop and kernel-space-
crossing delay per hop and adding the communication latency,
we can obtain a good approximation of the dissemination
latency in large-scale scenarios.

During the resiliency test phase, each node on the overlay
was assigned a uniform probability of failure to test how
many nodes are still reachable during dissemination.  The
divide-and-conquer method was again used to evaluate the
latency of disseminating updates toward the remaining nodes.

D. Results and Analysis
1) Join Latency and Bandwidth: Fig. 7 shows the outbound

join bandwidth incurred by a node for various sizes of
RBones.  This bandwidth cost includes the messages that a
node sends when joining an RBone and the messages sent in
response to the join requests of others.  Fig. 8 shows the
latency experienced by a node joining RBones of various
sizes.  Each node completes the join procedure after
successfully attaching itself to two acceptable Revere nodes.  

The costs of both join bandwidth and join latency are
acceptable, and basically follow logarithmic trends as the
numbers of nodes grow.  This is due to the worst-case method
we adopted for searching new parents in our experiments—a
top-down recursive search after a new node fails to find a local
potential parent.  The new node will run the three-way-
handshake with the dissemination center first; if the center has
no space, the new node will then negotiate with one of the
children of the center; if that child is also full, it then repeats

1 The time from invocation of sending a message from Revere at application
level to the departure of the message from the node, and the time from the
receipt of the same message at a recipient node to the delivery of the
message to Revere at application level.  



JSAC Paper #3654 11

the negotiation procedure recursively.
2) Dissemination Speed: Fig. 9 shows the average and

maximum hop count for disseminating security updates; Fig.
10 shows the average and maximum latency to reach a node in
the various sizes of RBones; and Fig. 11 shows the latency
needed to reach a certain percentage of nodes in an RBone.  

Those results are based on the dissemination latency of
every individual node in an RBone.  Since no failure or
security attacks occurred during the dissemination phase, every
node used the fastest delivery path to receive the first authentic
copy, and this path is the one that was measured.  The fastest
paths for all nodes in an RBone form a tree, rooted at the
dissemination center.  This explains why all trendlines in Fig.
9, 10 and 11 closely follow logarithmic trends when the total
number of RBone nodes varies.

If one assumes that the trendlines in Fig. 9, 10 and 11
continue at larger scale, in a 100-million-node RBone, it will
take approximately 12 hops on average to reach a node (with a
maximum of 30 hops), 1.10 seconds on average to reach a
node, 1.34 seconds to reach 67% of nodes, 1.88 seconds to
reach 90%, 2.25 seconds to reach 99%, and 3.83 seconds to
reach all.  In the real world, because Revere nodes are
heterogeneous and every node may be configured differently,
extending those trendlines smoothly would be unrealistic.
Nevertheless, these results suggest a Revere-like approach has
the potential to be fast and scale well.

Fig. 11 also shows that after most nodes have been reached,
it still takes a relatively long time to reach all RBone nodes.
This is better illustrated in Fig. 12 which depicts the
dissemination coverage over time of a 3000-node RBone.
Here, the “tail” of the graph corresponds to a relatively long
delay for reaching all nodes after a high-percentage coverage.

In practice, that pattern would be true in any case because a
small percentage of nodes would be far away, turned off, or
physically inaccessible.

3) Dissemination Resiliency: During the resiliency test
phase, an RBone’s resiliency was tested by assigning each
node a uniform probability of being broken.  Whether or not a
particular node is broken is discovered at run time when an
update is delivered.  Upon the receipt of an update, a node
queries a common random boolean server to see whether it is
emulating a broken node: the server responds yes if a newly
generated random number r (0<r<1) is less than the given
broken probability. If, and only if, a node is not broken will it
forward the update.  Some nodes thus may not be reachable.

Therefore, we have three types of nodes: (reached) broken
nodes, reached working nodes, and unreached nodes. (The
ratio of broken nodes over the total number of reached nodes
should be approximately the same as the assigned broken
probability.)

We measured a 3000-node RBone.  Based on multiple
rounds of dissemination for a given broken probability,
measurement shows that the RBone is resilient to small node
broken probabilities (with node broken probability lower than
2%, 100% of the rest of the nodes can still be reached).  Fig.
13 shows resiliency test results for four higher failure
probabilities.  A comparison of the percentage of reached
working nodes and the percentage of unreached nodes in Fig.
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13 showcases a very resilient RBone.  
Recall that in the measurement, every node has two parents.

We could test a different number of parents, such as one or
three.  However, in the single-parent case, an RBone will be
exactly a tree, whose resiliency can simply be analyzed. The
three-parent case will certainly be more resilient than the two-
parent case; but would be more relevant to a study of how
many parents are optimal, which is not a topic this paper
addresses.  Here, we simply show the value of multiple
parents.  

4) Evaluation of Larger Scale:  How would Revere perform
at a scale larger than 3000 nodes?  We address this question in
three viewpoints.  First, Revere is specifically designed for an
Internet-scale environment.  Revere’s design should scale to a
much larger network than the one we actually measured.
Second, measuring the performance of any systems in an
Internet-scale environment with millions of nodes is
unfortunately still a very daunting task for everyone.  We
could try a larger-scale network, but unless we can try the
largest scale, which is unlikely, we will always face the
question: “What about an even larger scale?”  We have to stop
at some point, and 3000 was the level we could achieve.

Third, we considered using simulation to evaluate Revere for
an arbitrary scale, but there are a number of difficulties or
disadvantages: (1) simulation would employ different software
from the real code, raising questions about accuracy of the
rendition; (2) simulation might not expose hidden costs and
subtle timing effects; (3) simulation is expensive to develop;
and (4) simulation is only worthwhile if it is validated against
a real system, and validating a Revere simulation (especially
at high scale) would be difficult.  We ourselves are not
completely satisfied with the degree to which Revere scaling
has been demonstrated, but we believe we have provided
sufficient evidence to make a good case for Revere’s
scalability.

VI. RELATED WORK

Revere’s RBone overlay network is comparable to various
self-organizing overlay networks that are also composed of
Internet end hosts, including those used for application-layer
multicast.  Yoid, for example, tries to build a general
architecture for information distribution, including a tree
topology for content distribution and a mesh topology for
control information distribution [8].  Revere instead relies on
a single topology for both purposes, enables multi-path
delivery, and enforces security with a different presumption of
open membership.  ALMI builds a small-scale minimum
spanning tree among end hosts, and relies on a central
controller for tree management [10].  End System Multicast
also targets small-scale tree-structured overlay networks, but it
first builds a mesh of nodes and then constructs a shortest-
path tree out of the mesh [7].  Scattercast adopts a similar
approach to End System Multicast, while it emphasizes
infrastructural support and proxy-based multicast [6].  Bayeux
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Fig. 11.  The latency to reach 99%, 90%, and 2/3 of nodes in an RBone,
compared with the maximum and average latency to reach a node
(confidence level: 95%).

Fig. 12.  Security update dissemination coverage for a 3000-node
dissemination (confidence level of coverage: 99%).

Fig. 13.  RBone resiliency test with different node broken probability on a
3000-node RBone, where each figure shows the percentage of three
different kinds of nodes.

reached working nodes

broken nodes

unreached nodes

reached nodes =  + 

total nodes =  +  +  = 3000

p =  / reached nodes

p=0.16

15.2
%

78.8
%

5.9%

p=0.32

23.9
%

47.9
%

28.2
%

p=0.64

20.4
%

68.9
%

10.7
%

p=0.08

8.5%

90.7
%

0.8%



JSAC Paper #3654 13

[11] uses Tapestry [18], an application-level routing protocol,
to organize receivers into a distribution tree.  Overcast focuses
on optimizing network bandwidth when building its overlay
distribution tree [9].  A fundamental difference between
RBone and these overlay networks is that RBone is not a
tree-like structure.  Instead, every Revere node can choose to
have multiple as-disjoint-as-possible paths to receive security
updates.  Also, in addition to the pushing mechanism, Revere
allows each node to pull missed security updates from
repositories.

In terms of building resiliency into an overlay network,
Revere shares some commonalities with RON [19].  Instead of
targeting another distribution service, RON inserts a new layer
of resilient overlay network between the routing substrate
below and network applications above, thus providing faster
routing failure recovery and application-specific routing.  One
useful discovery from RON is that a failed router or physical
link can be avoided if a message is routed through a different
node on the RON overlay.

Multi-path routing is similar to Revere’s multi-path
message delivery [20, 21, 22].  However, these systems are
primarily meant for load balancing or congestion avoidance
and do not fully consider the disjointedness between different
paths.  It is also hard for these systems to address security
issues (such as key distribution, replay prevention, etc.) at
router level.  They also face deployment problems.

Peer-to-peer computing is developing rapidly and gaining
prominence as an important service [23, 24].  In some
respects, the relationship between Revere nodes is also peer-to-
peer, and results from peer-to-peer research can be leveraged to
improve the Revere overlay network.

VII. FUTURE WORK

Certainly more work is required to refine Revere’s technical
approach and demonstrate its feasibility.  A delivery system of
such scale and speed raises a number of interesting questions:

Adaptive redundancy.  How should a node adjust its
redundancy degree for receiving security updates?  Would two
delivery paths be enough, for example?

Delivery path quality at physical level.  This question
warrants study if we cannot assume that routers are fully
trustworthy.  In particular, there is no guarantee that if two
delivery paths are disjoint at the application level, they will
also be disjoint at the physical level.  If not, how much
overlap will there be, how can that effect be recognized and
perhaps minimized?

Repository server selection.  Among many repositories,
which ones should a node choose to query for missing
security updates?  

Security update integrity protection other than using
digital signature.  While digital signature based on public key
cryptography has been widely used and is also employed in
Revere, could other integrity protection techniques under
study benefit Revere better?  

Secure dissemination process monitoring.  How should
Revere securely monitor the dissemination process in real
time?  How should every individual node provide feedback?

Performance understanding at larger scale.  It is difficult
but desirable to understand a system at very large scale.  How
can one deduce or extrapolate performance of this system from
smaller-scale results, taking into account pragmatic
deployment issues?

Revere in wireless environment.  With some or all nodes
wireless, how does the appropriate solution change?  For
instance, when nodes become mobile, delivery paths will
become volatile.  Meanwhile, are there any elements of the
wireless environment that are helpful?  For instance, will node
location information as reported from GPS be helpful (and
critical) in determining multiple physically disjoint delivery
paths?

What will be done with the updates once delivered?  In
some cases, the answer is simple and obvious, such as
installing new virus signatures into a virus detection database.
In other cases, there are greater challenges.  For example,
system administrators today often lack confidence in
automated patch installation. [25] reports that with at least
four vaguely defined patch installation mechanisms,
Microsoft’s Windows Update caused the automated scanning
service to mismanage patches.  In one extreme case, a patch
for a customer actually removed a previous hot fix, causing
that machine to be vulnerable to the Nimda virus.

Can an RBone be theoretically analyzed?  Singh [26]
proposes a way to evaluate the global reliability of a
communication network.  Unfortunately, his method requires
knowledge of the global topology of the network. Is there a
distributed version of the algorithm where every node only has
partial knowledge of the whole system?

VIII. CONCLUSIONS

Using secure, resilient and self-organizing overlay
networks, this research offers a sound solution to rapid
security update delivery at Internet scale.  Without relying on
huge, powerful server farms, nodes in such a network not only
can quickly receive pushed updates once they become
available, but also can query and pull updates at any time.

Different from other overlay designs, a Revere overlay
network allows a node to select multiple least-overlapping
delivery paths, and achieve best resiliency using a path vector
concept.  Also, instead of enforcing a closed membership, a
Revere overlay supports open subscription.  Facing challenges
brought by such differences, Revere employs a self-organizing
capability to cope with complexities in a dynamic large-scale
environment.

Revere protects both the delivery procedure and the delivery
structure.  For the former, digital signature in security
updates, redundancy in both push and pull, and the key
invalidation mechanism allow a node to receive authentic
updates once they are available.  For the latter, discretionary
authentication mechanisms (node-to-node authentication
scheme negotiation and pluggable security box) and trust
management together ensure the whole delivery structure is
robust.

As a service that delivers information at application level,
Revere demonstrates that an application-level Revere-like
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service is feasible and can be made effective without changing
underlying hardware, operating systems, or network
infrastructures.  Further, Revere shows an interesting
phenomenon in its incremental deployment: not only can
Revere be easily deployed (every node can simply run Revere
software to become a Revere node), but Revere also offers
more attractive benefits to potential participants as more nodes
exist in the system and form a larger information pool.
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