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Abstract

Open architedure networks provide applications with fine-grained control over network elements. With thiscontrol
comesthe risk of misuse and new challengesto seaurity beyond those present in conventional networks. One particular
seaurity requirement isthe ability of applicationsto proted the secrecy and integrity of transmitted data while till

allowing trusted active dementswithin the network to operate on that data.

This paper describes mechanismsfor identifying trusted nodes within a network and seaurely deploying adaptation
instructionsto those nodes while preventing unauthorized accessand maodification of application data. Promising
experimental results of our implementation within the Conductor adaptation framework will also be presented, suggesting

that such features can beincorporated into real networks.

Keywords: open architedure, distributed adaptation, seaurity

1. Introduction

As computer networks beame more heterogeneous, applications must increasingly ded with subogimal network
condtions. Applications can use open network architeduresto provide servicetail ored to network conditions,
adapting the protocols used and perhaps atering the adual data sent. Services sich as Protocol Boaosters[8] and

Panda [23] all ow adaptation to occur at nodes within the network. Unfortunately, this added flexibility and control

" This work was partially supported by DARPA under contract number DABT63-94-C-0080. Authors can be mntaded at {lijun, yarvis,
reiher} @cs.ucla.edu.



could be used by attadkers to damage or destroy communications, unlessthe open architecture is designed to prevent

such misuse.

One seaurity issueis proteding the open architedure dements from the user. However, proteding the seaecy and
integrity of auser's data from network elements that might be untrustworthy isjust asimportant. The existing
solution to this problem is to encrypt the data end-to-end, but many useful adaptations, like removal of color from a
video stream, require accasto urencrypted data. Link-level encryption can proted the data stream while it isonthe
wire, but this approach all ows any system onthe end d the link urlimited accessto the data, withou any control by
the user. A goodsolution should give the user the power to seled which of those dementswill be dlowed to view

or modify datain plaintext form.

Consider a home with many Internet-cagpabl e devices connected to awirelessLAN. A router conredsthat LAN to
the Internet by way of aDSL link. A user onthe wirelessLAN wishesto oltain his bank balance over the web.
Clealy this data shoud be encrypted, particularly for transmisson ower the Internet and the wirelessLAN. At the
same time, other users on the LAN are downloading software, also using web protocols. If short jobs were given
priority, the interadive traffic would na be swamped by the bulk transmissons. Unfortunately, determining the
expeded length of the data stream requires accessto the stream (sinceit's encoded in the Content-Length header
field). Other possble adaptations, like reducing the resolution o images, would also require data acces While an
adive node provided bythe ISPmay be trusted to perform such adaptations, many of the other nodes on the path

between the dient and server need na be trusted.

One way to proted data from unauthorized modification within the network is through the use of a series of
signatures [27]. By digitally signing a transmitted padket and re-signing subsequent versions of that packet, it is
posgble for the recaving application to determine the source of the data and any modifications to the data. While
this approach deteds unauthorized modificaionsto data packets, providing signatures onindividual padketsis
expensive and daes not provide seaecy. The common alternative of end-to-end encryption, mentioned ealier,
provides the desired seaecy and dataintegrity. However, by ensuring accessto orly the endpdnts of the
conredion, most useful adaptations are disallowed. Link-level encryption proteds both integrity and seaecy acoss

al network links, while dlowing adaptation to occur on any noce dong the data path. However, every nodein the



path isimplicitly trusted. A node that is not trustworthy could easily siphonthe data stream or alter it in an

unauthorized manner. In addition, link-level encryption requires deayption and re-encryption at every node.

Virtual link encryption provides a ampromise between end-to-end and link-level encryption. A trusted subset of
network nodesis chosen, and encrypted data is transmitted between those nodes. The trusted nodes can arbitrarily
adapt the unencrypted data. Deayption and re-encryption occur only where adaptation is desired, thereby reducing

overhead.

Providing seaure alaptation with the support of virtual li nk encryption requires that threeactiviti es be performed
seaurely: seledion d trusted nodes, seledion and deployment of appropriate alaptive dgorithms, and key

distribution.

The endpoints of aconnedion can be implicitly trusted, sincethey already have full control over the data stream.
Either userstrust no aher nodesin the network (in which case they shoud encrypt end-to-end), or they have some
way to tell which nodes are trustworthy. In the latter case, authenticationis required to prevent an untrustworthy
node from masgquerading as atrustworthy one. Sincethereis no uliquitous infrastructure for authenticetion and
because diff erent appli cations may require diff erent strengths of authentication, no single authentication mechanism
will suffice Instead, a pluggable authenticaion architedure is nealed, all owing the user to determine an
appropriate authentication mechanism for each stream. Some streams may require no authentication. Others may
make use of an existing Kerberos or public key infrastructure. Becaise multiple authentication mechanisms are
suppated, the system must ensure that ead node uses an acceptable mechanism to authenticate other nodes. The
resulting chicken-and-egg problem of what mechanism to use to establish ore or more aceptable authentication

medhanisms must also be solved.

The dedsion of which adaptive dgorithmsto deploy and where to deploy them is based on information such as link
charaderistics, user preferences, and avail able node resources. Attadkers could force unnecessary or even
undesirable alaptations by falsifying information abou conditions, or they could illi citly alter agood plan whil e it
was being dstributed to the trusted noces. The processof gathering thisinformation, analyzing it, and distributing
the result must be proteded. Thus, sourceinformation and resulti ng instructions must be authenticaed, ensuring

origination at atrusted node, and analysis must occur on atrusted noce.



Finaly, before any user data can flow, sesson keys must be seaurely distributed to those trusted nodes on which
adaptation will be performed. These sesson keys provide ashared seaet, allowing datato be encrypted for
transmisdon between ead pair of adjacent trusted nodes, the two endpoints of avirtual link. Untrusted nodes will

seeonly encrypted data.

This paper will describe an implementation of virtual link encryptionto proted the Conductor distributed adaptation
service. Theimplementation includes an extensible authentication servicewith several sample aithentication
modues, a seaured mechanism for seleding adaptations, and afadlity for seaure key distribution. We provide
measurements of the overheads involved in connedion setup, demonstrating the usability of this approach. Finaly,
we describe severa extensions to the basic mechanism that all ow broader applicability at the cst of somewhat

higher overhead.

2. Conductor—A Distributed Adaptation Service

We built the Conductor adaptation serviceto demonstrate the value of distributed deployment of adaptive agents
into anetwork. The portion of the Condwctor design relevant to seaurity is described below. Additional detail and

performanceresults can be foundin [28].

Conductor enables distributed adaptation by providing an adaptation framework at various nodes throughout the
network. Conductor consists of esentially two parts: adaptors that operate on adata stream and aruntime
environment that supports adaptors. Adaptors have the ability to view and modify the data stream in transit.
Adaptors are frequently paired, allowing the data strean to be converted to an easily transmitted format and then
badck to the original format. For instance, a pair of adaptors might compressand then decompressa data stream for
transmisson aaossa low-bandwidth link, or encrypt and then deaypt a data stream for transmisson acossinseaure

links or nodes. Adaptations can be cmbined as needed to satisfy multi ple user requirements.

The Conductor runtime environment is meant to be deployed on various nodes throughout the network to provide
points of adaptation. A given data stream is intercepted by Conductor and routed through the Conductor-enabled
nodes between the client and server. The framework is responsible for monitoring retwork and nodk conditi ons,
routing the data stream, determining which adaptorsto deploy for a particular data stream, inserting the seleded

adaptors into adata strean, and providing any resources required by an adaptor.



Each node that a data flow passes throughmay adapt the data based purely on locd conditions, but such an ad hoc
adaptation may not be gpropriate. For instance, a pair of compresson and decompresson adaptors may be
deployed around alow-bandwidth link, but if there is anather low-bandwidth link upstream, end-to-end compresson
isbetter. Such compresson, however, might impede other content-based adaptations. Adaptation danningis

necessary to ensure aset of proper and compatible alaptations are goplied at appropriate locaions [24].

Conductor provides a planning infrastructure to determine which adaptorsto deploy and where to deploy them (a
planning processwith four Conductor-enabled nodes is own in Figure 1). When anew data mnredion is creaed,
Conductor discovers a set of Condictor-enabled nodes along the path between the dient and the server. These
nodes are the potential adaptation pants for this connedion. Each of these nodes forwardsits identity and gdanning-
related information, such aslocd disk and CPU resources and network conditi ons, along the path toward one
Conductor-enabled endpoint node. This endpdnt, having receved the planning information from every node, can
now exeaute aplanning algorithm and generate aplan. The plan, which describes a set of adaptorsto deploy on
ead nock, isthen forwarded to eat node dong the path. Oncethe plan is delivered to all nodes, adaptors can be

deployed, and data can begin to flow.

Of the Condctor-enabled nodes invalved in a given connedion, the endpants have particular importance The
Conductor service on the client-side Condctor-enabled nade is cdl ed the initiator, sincethe mnredion isinitiated
from this $de. The final dedsion concerning which adaptations to employ at ead node is made on the opposite

server-side Conductor-enabled endpoint, which is known as the planner.

3. Design of Conductor Security

For a given connedion, both the dient and the server areinitially assumed to be running on top of a Conductor-
enabled node; thus the client is coll ocaed with the initiator, and the server is coll ocaed with the planner. Inthe
discussons that foll ow, client and initiator are interchangeéble, and so are server and planner. We will relax this

asumptionin Section 8

Conductor provides an extensible achitedure for seauring both the planning processand the user’ sdata. For a
given connedion, ead Conductor-enabled node relies on a security box to authenticate itself to athersor viceversa,

proted planning messages, distribute keys for data strean secrecy, prevent replay attacks, etc. A variety of seaurity



schemes are posshble. Each security box implements a particular seaurity scheme. Conductor provides a

mechanism to ensure that the right seaurity box is instantiated.

3.1 Security via a Security Box

3.1.1 Security box functionalities

A seaurity box can be viewed as a seaurity monitor that is responsible for node authentication, protedion of the
planning process and sesson key distribution. A seaurity box all ows a node to authenticate other nodes or
authenticae itself to another node. A seaurity box proteds planning by ensuring that only authentic planning
information from authorized nodes can influence plan formulation, and oy an authentic plan can be deployed.
Finally, a seaurity box can aid in data protedion by enabling sesson key distribution. We will further discussthese

functionaliti es in the foll owing sedions.

A seaurity box can also be viewed as amessage filter (Figure 2). All planning-related messages sent and receved
must passthrough the seaurity box. Incoming messages are acceted or rejeded based ontrust and authenticity.

Outgoing messages are inspected, enhanced with additional authentication information, and perhaps encrypted.

Many seaurity box implementations are posshble, ead providing a different level of node authenticaion, message
verificdion, replay prevention, and posshly seaecy. Thelevel of protedion provided depends entirely on the

particular seaurity box implementation.

This architedure dlows a user to choose aspedfic seaurity scheme based on the desired level of protedion.
Flexibility is necessary because there is no ubiquitous authentication mecdhanism, nor is one level of trust appropriate

for all stuations.

We have constructed several seaurity boxes based on public key cryptography. They will be discussed in detail in

Sedion 4 Other cryptographic medanisms can also be used to implement diff erent seaurity boxes.

3.1.2 Node authentication

Authentication is fundamental to Conductor seaurity. Only trusted nodes can participate in planning and accessthe

plaintext data stream.



To authenticae one Conductor-enabled node to another, a seaurity box can include authentication information on
behalf of the sender. When authenticetion information is received, the seaurity bax on the recéving node an

invoke its authenticating functionality to determine whether anodeistrusted.

While many seaurity box implementations are passble, ead seaurity box may enforce a diff erent authentication
mechanism. Each authentication mechanism may have adifferent spedfication for what cryptographic dgorithm to
use and how it shoud be employed. Each node sends its own authentication information toward the planner. Nodes
A, B, and Cin Figure 3 will sendtheir authenticaioninformationto planner D in the same way that planning
information was eent. The planner can then authenticate the node. The planner sends its own authentication
information in the reverse direction in the same manner as plan distribution, allowing every node to authenticate the

planner.

3.1.3 Planning process protection

Each connedion’s planning processmust be proteded, including node seledion at the planner node and plan
deployment at other Conductor-enabled nodes. Each node provides authenticating information for planning
information, typicdly adigital signature (Figure 3). The planner node seleds thase nodesit trusts, authenticates
their incoming planning information, formulates a plan, and distributes the plan aong the reverse path. The planner
noce dso provides authenticating information for the plan. During dan distribution, ead nock verifiesthe
authenticity of the incoming plan before it isinstantiated. Planning messages can also be encrypted via the seaurity

boxto provide seaecy.

Conduwctor supparts atrust management mechanism. At the planner node, if anodeistrusted to participate in the
planning processacording to the trust management mechanism, and its planning informationis corredly
authenticated, its planning information can be trusted and wsed in formingaplan. Similarly, if an intermediate node
trusts the planner node acording to the trust management mechanism, and can authenticate the plan, the plan can be

acceted. Thistrust management system will be discussed in Sedion 34.

In the &ove discusson the planner node has full control of which nodes can be seleded. The initiator can later
rejed aplan, but not otherwise influencenode seledion. This could be improved by assgning more control power

to theinitiator. For instance after the planner node seleds one or more nodes, it can negotiate with the initi ator to



read afinal agreament onwhich nodesto finaly seled. However, the improvement would be adieved at the price

of more coordination cost.

3.1.4 Data stream protection

If the data stream of a conredion realsto be encrypted to proted the @mmunication seaegy or integrity between
the gplicaion client and the server (perhaps only when crossing a dangerous area), or to proted the data from
unauthorized adaptation, the planner can seled encryption and matching deayption adaptorsto deploy at trusted
nodes. The planner may have several encryption/deayption pairs to choase from based on the desired encryption

strength. Each of these pairs of adaptors proteds the data stream aaossone virtual link.

Sesdon keysfor data encryption and deayption can be generated onthe planner node, which isimplicitly trusted.
Typicaly only onekey isrequired per type of encryptior/decryption adaptor deployed for ead sesson. The planner

neals to distribute the keys to those nodes where the keys are nealed.

Node aithentication is the fundamental basis for key distribution. Only trusted nodes should receéve sesson keys,
so the sesson key must be encrypted in aform that only the target can decrypt. Also, the receiver must be aleto
determine that the keys originated from atrusted distribution source, so the planner must provide authentication

information for a sesson key in the same way it would for aplan (adigital signature).

The planner may trust some CondLctor-enabled nodes to adapt plaintext data whil e others nodes may only be given
accessto encrypted text. In thefirst case, the planner will distribute asesson key to the node dongwith an

adaptation gan. In the second case, the planner may till distribute an adaptation dan bu no sesson key.

3.2 Dynamic Selection of Security Schemes

Conductor all ows multi ple pluggable seaurity schemes. Since there is no ubiquitous saurity scheme, and ead
conredion may require adifferent level of protedion, Conductor all ows many seaurity box implementations. This
flexibility makesit essy to add a new seaurity scheme with a new seaurity box implementation. For one mnnedion
between an applicaion client and a server, al i nvolved Conductor-enabled nodes use one particular seaurity scheme.
For another connedion, adifferent seaurity scheme may be enployed. Each Conductor-enabled node may get

involved in more than ore connedion, and for ead conredionit can employ a diff erent scheme.



Conductor ensures that al Conductor-enabled nodes involved in a mnnedion wse the same seaurity scheme. At the
beginning of aplanning process the user seleds an appropriate seaurity scheme (or one is €leded on his behalf) at
theinitiator. A security scheme selector message is then forwarded toward the oppacsite end pant, the planner node.
This message tell s which seaurity scheme shoud be employed for this data connedion. Each seledor message can
also include parameters edfic to a particular seaurity scheme, such as the names of the desired public key
encryption algorithm, message digest algorithm, signature algorithm, and so forth. After recaving the seledor
message, ead intermediate Conductor-enabled node will | oad the gopropriate seaurity box and forward the message
to the next Conductor-enabled node on the path toward the planner. Asaresult, eacy Conductor-enabled node on

the path, including the planner, will enforcethe correspondng seaurity scheme for this connedion.

Furthermore, Condtctor provides a mecdhanism to ensure that every node of a mnnedion hasindeed used the same
seaurity scheme throughout the planning process Protedion d scheme seledionis done viathe seaurity box itself.
When a seaurity scheme seledor message is forwarded toward the planner, it is unproteded. However, the planner
nodk, asthe last node to receéve the seledor message, sends bad an indication d the seaurity schemethat it has
used. Thistime the informationis proteded (typicdly signed) by the seaurity box (Figure 3). Each Conductor-
enabled node, including the initi ator, can seaurely determine whether the planner has used the expeded seaurity
scheme. If the planner has used a diff erent scheme (perhaps through subversion of the scheme seledor during
transmisgon), thiswill be caight by the initiator, if not ealier. If other nodes have used a diff erent scheme, they

will not be authenticated by the planner and will t herefore not be seleded in the plan.

When a onredion crosses multi ple domains, ead of which supports diff erent seaurity mechanisms, it may naot

always be possble to seled one cmmon seaurity scheme. We aldressthisissuein Sedion 7.

3.3 Security Roles of the I nitiator and the Planner

Conductor is careful in dividing tasks between the initiator and the planner. Because of their full accessto the data
stream, bath the initi ator and the planner of aconnedion are trusted. In principle, either of them can be responsible
for the seaurity scheme seledion, sesson key generation, or avariety of other tasks. Or these two endpdnts could
negatiate for these tasks. However, since Condctor is frequently deployed where network condtions are poor, it

attempts to minimize datatransfer. Conductor also assumes asllittl e prior coordination between nocks as possble.



Sincethe planning process sarts at the initiator of aconredion, it ismost ecnomicd if the initiator is resporsible
for seleding seaurity schemes. A seaurity scheme seledor message can be delivered to the planner node dongthe
sameroute & the planninginformation. On the other hand, since the planner has authentication information for all

nodes, it isin the best positionto generate and dstribute session keys.

3.4 Establishing Trust In I ntermediate Nodes

After aplanner authenticates an intermediate node, it must dedde whether to authorize that node to adapt the data
stream. Similarly, an intermediate node dso needsto determine whether to trust the plan from a particular planner

noce. Here we focus onthe former: that is, establishing a planner’ strust of intermediate nodes.

Conductor can support avariety of authorization mechanisms. In asimple form, each Conductor-enabled noce @n
keep astatic list of nodesthat it trusts. At the planner node, thislist spedfies those nodes that the planner truststo

adapt the data stream arbitrarily. Nodes not on the list are not trusted for any adaptation.

More flexible and dynamic models of trust can be enforced, typicdly by leveraging an automated trust management
system. KeyNote isone such system [3]. It provides a mechanism to determine whether an adion (described by an
adion attribute set) by a principal (typicdly expressed as the holder of aparticular cryptography key) compliesto a

seaurity pdicy (expressed by pdicy and credential asertions) by querying a general-purpose cmmpliance decker.

KeyNote can be used to spedfy various trust relationships. For instance, some nodes are authorized by a planner to
provide inpu to the planning processand to have full accessto the data (and thus adapt plaintext data abitrarily).
Other nodes may be authorized to participate in the planning processbut may nat be dl owed to seethe plaintext
data stream, instead adapting orly encrypted data. Still other nodes may nat be authorized even to provide input to
the planning process Various degrees of trust may also be possble. For instance, seledive encryption of alayered

encoding may be employed to allow partial accessto (and adaptation of) plaintext data.

In order for Conductor to employ KeyNote, eat Condtctor-enabled node will have to enforceits edfic seaurity
palicy, describe those adionsto chedk, and interad with the compliance decker. The security pdicy itself must be

spedfied bythe user. Several plausible medhanismsfor designing pdicies are given below:

* Theuser spedfies certain companies (ISPs, ASPs, content providers, etc.) that are trusted. Since ay IP

addressis asciated with adomain that is associated with a company, such apalicy can be applied.
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* Theuser asaumes that bonded companies will have aset of Conductor nodes throughout the network, and

the user will have alist of those cmpanies.

¢ Theuser shareswith hisfriends, lists of nodesthat can be trusted.

3.5 Security I ssues Not Addressed

We do nd intend to addressisaues of denial-of-servicein thiswork. If a Conductor-enabled noce attempts to thwart
the planning processby refusing to forward control information to the planner, the system will fail. However, this
result isthe same a arouter refusing to forward datain any strean. Thisisaueis, therefore, beyond the scope of
thisreseach. The safety of adaptor code isalso na addressed. We intend to leverage existing research results on

mobhile mde safety [2] [18] [26].

4. Authentication Schemes

Authentication isthe basis of Conductor seaurity. Our design allows seaurity boxes with diff erent authentication
schemesto be plugged in. We have @nstructed three seaurity boxes, null, tree and chain, ead with a diff erent
authentication scheme. Diff erent schemes provide diff erent levels of protedion, require diff erent amourts of
infrastructure (which may or may nat be avail able), and have diff erent levels of overhead. The null scheme does not
provide any authentication. The other two schemes adopt authenticaion mechanisms based onpulic key
cryptography, but with dff erent assumptions on the structure of certificae authorities (CAs) and dff erent methods
for the colledion and verification d public key certificates. We will further ill ustrate the aility to plugin

symmetric ayptosystem-based authenticaion scheme using Kerberos.

4.1 Null Scheme

The null scheme provides nored authentication enforcement. It cannot be used when stream protedion (and hence
key distribution) isrequired. The null scheme is most useful for the cae in which the user does nat require security.

In addition, having such a scheme can help demonstrate the alded cost of the seaurity architedure.

4.2 Authentication Using Public Key Cryptography

We have designed and implemented two authenticaion schemes, tree and chain, based on public key cryptography.

Here, the authenticaion d anodeis, in fad, the authentication d the public key of that node. The tree scheme



asaumes that a cetificate hierarchy infrastructureis available. The chain scheme ssamesthereisno certificae
hierarchy; instead, CAs are distributed in aflat topology. In bath the tree and chain schemes, eat Condtctor-
enabled node has one aciated CA (both schemes can be easily extended to all ow each node to have multiple

asciated CAs, but in this paper we only discussthe single-CA case).

In aseaurity boxwith either authenticaion scheme, planning information is authenticated using a digital signature
based onpubic key cryptography. When a Conductor-enabled noce providesits own panninginformation, it is
signed with its own private key. When the planner node receives the planning information, it can ched the
authenticity of the planning information based on the signature, which in turn necesstates the aithentication o the
pubic key of that Condtctor-enabled node. The authentication information for the public key of ead Conductor-

enabled node isincluded in an authenticator message.

Similarly, the authenticity of aplan is asured with the signature of the planner. When a node wantsto install a
distributed plan, it needs to ensure that the plan is authentic. The node dhecks the signature of the plan with the
pubic key of the planner node. This operation requires the authentic public key of the planner node. The
authenticaion information for the publlic key of the planner noce is transmitted in a reverse authenticator message,

which is smilar to the authenticator.

When the pulblic key of anode can be authenticaed, a sesson key can be seaurely distributed to support data
seaecqy. Before aplanner delivers asesson key to a Conductor-enabled node, it can sign the sesgon key with its
own private key and encrypt with the authenticated public key of the node. Only the target redpient can decrypt the
sesson key with its private key. The node can also verify that the sesgon key isindeed from the planner after

authenticating the pubic key of the planner.

Each dfferent authenticaion scheme hasits own protocol to generate authenticator and reverse authenticator

messages and wse them to do authentication and seled trusted nodes.

4.2.1 Authentication scheme: tree

The tree scheme asaumes a cetificate hierarchy infrastructure is available. In this hierarchy, all CAs are organized

in atreestructure, each at aparticular level. The CA at the top (the parent) produces certificates for the next level



down (the child). Thisrepeasreaursively. The public key for the CA at the root of the tree (level 0) isuniversally

known.

With such a structure, multiple cetificaes from the hierarchy may be required to authenticate apubdic key. The
authenticator message (or the reverse aithenticator message) sent by a Conductor-enabled node includes alist of all
necessry certificaesto verify the pubdic key of that node. To buld such amessage, anode montads its asociated
CA, CA(n), for a certificae of the node's pulic key signed by CA(n), cert(node, CA(n)). The cetificae shows that
CA(n-1) isthe parent of CA(n). The node then contads CA(n-1) for a certificate of CA(n)’'s pubdic key signed by

CA(n-1). Thisrepeas until a cetificae signed bytheroot is returned.

Note that the set of certificates needed to certify anode' s public key is gatic in this £heme. A node can therefore

cade dl of the certificatesit will need to authenticate itself to any ather node.

After the planner recaves the aithenticator message of a Conductor-enabled node, or a Conductor-enabled node
recaves the planner’ sreverse authenticaior message, thelist of certificaesis retrieved from the message. Starting at
the roat, for which al nodes have avalid public key, lower-level CA certificates are authenticated recursively.

Eventually, the certificate of the node in question is authenticated.

4.2.2 Authentication scheme: chain

4.2.2.1 Chain of trust

The deployment of a CA hierarchy is not required by the chain scheme. Instead, CAs areflatly distributed, as

shown in Figure 4, possbly deployed independently by avariety of administrative authorities.

A CA typicdly provides certificates for the nodesin its “neighborhood,” but may also contain a small number of

“distant” nodes whose public keys are frequently queried.

We asaume a cetain degreeof overlap between “neighboring” CAs. A CA may store the puldic keys for some

"neaby" nodesand CAs.

This certification owerlap can all ow one node to authenticate to another by forming a chain of trust. Asin ather

systems, a chain of trust isachain of certificaes, in which one endisthe cetificate for the pulic key of the nodein



guestion, the other end isthe certificate signed by the CA associated with the node running the authentication, and

ead certificate involved is verified.

4.2.2.2 Certificae mlledion

In the chain scheme, eat node may add certificaes useful in authenticaing aher nodes. When forwarding
authentication information, each Conductor-enabled node asks its associated CA for every potentially useful

certificae, and includes them in authenticaor or reverse authenticator messages.

During the information-gathering portion of planning, each Conductor-enabled nock along the path must
authenticae itself to the planner. Asdemonstrated in Figure 5, the data stream from an applicaion client to an
applicdion server isintercepted by four Conductor-enabled nodes, A, B, Cand D. D isthe planner for this
conredion. Each Conductor-enabled node (for example nodes A, B and C in Figure 5) initially generatesasingle-
certificae authenticator. This authenticator contains a cetificae for that node from its associated CA, the identity
of the node, and the identity of the CA. This authenticaor isthen forwarded to the next node toward the planner.
When an authenticator is recaved, ead davnstrean Conductor-enabled node mntads its own associated CA to add
two more cetificates sgned by this CA (if available): one certificate for the node spedfied in the authenticator and
onefor the CA spedfied in the authenticaor. Thisnode further forwards the authenticator message toward the

planner node. Each authenticator, therefore, can be enhanced asit is forwarded toward the planner noce.

While aConductor-enabled node can ask for a certificate by contading its associated CA, certificae cadies can be
deployed at Condwctor-enabled nodes to improve performance. A negative certificate cate might also be
employed; if a cetificateisarealy known not to be contained in its associated CA, anode does not need to contad

that CA.

The planner may receve multiple cetificaesin ead authenticaor message. In Figure 6, each square represents a
cetificae that may be finally available & the planner D of Figure 5. For instance, the authenticator for node A

could include the cetificaesin the rowslabeled “Node A” and “CA-A."

The same catificae @lledion principleisapplied in the reverse diredion. However, only asingle reverse

authenticator message flows along the reverse path toward the initiator (node A in Figure 7). So, in addition to



asking for certificates for the planner and the planner’ s associated CA, ead Condictor-enabled node dso asks for a

cetificae for every CA listed in the reverse authenticaor; for example, cert(CA-C, CA-B) as siown in Figure 7.

4.2.2.3 Authentication

Authentication in the chain scheme requires a seach for avalid chain of trust. Multiple chains are possblefor a
given node. Any valid chain to anode that includes only trusted CAs leads to atrusted public key. So, eath

possble dhain must be chedked urtil atrusted chain is discovered.

If the planner node (node D in Figure 5) recaves a cetificate for A signed by CA-D, since D knows the public key
of CA-D, D can authenticate and oldain A’s pullic key. Thisisa chain of trust composed of only ore certificate,
cert(A, CA-D). However, if cert(A, CA-D) isnot available, D will still try to verify A’s public key by seaching
other chains of trust. For instance, if node D can get cert(A, CA-A) and cert(CA-A, CA-D), a chain of trust
(cert(A,CA-A), cert(CA-A, CA-D)) isformed. D then can authenticate A’s pulic key: CA-A’s pubic key can be
verified using cert(CA-A, CA-D) and CA-D’s pubic key; CA-A’s pulic key can then be used to verify cert(A, CA-

A).

The chain can belonger. Thelongest valid chain here would be cert(A, CA-A), cert(CA-A, CA-B), cert(CA-B,
CA-C), cert(CA-C, CA-D). Aslongasthereisa dhain of trust in which CA-D isthe last element, the public key

cetified bythe first certificae of the chain can be verified; otherwise, the authentication fails.

Alongthe reverse diredion, each Conductor-enabled node authenticaes the planner in the same way. For instance,
in Figure 7 at node B, planner D’ s pulic key can be verified if a chain of trust can be formed as (cert(D, CA-D),

cert(CA-D, CA-C), cert(CA-C, CA-B)).

4.3 Authentication Using Kerberos

Integrating Kerberos [21] into CondLctor as an authenticaion schemeis graightforward.

4.3.1 The Kerberos model

To authenticate to a service using Kerberos, an appli caion obtains a ticket and then presents that ticket to the service
for authenticaion. At an extremely highlevel, a dient sends arequest to Kerberos to authenticate to a particular

service. The dient recaves (in the end) asesson key for talking with the requested service, encrypted with akey it



shares with Kerberos, along with aticket that it can sendto the service Theticket contains (among dher things) the
identity of the nodesinvolved and asesson key for talking with the dient encrypted with a seaet that the service

shares with Kerberos.

To authenticete to the service, the dient sends an Kerberos authenticator (a time-stamp, a ched<sum, etc.) encrypted
using the sesgon key to the service dong with the ticket. The service can obtain the sesgon key using the key it
shares with Kerberos and use it to deaypt the authenticator and therefore verify the authenticity of the dient. The
server can (optionaly) send an authenticator badk to the dient, again encrypted with the sesson key, alowing the

client to authenticae the server.

The sesson key used for authenticaiion o the sesson can now be used bythe dient and server for whatever they

like (typicdly encryption).

4.3.2 Integration with Conductor

In Conductor, each node dong the path needs to authenticate itself to the planner node by sending an authenticaion
message. Thus, ead nock needsto share aseaet with Kerberos. At connedion setup time, agiven noce will senda
request to Kerberosto all ow the noce to authenticae with the planner node. Kerberoswill provide asesson key and

aticket for authenticaing to that service

The authentication message sent from a Condctor-enabled nock to the planner will thus contain the Kerberos
authenticator (encrypted with the sesson key) and ticket. The planner node will then be @le to oltain the sesson

key from theticket and werify the authenticity of the sender’ sidentity from the authenticator.

The planner' sreverse authentication message will consist of a Kerberos authenticator (encrypted using the sesson

key). Again, the dient will be ableto usethe sesson key it aready hasto verify the identity of the planner node.

Once established, the Kerberos session keys can also be used to digitally sign bah the planning information and
plan distribution messages. Key distribution can be acomplished by encrypting the Conductor sesson keys using
the Kerberos ssdon key. A signatureisnot required for key distribution sincethe Kerberos ssson key isknown

only to agiven nock and the planner.



Note that Kerberos requires a Condtctor-enabled nock to know the identity of the planner, and viceversa. Thisis
posshle becaise the planner is assumed to be on the same macdhine & the server of the cnredionin guestion. (In

Sedion 8wewill relax this assumption.)

4.3.3 Cross-realm authentication

If a dient and planner that wish to communicae aein dfferent domains, they will li kely have diff erent Kerberos
servers. The Kerberosinfrastructureis already designed to handle this case. While the dient may have to
communicae with several Kerberos srvers, it will eventually end upwith asesson key and ticket that have been

generated by the remote endpoint's Kerberos srver.

Thisisnot particularly desirable, becaise agiven Condtctor node may have to go through several rounds with
remote services in order to oltain the required ticket. Onceobtained, however, no further communication with

Kerberosis required.

4.4 Other Authentication Schemes

The chain scheme has $mil arities to PGP/X.509where the chain of trust principle is also applied [11]; the tree

scheme is $milar to the PEM [14] authentication model, in which a CA hierarchy is aso asaumed.

Our designis open to ather authentication models as well, and a new scheme can be easily plugged in. For instance,
reseachers at the University of California, Davis, proposed a solar trust model [5]. With this model, with resped to
ead spedfic CA (the sun), other CAs are ordered based onthe trust degree(planets in orbit arourd the sun). Each
CA has arule set determining the trustworthinessof information signed by other CAs. Applying this model to our
system, ead authenticator would be formed in the same way as the chain scheme, but eech certificete inside the
authenticator would also have arule set attached. To authenticae apublic key, anode would need to apply the

corresponding rule set for each involved certificate.

5. Attacks and Counter measures

In this ssdion we describe posshle dtads and the countermeasures employed by Conductor. These dtadks are
independent of the seaurity scheme seleded, but the countermeasures and the dfediveness depend onspedfic

medhanisms adopted by seaurity boxes. We will show that the tree and chain schemes we developed are dfedive.



5.1 Node | mpersonation

A node may attempt to impersonate another Conductor-enabled nock in order to send a planner node fake planning
information. A node may also impersonate the planner to distribute afake plan or fake sesson keys. Recdl that
planning messages must passthrough the seaurity box at each Condictor-enabled node. The seaurity box is

responsible for preventing nale impersonation.

The protedion strength of the seaurity box depends on the power of the adopted seaurity scheme in the seaurity box.
The null scheme does not attempt to proted against node impersonation. In the tree or chain scheme, asauming the
pubic key cryptography is not broken and CAs are not subverted, impersonationis not possble withou knowing
the private key of the node being impersonated. Uponrecépt of a message, such an attack can be deteded by
obhtaining the authentic pubic key of the sender and wsing the key to verify the signature of the planning messages

from that node.

5.2 Key Stealing

The seaurity box at ead Conductor-enabled node dds ssdon key distribution. In Conductor asesson key is
generated and distributed from the planner. The sesson key must be encrypted to ensureit is readable only by the

intended redpient.

In the tree or chain scheme, when asesson key is distributed to seleded nodes, it is encrypted with ead seleded
noce’ s public key, which is aready authenticated by the planner. Sincethe sesson key can only be deaypted with
the node' s private key, it cannot be stolen unlessthe private key of the node is dolen or unlessnode authenticaionis

subverted and the planner uses the wrong public key to encrypt the sesson key.

5.3 Replay Attack

A Condutor-enabled nock that has been seleded in the past may exeaute areplay attad if it isnot seleded in the

current planning process Consider Figure 8 where bath node B and C are seleded, and the same sesson key K1 is
to bedelivered to B and C. C receves encrypted sesson key K1 that only C can deaypt. It also receves asecond
encrypted K1 in aform such that only B can deaypt. Node C cannat deaypt the latter one and forwardsiit to node

B.
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Now consider a second connection as own in Figure 9. Thistime, node Cisnot seleded. It intercepts a new
sesson key K2 destined for B that only B can deaypt. Instead of forwarding K2 to B, node C forwards the
previous sjonkey K1 destined for B to B. C knows K1, and will be aleto deaypt anything that B sendsit. B

will not be &leto deted the problem when B recéves K 1.

This attadk is prevented by asociating a random number with ead round of the planning process(Figure 10). The
initiator injeds arandam number to eac Conductor-enabled node. When a sesgon key is distributed, the sesson
key and the random number are encrypted together. Sincein ead planning processthe random number is diff erent,

it ishard for C to provide B with an encrypted sesgon key for the aurrent round of planning.

Other replay attadks may also happen. The replay of aprevious plan, for instance, occursin asimilar manner to the

replay of sesson keys. We solve this problem using the method dscussed above.

5.4 Security Scheme Replacement

After aseaurity schemeis pecified, a seaurity scheme selector message is forwarded toward the planner in plain
text. A corrupted node dongthe path could forge a diff erent scheme and trick every node downstream into using

that scheme. For instance, anull scheme may be substituted for the original tree or chain scheme.

The genera principle of counterading such an attadk has been addressed in Sedion 3.2. Here we take afurther look
at how thisisdorein the tree or chain scheme. In the chain or tree scheme, the planner signs the scheme seledor
message, together with the ID of the aurrent connedion, and sends badk the signature. Each Condtctor-enabled
nocde will verify the signature. If it isinconsistent with the original scheme, thiswill be deteded at the initiator, if
not soorer. In addition, areplay attad of the scheme seledor signature anna be succesgul sincethe ID of the

current connedion is unique, and it is sgned together with the seledor message.

6. Implementation and Experiments

The Conductor seaurity architedure is fully implemented. We have dso measured and analyzed the cost of using

Conductor with dff erent seaurity schemes in terms of plan setup latency and bandwidth consumption.



6.1 Implementation

The implementation of Conductor security foll ows the design dscussed above. We implemented the seaurity box
mechanism, and we dso implemented the threepluggable seaurity schemes, null, tree and chain. We used a static
list to manage the trust relationships between Condictor-enabled nodes. The tools we used include the Java

Cryptography Architecure [13] and the cryptix public domain encryption library 3.0.3 [6].

Additionally, we implemented a pulic key certificae authority (CA). A cetificae dient can send arequest to a
CA for the cetificate of anode' s puldic key. The CA inturn can return a certificae if oneis available. Wedo nad

addresscertificae revocation.

6.2 Experiments

We measured the st of providing Conductor seaurity and the st of diff erent seaurity schemes.

6.2.1 Experiment design

The seaurity costs we mnsider include the latency to set up aplan and the bandwidth consumed during the plan
setup procedure. Each time an appli cation establi shes a mwnnedion, apath of a cetain number of CondLctor-
enabled nodes will be discovered. Our experiments measured how the seaurity cost varies with the number of

Conductor-enabled nodes (including the two endpoints).

Neither latency nor bandwidth consumption by the data stream was measured. The stream starts after the plan is

deployed, and its cost isirrelevant to setting up the seaurity scheme.

Four diff erent scenarios were measured: none, null, tree, and chain. In the none scenario, eat Conductor-enabled
noce dong the path has no security implementation at all. None of the seaurity mechanisms discussed in this paper
arein placefor the none scenario. Inthe null scenario, the entire generic seaurity medchanism isin place but no
authentication is adualy invoked for the mnnedion. In the null, tree, and chain scenarios, eat CondLctor-enabled

noce dong the path will enforcethe seleded scheme.

In the tree scenario, athreelevel CA hierarchy was compased. The CA associated with ead Condictor-enabled

nocde was at the bottom level. Costs would vary with certificate hierarchies of diff erent depths.



In the chain scenario, ead Conductor-enabled node was asociated with a different CA (Figure 11). Each CA could
only certify 1) the node it was associated with and 2) the CAs asociated with the Condictor-enabled nodes within
theimmediate neighborhood (Tablel). Thus, for any pair of claimant and werifier, the only feasible dhain of trust
that we provided is the one @mntaining all the CAs from the claimant to the verifier, which isthe longest possble

chain of trust.

To deaeese the cost of obtaining a cetificate, Conductor-enabled nodes can use a cetificate cade, reducing the
number of times they must consult a CA. We compared the chain scenario, with exadly the same environment
setup, in two dfferent cases. In ore cae there was no cadheat al. In the other case optimal cating was deployed

at ead Conductor-enabled node, so the node never needed to contad its associated CA.

In bah the chain scenario with ogtimal cadiing and the tree scenario, certificate retrieval from CAsisavoided, and
the location of CAs has noimpad on measurement results. But thisisnot true with the chain scenario without
cating—certificae retrieval cost varies with the location of CAs. However, certificate retrieval cost can also
significantly vary with many other fadors. Therefore, we simply chose to coll ocae the associated CA of eadh

Conductor-enabled node on the same madhine.

Only succesdul cases were measured. Authenticaion rever failsin the chain and tree scenarios. The RSA
algorithm was used for public key encryption [25]. The signature dgorithm was RSA-based with a SHA-1 message

digest algorithm [22].

6.2.2 Resources

All Condctor-enabled nodesin these experiments were the same. Each was a Dell Inspiron 3500 machine runring
Linux Redhat 6.0 and IBM JDK 1.1.8 [10], with Intel Mobile Pentium Il 333Mhz, 256KB cade, 64MB RAM, 4GB

harddrive, and 100Mb/s Ethernet conredion.

Each CA assciated with a Conductor-enabled node shared the same resources as the Conductor-enabled node,
collocated onthe same madine. For the tree scenario, ead nonled CA was running under Linux Redhat 6.0 onan

Intel Celeron 0Mhz with 128KB cade, 128VIB SDRAM, and a 100 Mb/s Ethernet connedion.



Each Condctor-enabled node was also hanogeneous in the sense that ead machine was kept under the same
workload with the same set of processesrunning. Only process related to the experiment and normal system

processes were running.

6.3 Resultsand Analysis

6.3.1 Plan setup latency

For ead o the four scenarios, Figure 12 shows plan setup latency versus the number of Conductor-enabled nodes

between two endpoints. Here, in the chain scenario, optimal cading is deployed.

The null scenario diff ers from the none scenario by including the entire seaurity framework, but with no acual
authenticaion. The difference between the performance of the null and none scenariosis thus the st of the
seaurity framework devoid of cryptographic operations or other authentication mechanisms. That differenceis

statisticdly indistinguishable a the 9% confidencelevel (Figure 12).

Use of aseaurity scheme such asthe tree or chain (with ogimal cacing) introduces greder latency in plan setup
than the null or none scenario (Figure 12). Theincreased costs include ayptographic operations and the
transmisson and handling of cryptographic messages. Recdl that Conductor uses these ayptographic operations

bath to proted planning messages and do node authentication.

To proted message integrity, every node in a connedion needs to signits planning information and have it verified
by the planner of the conredion. Also the planner neals to sign bah the plan and seaurity scheme selecor, which
are verified afterwards by each noce. With n Conductor-enabled nodes, thislealsto (n+1) signing operations and

3(n-1) verification operations. Thisis same for bath the chain and the tree scenarios.

Certificate verificaion dstinguishes the chain scenario from the tree scenario in terms of plan setup latency. Inthe
chain scenario, with n total Conductor-enabled nodes (Figure 11), the planner needs to verify (n-i+1) cetificaesto
verify the public key of Conductor-enabled nodei (i could be 1, 2, ..., n-1). Noticethat aplanner only nealsto
verify ead certificate once it verifies 2(n-1) cetificaesin total. Conductor-enabled nodei aso must verify (n-i+1)

certificaes to authenticate the planner. So, the total number of certificatesto verify beforethe planis st upis



n-1
2(n-1) + Z(n—i +1) :%(n2+ 5n — 6).

In the tree scenario, to authenticate the pubic key of ead Conductor-enabled node, the planner needs to verify k
cetificaes, where k isthe depth of the certificate hierarchy. Sincewe asame the k certificaes of one node do not
overlap with those k certificates of anather, the planner needsto docertificete verification k*(n-1) times. Also, eah
Conductor-enabled nock needs to verify k certificaes to authenticate the public key of the planner. So, the total

number of certificatesto verify beforethe planis st upis2ck*(n-1). Inour experiment, k=3, so the valueis 6(n-1).

The @ove analysis ows that as more nodes are involved, the increased cost due to cryptographic operations varies
linealy in the tree scenario and quedraticaly in the chain scenario (with optimal caciing). Thiscost is paid orce a
setup time, and primarily represents cryptographic operations performed in Java. (In our experimental setup and
using the cryptix library version 3.0.3 [6], the time taken to compute and verify cryptographic signatures of various

Conductor messages varied between afew milli seconds and afew tens of milli seaonds.)

The chain scenario without certificate cading incurs higher plan setup latency (Figure 13). In our experiment, ead
Conductor-enabled nock and its asociated CA are ollocaed onthe same madhine; otherwise, the latency could be

even higher. But certificate retrieval latency isindependent of the seaurity implementation of Conductor.

Althoughthe chain scenario leads to higher plan setup latency in many cases, it iseasier to deploy than the tree
scenario. The tree scenario requires a cetificae hierarchy, and the root of the hierarchy must be trusted. Thisisnot
feasible in many circumstances. The chain scenario only requires ead Conductor-enabled node to have an

assciated CA and some level of coverage overlap between CAs.

6.3.2 Bandwidth consumption

We analyzed bandwidth consumption during the plan setup procedure for four different scenarios. In the chain

scenario, when optimal cading is used, no bandwidth is consumed for certificate retrieval.

To provide afair comparison, we distributed the same planin al four scenarios. We chase aplan in which every

Conductor-enabled nockis sleded bu no adaptors are deployed.



Figure 14 shows the bandwidth consumption per link in the four scenarios. In the null scenario, eat Conductor-
enabled node needs to forward the seaurity scheme seledor message to the next Conductor-enabled nodk, in addition
to transmitting all the same messages as those in the none scenario. In the chain and tree scenarios, there ae also
other extra seaurity-related messages consuming more bandwidth, such as the authenticator messages, the signatures

of planning messages, and the signature of the scheme being used.

The diff erence between the bandwidth consumed in the chain and tree scenarios is caused by the authenticator
messages. An authenticator ismainly compased of severa certificaes. With ou experiment setup, every
authenticator message in the tree scenario includes three certificates. In the chain scenario, however, every
authenticator initialy includes one cetificate, and increasesto two certificates after the first hop; in particular, the
reverse authenticetor of the planner will have one more cetificae dter every hop before reading the initiator. With
n Conductor-enabled nodes in the mnnedion, the average number of certificates passngalinkis (1.5n+3) in the
tree scenario, and (1.5n —1) in the chain scenario. There aefour certificates lessper link on average in the chain
scenario than in the tree scenario. No attempt was made to compad the data in the authenticator messages.
Therefore, we beli eve the bandwidth consumption could be further optimized. Note that even withou optimization
with 9 noabs, the arerage bandwidth usage for any scenario is at most slightly more than 5000 bytes per link, which

is accetable for most situations.

7. Multiple Security Schemes

The discussonthus far has asaumed a single seaurity scheme for ead connedion seleded by the dient node.
However, the ability to use multi ple seaurity schemesis desirable to al ow authentication d as many intermediate
Conductor-enabled nodes as possble, considering ead node may support a diff erent set of seaurity schemes. In this
sedion, we revisit the planning procedure and introduce an extended version of the seaure planning procedure that

suppats multi ple seaurity schemes for a annedion, with the st of one additional round trip.

7.1 Secure Planning Algorithm For Multiple Security Schemes

If multi ple seaurity schemes are dlowed, ead node must seled which scheme it will use to authenticae itself to the
planner node, proted its planning information, and seaure the deployment of a plan. Such scheme negatiation and

seledionisdorein thefirst roundtrip. Each node may support several schemes. The dient and the planner nodes



also have alist of schemes that would be aceptable for a given type of connedion. Notethat a dient or planner

may choose to accept a schemethat it does not support. In the foll owing, we describe the algorithm step by step.

(1) The client node sends a list of acceptable schemes to the planner node. Each nodk, including the client, also
sends alist of suppated schemesto the planner node, ordered by its preference. The intermediate nodes do not need

to seethis message (but they may).

(2) The planner node mmputes the intersedion d (@) the schemes acceptable to the dient, (b) the schemes
acceptable to the planner, and (c) the schemes supported bythe planner. The result isthelist of schemes sleded for

use in this conredion.

Because eab nock spedfied itslevel of preferencefor each supported scheme, the planner will also knowv which

scheme eaty node will use.

(3) The planner generates a message cntaining the list of seleded schemes and the dient’s acceptable schemes
(literally, the first message from the dient nodein step 1). Eadh seleded schemeis used to generate asignature for

thismessage. The message and al of the signatures are sent toward the dient, visiting ead nock in turn.

(4) The planner generates an authenticator using ead of the seledted schemes, and sends it toward the dient, visiting

ead nockin turn.

(5) Given the messages from steps 3 and 4, eat nock can verify the seleded schemes. If anodefailsto verify the
scheme, it will not participate. If the dient failsto verify the scheme, or if the copy of the message returned from

step 1 daes not match, the connedion will fail (or be reatempted).

If the dove verificaion succeeds, ead node sendsits $gned planning information and its reverse authenticator
toward the planner, visiting aher nodes alongthe way. It will also send a signature for the list of suppated schemes
that it sent in step 1 The scheme used to generate the signature and the authenticaor should be the first onein the
list of suppated schemes nt from this node to the planner that was also seleded by the planner for this connedion.
Note that the authenticator for anode may be augmented by other nodes along the way, no matter what scheme the

intermediate node used to authenticate itself.
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(6) Upon recapt of the messages from step 5, the planner will verify the identity of the nodes, seled a set of
authorized (trusted) nodes, and formulate aplan. Any nocethat canna be authenticated or trusted and any planning

information that cannot be validated will not be mnsidered in planning.

The signature for supported schemes will also be verified. The connedion will fail if the verification dees not

succeel.

(7) The planner will send a message mntaining the plan toward the dient, visiting ead node in turn. The planner

will generate aset of signatures using ead of the seleded schemes and attach them to the message.

(8) Each node will verify the plan using the atached signature and the authenticaion informationreceived in step 4.
If anode canot validate the plan, it will not participate. From an adaptation padnt of view, we ca tred thisasa

nocefalure. ¢

Figure 15 shows an example that involves four Conductor-enabled nodes. Eacdh node supports a diff erent set of

seaurity schemes (Table 11). Employing the @ove steps, both scheme x and schemey are used for the mnnedion.

Thisagorithmisjustified asfollows: For agiven conredion, the dient must ensure that itslist of acceptable
seaurity schemes was used by the planner to seled schemes (otherwise the dient can betricked into using an
unacceptable scheme, such as a scheme not enforcing adesired level of seaurity); thisis stisfied by steps 3 and 4
above. In addition, the planner must ensure that the list of supported schemes from ead node is authentic
(otherwise anode that supports an acceptable scheme may be regarded as supporting an unacceptable scheme, and
will be thus unable to participate the planning proces9; thisis guaranteed through steps 5 and 6 The planner also
must ensure that the planning information from ead node isauthentic in order to form an eff edive plan; thisisaso
enforced through steps 5 and 6 Finaly, to avoid falsified adaptation, every node must be ale to ensure that a plan
to deploy isauthentic; thisis guaranteed through steps 4, 7, and 8 Every node dso must ensure that alist of
seleded schemesis authentic (to avoid using awrong scheme to authenticate itself to the planner and thus not be

seleded); thisisimplemented in steps 3 and 4.
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7.2 Bridging Different Security Schemes

One drawbadk of the algorithm presented in the previous sctionisthat it canna seled any scheme that is not
suppated bythe planner node. Thisrestrictionis enforced in step 2 and ensures that the planner will be &leto
form adired relationship with ead participating node. If anode does not support any scheme suppated (and hence
seleded) by the planner, it cannot participate. Thisis particularly trouldesome since agroup of neighboring nodes
are likely to support acommon seaurity scheme, forming an island. If the client and the planner belongto different
islands, seaure communication may not be possbhle. However, thisrestriction can be removed if we dlow nodes at

the alges of idands that support more than ore seaurity scheme to ad as bridges between seaurity schemes.

We revise the previous algorithm to support bridge nodes. Below, we describe alditions and changesto ead step in

the dgorithm from Section 7.1.

(2) This gep isunchanged.

(2) We ad kridge seledionto this gep. Using the information in step 1, nodes are identified that cen ad as a
bridge. A node can be abridge if it suppats an aceptable scheme not supparted by the planner and also supports
either (1) an accetable scheme that is sippated by the planner, or (2) an acceptable scheme that is sippated by a
bridge between itself and the planner. Thelist of seleded schemesisthen augmented by alist of bridge nodes and
the trandations they can perform. Note that bridges $ould only be spedfied if they will be useful in trandating for
another node between the bridge and the client. Some schemes that would not have been seleded by the previous

algorithm may be seleded now because of the introduction d bridge nodes.

A nocdethat isading as a bridge node has a greaer ability to aff ed the resulting adaptation than ather nodes in the
stream. A bridge node has capabiliti es $milar to the planner. It istherefore important that the planner have strong

trust in anode before seleding it to ad as a bridge.

(3) The message (and its sgnature) sent by the planner in this dep will recaéve spedal handing at bridge nodes.
When the message readies a bridge node, the bridge verifies the message signature and adds additional signatures
for seaurity schemesit is charged with trandating. Note that sincethis sgnature is generated by the bridge node,
authentication information for the bridge node will be required by any node wishing to verify the signature (see

revised step 4).
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(4) The authenticator from the planner in this gep will also be handled by abridge node in a speda manner. When
the authenticaor reades a bridge node, the bridge verifies the identity of the sender. If the sender is deemed
authentic and trusted by the bridge, the bridge generates a new authentication message (to authenticae itself) in the
schemeit is charged with trandating. Note that the bridge knows to which nodes it is authenticating, becaise, like

the planner, it can deducewhat scheme eab node will use.

(5) Verificaion o seleded schemesisthe same except that the message of seleded schemes may be signed by a
bridge noce instead of the planner. Such messages can be verified using the bridge node’ s authenticator in the

revised step 4.

Messages ent in this gep, including ead node’s sgned planning information message, a signature message of its
suppated schemes, and its authenticator, will recaéve spedal handling by bridge nodes. When a planning
information message that has been signed in a manner that this bridge has been charged with trandatingis receved
at abridge node, the bridge verifies the signature and replacesit with its own signature in a scheme suppated by the
planner or a downstream bridge. The signature provided for the schemes suppated by anode can be similarly
verified and replaced by a bridge when required. Finally, when an authenticator isreceved at abridge nodein a
scheme that the bridge is charged with trandating, the bridge verifies the identity of the source and replaces the
message with a new authenticator for itself. Note that this means that the node providing authentication information

has to authenticate to the bridge, not to the planner.

(6) This dep isunchanged, except that a node’ s planning information and its supported schemes may be signed by a

bridge node, thus requiring \erification based on the bridge' s authenticator from step 5.

(7) Bridge nodes may attach additional signaturesto the plan produced in this gep.

(8) This dep is unchanged, except that the plan may be signed by a bridge node, thus requiring verificaion based on

the bridge’ s authenticeator from step 4. ¢

Figure 16 shows the usage of abridge node (node C) for the same wnnedion asin Figure 15. Node B can now
participate using scheme z, because of the introduction of bridge node C. Node B can verify the signature of the
scheme seledion message (signed by the bridge noce C), authenticae itself (to bridge node C), have its planning

information signed (verifiable by bridge node C), and finally verify the plan (signed by bridge node C).
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Justification d this revised algorithm foll ows the same argument as the ealier agorithm in Sedion 7.1. In addition,
with the introduction of bride nodes, eat message’ s authenticity is now verified in two ways: either the message
must come from a source & indicated, or the message must come from atrusted bridge that has already verified the
message’ s authenticity. For the former, the previous justification can be applied. The latter is complicated by the
fad that several bridges may be used and may form a chain of trust. If each node, including bridge nodes, verifies
that arecdved message was ent either from the original hode or an authorized bridge, then an appropriate chain can
be formed. Note that every node knows which nodes are authentic bridges from steps 3 and 4. So longas each

bridge istrusted and verifies the identity of the previous bridge, the chain will be verified.

8. Non-Conductor-Enabled Client and Server

In the precaling sedions we have assumed that both the dient and the server of a connedion are Conductor-
enabled. Werelax thisassumption here. The initiator and the planner will not necessarily be the same node & the

client and the server, respedively.

If the dient is not Conductor-enabled, either because the dient doesn' t care abou seaurity or because the dient has
spedficdly set up a Conductor node neaby that can be responsible for seaurity dedsions, then the initiator can ad

on behalf of the dient with resped to seaurity.

If the planner isnot onthe same node & the server, in our origina algorithm (Sedions 3 and 4) the participating
nodes will not know which node is the planner. While pullic key-based seaurity schemes do nd require the nodes
to know to whom they are authenticaing, some authentication algorithms (notably Kerberos) do require such
knowledge. Inour revised secure planning algorithm (Sedion 7), however, the planner authenticates itself to cther
Conductor-enabled nodesfirst (including the initiator), correcting this problem. The assumption that the planner
coll ocaes with the server can berelaxed if either Kerberos-like authentication is not employed or the revised seaure

planning algorithm is used.

9. Other Open Architectures

Our design for seauring Conductor is applicable to many ather open architedures. In this edion, we briefly address

how to port the design to several adaptation systems and adive networks.
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9.1 Adaptation Systems

The Dynamic Proxy architedure developed at Columbia University [29] relies on asingle proxy node to adapt a
data stream. Inthis g/stem the dient dynamicdly seleds and controls the alaptation performed at the proxy. The
server plays no role in proxy management. To provide seaurity for such a system in which the dient also assumes

the role of the planner in Conductor, we propose the foll owing steps:

(1) The client spedfies to the proxy node what seaurity scheme must be followed.

(2) The proxy noce, foll owing the spedfied schemein (1), sendsto the dient its authenticator and asigned planning

information message.

(3) The client authenticates the proxy, verifies the planning information, and forms a plan.

(4) The client sendsits reverse authenticaor and the signed plan to the proxy node.

(5) The proxy noce authenticates the dient, and verifies and deploysthe plan. ¢

A sesdon key can also be distributed from the dient to the proxy. Using the authenticaion information of the proxy
noce from step 2, the dient can generate a sesson key, encrypt it, and send it to the proxy. For instance, if pulic

key-based authentication is used, the proxy’s public key can be used to encrypt the sesson key.

Protocol Boosters [8] adapts protocols by inserting boostersinto a network. While no danning procedure has been
spedfied, apadlicy isneeded in order to deploy protocol boosters. If Conductor’s planning architedure were ported

to Protocol Boaosters, we believe that Conductor’s saurity design could also be utili zed.

9.2 Active Networks
The seaurity design for Conductor can be used to seaure both an adive network applicaion and adive padketsin

general.

9.2.1 Securing an active network application

Consider "adive traceoute" as asample gplicaion: a message traveling from endl to end2 is gamped with the

identity of each adive node en route and returnswith arecord of the path from endl to end2. The seaurity task isto
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ensure the identiti es are authentic. Asuming a single seaurity scheme is enforced, asin Conductor (Sedion 3), we
can let eadh adive node ald its own authenticaion information and signature. End2 can verify the authentication
information, mark which recorded identity is authentic, and send the path information bad to endZ; this path
information is sgned by end2, requiring reverse authentication o end2 aswell. To support multi ple security

schemes, similar handling can be enforced as srown in Sedion 7.

9.2.2 Securing active packets

An adive padet, carrying bah data and instructions, faces a danger that a mali cious node on the way may corrupt

the padket. Again, Conductor's aurity mechanism can be adopted to solve this problem.

With the goal to orly alow trusted nodes to read/modify an adive padet, abasic design follows, where asingle

schemeis enforced:

(1) Theclient that is going to run an adive applicaion sends out its aurity scheme and an authenticator towards

the server.

(2) Each adive node en route dso authenticates itself to the server, using the seleded scheme by the dient.

(3) The server authenticates ead node and seleds trusted adive nodes.

(4) For each seleded trusted node, the server sends areverse aithenticator for itself, the signature of the dient’s

seaurity scheme spedfication message, and an encrypted sesson key.

(5) Each node authenticates the server, verifies that the spedfied seaurity scheme isindeed enforced, and recaves

the distributed sesson key.

(6) The client starts nding active padets, encrypted with the sesson key. Only trusted active nodes will be aleto

deaypt the padkets. ¢

10. Related Work

Seaurity has been identified by many reseachers asakey isaie in open architedures. Much research has focused on

proteding retwork elements from malicious code [1] [19], while comparatively lessattention hes been paid to



proteding data streans from misbehaving retwork elements. Murphy nated that in adive networks, end-to-end
seaurity strategies do nd alwayswork because of the participation d intermediate adive nodes[20]. Jadkson
proposed a possble padet format in adive networks to support data integrity viasignature [12], but data
confidentiality is not addressed, and the goproach is expensive on a per-packet basis. Reseachers at the University
of W. Sydney, Australi g, identified the need for data mnfidentiality in adive networks, and analyzed the difficulties
with bah end-to-end encryption and link encryption in supporting data confidentiality [27]. Reseachersfrom NAI
L abs proposed a hop-by-hop integrity model between adive nodes that are “adjacent” in the adive network
topdogy, where a seaet key returned from atrusted third-party is associated with ead pair of adive nodes; but this

work assumes every adive node is arealy trusted [7].

Reseach on ditaseaecy in gpen architecture has not typically included the notion that some nodes are trusted and
some ae not. Seaure planning (together with encryption) can be used to control modifications of the data stream.
Virtual link encryption, as propased in this paper, provides data seaurity in open architecure networks whil e till
allowing intermediate nodes to adapt the data with reduced performance overhead. In particular, node
authenticationisrequired (as demonstrated in Conductor), and orly those nodes sheduled to adapt data should

receve sesson keysin order to accessdata plaintext.

Applications can require different security policiesin dfferent situations. An applicaionshoud be aleto seled a
specific seaurity pdicy (or compase one & exemplified in [17]) and enforceit. Seraphim provides aframework that
allows users or applicaionsto enforcetheir own seaurity policiesin adive networks, but it relies on atrusted third-
authority to authenticate the security pdicy [4]. Conductor insteal relies on ore or more seaurity schemes, seleded

by the initi ator and/or the planner of a connedion, to ensure that only those schemes are used.

IPsec[15] provides authentication, encryption and aher security services at the IP layer. 1Psecis primarily designed
for point-to-paint services, in contrast to virtual link encryption where many pdnts are involved. If we used IPsec
for Conductor seaurity, a channel from each Conductor-enabled nock to the planner (or a bridge node introduced in
Sedion 7.2) or viceversa, bound with spedfic seaurity association (SA) or SA bundes, would need to be
independently establi shed and maintained. |ISAKMP [16] provides a framework to establish an SA, but it still
reguires akey exchange protocol such asIKE[9]. Via eab channel, anode could authenticate itself or transmit

signed planning information to the planner. Similarly, these channels all ow the planner to authenticae itself or
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transmit asigned plan or encrypted sesson key to ead node. Asill ustrated in the dhain authenticaion scheme
(Sedion 42.2), intermediate nodes can sometimes provide additional information, which alows anode to be
authenticated when it otherwise would not. Becaise IPsec tannels are independent, the intermediate nodes are
hidden from an IPsec dannel and cannot provide such help. If I Psecisalso to be used to proted user data
transmitted from one Conductor-enabled node to ancther, a arresponding IPsec dannel nealsto be built aswell.

An SA must be separately set up for ead individual virtual link.

11. Conclusions

Open architedure systems will not always consist of fully trusted noces. Data transmissons of diff ering sensitivity
will have diff erent requirements abou which adaptation nodes can be trusted to hand e their data. The complexity
of open architedures and the speed required for controlli ng and interading with them suggest that programs (the
applicdion, the underlying goen architedure planning system, etc.) will frequently be required to make dedsions on

which open architedure components to trust with their data.

We have described a design and implementation for a system to handle these problemsin a chall enging case.
Conductor asaumes no user control or interadion when a new datatransmissonis being handled. Instead,
Conductor must make dl dedsionsitself, including seaurity dedsions, based oncurrent conditi ons, predefined user

preferences, and known characteristics of the data flow.

Conductor’s aurity architedure dlowsindividua data transmissons to use diff erent seaurity boxes to achieve
different levels and styles of authenticaion seaurity. These seaurity boxes could be chosen by pre-set user
preferences, interadion with other seaurity systems (such asintrusion detedion systems), or by intelli gent analysis

of the data stream and prevailing seaurity conditions.

Our implementation of this design demonstrates the feasibility of the concept. The seaurity mechanisms described
here ald relatively littl e overhead to the mnnedion setup phase, other than cryptographic operations required for
authenticaiion. The ongang transmisgon similarly pays few overhead costs beyond any cryptography that is

necessry to achieve its ®aurity goals.



Whil e designed for the Conductor system, the same seaurity architedure muld also be used for many other open
architedure systems. While it does nat incorporate other seaurity feaures required for successof open architedures
(such as mohile mde safety), the Condictor medchanism is compatible with solutions to these problems as addressed

by ather research groups.

Overdll, thiswork demonstrates that it is feasible to dynamicdly choose the open architecture nodesto be used for a
sensitive data transmisgon. Further, it is passibleto design a sufficiently general system to all ow different users and
applicdionsto apply their own authentication reguirements to the node seledion process Asan ealy example of a
system that attemptsto provide this type of security for its users, the Conductor system also pdnts out the necessity
of seauring the gathering of information used to choose a ©urse of adion, and the importance of securing the

instructions on what that course of adion will be.
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Figure Captions

Figure 1. Planning processin Conductor

Figure 2. Seaurity boxin Conduwctor

Figure 3. Seaured Planning processin Conduwctor. The seaurity scheme is dynamicdly seleded.
Figure4. CAswith flat distribution

Figure5. Certificate wlledionin the chain scheme dongthe path toward the planner

Figure 6. All certificates that may befinally available & planner D

Figure 7. Certificae mlledionin the reverse directionin the chain scheme

Figure 8. Key distributionwith C seleded

Figure 9. Replay attadk by C during key distribution (C is not seleded)

Figure 10. Replay counteraction with randam number

Figure 11. Configuration d Conductor-enabled nodes and CAsin the dhain scenario

Figure 12. Plan setup latency with dff erent security schemes or no seaurity (confidencelevel:
9%%)

Figure 13. Comparison d plan setup latency in the chain scheme (confidencelevel: 99%)
Figure 14. Average bandwidth consumption per link

Figure 15. Handling multi ple seaurity schemesin asinge cnnrectionwith four Conductor-
enabled nocdes

Figure 16. Using kridge nodes to acaommodate even more security schemesin a conrection. As
inFigure1 and 3,A, B, C, and D are four Conductor-enabled nodesinvaved in a conrection,
where D isthe planner. The partsin shaded area @rrespondto the alditions or changes from

Figure 15.
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Figure 1
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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TABLEI
CA AND ITS COVERAGE IN THE CHAIN SCENARIO

CA nodes that CA cen certify
C 1,C

C, 2,C,C,

C |iLC.,Cy

Cn n’ Cn—1




Tablell

ACCEPTED AND SUPFORTED SCHEMES BY EACH NODE

schemes | acceted suppated
nodes schemes schemes

A X,V,Z X

B z

C Y, Z

D X,V,Z X,y
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