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Abstract 

Open architecture networks provide applications with fine-grained control over network elements.  With this control 

comes the risk of misuse and new challenges to secur ity beyond those present in conventional networks.  One par ticular 

secur ity requirement is the abil ity of applications to protect the secrecy and integr ity of transmitted data while still 

allowing trusted active elements within the network to operate on that data. 

This paper describes mechanisms for identifying trusted nodes within a network and securely deploying adaptation 

instructions to those nodes while preventing unauthor ized access and modification of application data.  Promising 

experimental results of our implementation within the Conductor adaptation framework will also be presented, suggesting 

that such features can be incorporated into real networks. 

Keywords: open architecture, distr ibuted adaptation, secur ity 

1. Introduction 

As computer networks become more heterogeneous, applications must increasingly deal with suboptimal network 

conditions.  Applications can use open network architectures to provide service tailored to network conditions, 

adapting the protocols used and perhaps altering the actual data sent.  Services such as Protocol Boosters [8] and 

Panda [23] allow adaptation to occur at nodes within the network.  Unfortunately, this added flexibil ity and control 
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could be used by attackers to damage or destroy communications, unless the open architecture is designed to prevent 

such misuse. 

One security issue is protecting the open architecture elements from the user.  However, protecting the secrecy and 

integrity of a user's data from network elements that might be untrustworthy is just as important.  The existing 

solution to this problem is to encrypt the data end-to-end, but many useful adaptations, like removal of color from a 

video stream, require access to unencrypted data.  Link-level encryption can protect the data stream while it is on the 

wire, but this approach allows any system on the end of the link unlimited access to the data, without any control by 

the user.  A good solution should give the user the power to select which of those elements will be allowed to view 

or modify data in plaintext form. 

Consider a home with many Internet-capable devices connected to a wireless LAN.  A router connects that LAN to 

the Internet by way of a DSL link.  A user on the wireless LAN wishes to obtain his bank balance over the web.  

Clearly this data should be encrypted, particularly for transmission over the Internet and the wireless LAN.  At the 

same time, other users on the LAN are downloading software, also using web protocols.  If short jobs were given 

priority, the interactive traffic would not be swamped by the bulk transmissions.  Unfortunately, determining the 

expected length of the data stream requires access to the stream (since it's encoded in the Content-Length header 

field).  Other possible adaptations, like reducing the resolution of images, would also require data access.  While an 

active node provided by the ISP may be trusted to perform such adaptations, many of the other nodes on the path 

between the client and server need not be trusted. 

One way to protect data from unauthorized modification within the network is through the use of a series of 

signatures [27].  By digitally signing a transmitted packet and re-signing subsequent versions of that packet, it is 

possible for the receiving application to determine the source of the data and any modifications to the data.  While 

this approach detects unauthorized modifications to data packets, providing signatures on individual packets is 

expensive and does not provide secrecy.  The common alternative of end-to-end encryption, mentioned earlier, 

provides the desired secrecy and data integrity.  However, by ensuring access to only the endpoints of the 

connection, most useful adaptations are disallowed.  Link-level encryption protects both integrity and secrecy across 

all network links, while allowing adaptation to occur on any node along the data path.  However, every node in the 
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path is implicitly trusted.  A node that is not trustworthy could easily siphon the data stream or alter it in an 

unauthorized manner.  In addition, link-level encryption requires decryption and re-encryption at every node. 

Virtual link encryption provides a compromise between end-to-end and link-level encryption.  A trusted subset of 

network nodes is chosen, and encrypted data is transmitted between those nodes.  The trusted nodes can arbitrarily 

adapt the unencrypted data. Decryption and re-encryption occur only where adaptation is desired, thereby reducing 

overhead. 

Providing secure adaptation with the support of virtual li nk encryption requires that three activities be performed 

securely: selection of trusted nodes, selection and deployment of appropriate adaptive algorithms, and key 

distribution.     

The endpoints of a connection can be implicitly trusted, since they already have full control over the data stream.  

Either users trust no other nodes in the network (in which case they should encrypt end-to-end), or they have some 

way to tell which nodes are trustworthy.  In the latter case, authentication is required to prevent an untrustworthy 

node from masquerading as a trustworthy one.  Since there is no ubiquitous infrastructure for authentication and 

because different applications may require different strengths of authentication, no single authentication mechanism 

will suff ice.  Instead, a pluggable authentication architecture is needed, allowing the user to determine an 

appropriate authentication mechanism for each stream.  Some streams may require no authentication.  Others may 

make use of an existing Kerberos or public key infrastructure.  Because multiple authentication mechanisms are 

supported, the system must ensure that each node uses an acceptable mechanism to authenticate other nodes.  The 

resulting chicken-and-egg problem of what mechanism to use to establish one or more acceptable authentication 

mechanisms must also be solved. 

The decision of which adaptive algorithms to deploy and where to deploy them is based on information such as link 

characteristics, user preferences, and available node resources.  Attackers could force unnecessary or even 

undesirable adaptations by falsifying information about conditions, or they could illi citly alter a good plan while it 

was being distributed to the trusted nodes.  The process of gathering this information, analyzing it, and distributing 

the result must be protected.  Thus, source information and resulting instructions must be authenticated, ensuring 

origination at a trusted node, and analysis must occur on a trusted node. 
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Finally, before any user data can flow, session keys must be securely distributed to those trusted nodes on which 

adaptation will be performed.  These session keys provide a shared secret, allowing data to be encrypted for 

transmission between each pair of adjacent trusted nodes, the two endpoints of a virtual li nk.  Untrusted nodes will 

see only encrypted data. 

This paper will describe an implementation of virtual li nk encryption to protect the Conductor distributed adaptation 

service.  The implementation includes an extensible authentication service with several sample authentication 

modules, a secured mechanism for selecting adaptations, and a facilit y for secure key distribution.  We provide 

measurements of the overheads involved in connection setup, demonstrating the usabilit y of this approach.  Finally, 

we describe several extensions to the basic mechanism that allow broader applicabilit y at the cost of somewhat 

higher overhead. 

2.  Conductor—A Distr ibuted Adaptation Service 

We built the Conductor adaptation service to demonstrate the value of distributed deployment of adaptive agents 

into a network.  The portion of the Conductor design relevant to security is described below.  Additional detail and 

performance results can be found in [28]. 

Conductor enables distributed adaptation by providing an adaptation framework at various nodes throughout the 

network.  Conductor consists of essentially two parts: adaptors that operate on a data stream and a runtime 

environment that supports adaptors.  Adaptors have the abilit y to view and modify the data stream in transit.  

Adaptors are frequently paired, allowing the data stream to be converted to an easily transmitted format and then 

back to the original format.  For instance, a pair of adaptors might compress and then decompress a data stream for 

transmission across a low-bandwidth link, or encrypt and then decrypt a data stream for transmission across insecure 

links or nodes.  Adaptations can be combined as needed to satisfy multiple user requirements. 

The Conductor runtime environment is meant to be deployed on various nodes throughout the network to provide 

points of adaptation.  A given data stream is intercepted by Conductor and routed through the Conductor-enabled 

nodes between the client and server.  The framework is responsible for monitoring network and node conditions, 

routing the data stream, determining which adaptors to deploy for a particular data stream, inserting the selected 

adaptors into a data stream, and providing any resources required by an adaptor. 
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Each node that a data flow passes through may adapt the data based purely on local conditions, but such an ad hoc 

adaptation may not be appropriate.  For instance, a pair of compression and decompression adaptors may be 

deployed around a low-bandwidth link, but if there is another low-bandwidth link upstream, end-to-end compression 

is better.  Such compression, however, might impede other content-based adaptations.  Adaptation planning is 

necessary to ensure a set of proper and compatible adaptations are applied at appropriate locations [24].   

Conductor provides a planning infrastructure to determine which adaptors to deploy and where to deploy them (a 

planning process with four Conductor-enabled nodes is shown in Figure 1).  When a new data connection is created, 

Conductor discovers a set of Conductor-enabled nodes along the path between the client and the server.  These 

nodes are the potential adaptation points for this connection.  Each of these nodes forwards its identity and planning-

related information, such as local disk and CPU resources and network conditions, along the path toward one 

Conductor-enabled endpoint node.  This endpoint, having received the planning information from every node, can 

now execute a planning algorithm and generate a plan.  The plan, which describes a set of adaptors to deploy on 

each node, is then forwarded to each node along the path.  Once the plan is delivered to all nodes, adaptors can be 

deployed, and data can begin to flow. 

Of the Conductor-enabled nodes involved in a given connection, the endpoints have particular importance. The 

Conductor service on the client-side Conductor-enabled node is called the initiator, since the connection is initiated 

from this side.  The final decision concerning which adaptations to employ at each node is made on the opposite 

server-side Conductor-enabled endpoint, which is known as the planner. 

3.  Design of Conductor Security 

For a given connection, both the client and the server are initially assumed to be running on top of a Conductor-

enabled node; thus the client is collocated with the initiator, and the server is collocated with the planner.  In the 

discussions that follow, client and initiator are interchangeable, and so are server and planner.  We will relax this 

assumption in Section 8. 

Conductor provides an extensible architecture for securing both the planning process and the user’s data.  For a 

given connection, each Conductor-enabled node relies on a security box to authenticate itself to others or vice versa, 

protect planning messages, distribute keys for data stream secrecy, prevent replay attacks, etc.  A variety of security 
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schemes are possible.  Each security box implements a particular security scheme.  Conductor provides a 

mechanism to ensure that the right security box is instantiated. 

3.1  Security via a Security Box 

3.1.1  Security box functionalities 

A security box can be viewed as a security monitor that is responsible for node authentication, protection of the 

planning process, and session key distribution.  A security box allows a node to authenticate other nodes or 

authenticate itself to another node.  A security box protects planning by ensuring that only authentic planning 

information from authorized nodes can influence plan formulation, and only an authentic plan can be deployed.  

Finally, a security box can aid in data protection by enabling session key distribution.  We will further discuss these 

functionaliti es in the following sections. 

A security box can also be viewed as a message filter (Figure 2).  All planning-related messages sent and received 

must pass through the security box.  Incoming messages are accepted or rejected based on trust and authenticity.  

Outgoing messages are inspected, enhanced with additional authentication information, and perhaps encrypted. 

Many security box implementations are possible, each providing a different level of node authentication, message 

verification, replay prevention, and possibly secrecy.  The level of protection provided depends entirely on the 

particular security box implementation. 

This architecture allows a user to choose a specific security scheme based on the desired level of protection.  

Flexibilit y is necessary because there is no ubiquitous authentication mechanism, nor is one level of trust appropriate 

for all situations. 

We have constructed several security boxes based on public key cryptography.  They will be discussed in detail i n 

Section 4.  Other cryptographic mechanisms can also be used to implement different security boxes. 

3.1.2  Node authentication 

Authentication is fundamental to Conductor security.  Only trusted nodes can participate in planning and access the 

plaintext data stream.  
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To authenticate one Conductor-enabled node to another, a security box can include authentication information on 

behalf of the sender.  When authentication information is received, the security box on the receiving node can 

invoke its authenticating functionality to determine whether a node is trusted. 

While many security box implementations are possible, each security box may enforce a different authentication 

mechanism.  Each authentication mechanism may have a different specification for what cryptographic algorithm to 

use and how it should be employed.  Each node sends its own authentication information toward the planner.  Nodes 

A, B, and C in Figure 3 will send their authentication information to planner D in the same way that planning 

information was sent.  The planner can then authenticate the node.  The planner sends its own authentication 

information in the reverse direction in the same manner as plan distribution, allowing every node to authenticate the 

planner. 

3.1.3  Planning process protection 

Each connection’s planning process must be protected, including node selection at the planner node and plan 

deployment at other Conductor-enabled nodes.  Each node provides authenticating information for planning 

information, typically a digital signature (Figure 3).  The planner node selects those nodes it trusts, authenticates 

their incoming planning information, formulates a plan, and distributes the plan along the reverse path.  The planner 

node also provides authenticating information for the plan.  During plan distribution, each node verifies the 

authenticity of the incoming plan before it is instantiated.  Planning messages can also be encrypted via the security 

box to provide secrecy. 

Conductor supports a trust management mechanism.  At the planner node, if a node is trusted to participate in the 

planning process according to the trust management mechanism, and its planning information is correctly 

authenticated, its planning information can be trusted and used in forming a plan.  Similarly, if an intermediate node 

trusts the planner node according to the trust management mechanism, and can authenticate the plan, the plan can be 

accepted.  This trust management system will be discussed in Section 3.4. 

In the above discussion the planner node has full control of which nodes can be selected.  The initiator can later 

reject a plan, but not otherwise influence node selection.  This could be improved by assigning more control power 

to the initiator.  For instance, after the planner node selects one or more nodes, it can negotiate with the initiator to 
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reach a final agreement on which nodes to finally select.  However, the improvement would be achieved at the price 

of more coordination cost.   

3.1.4  Data stream protection 

If the data stream of a connection needs to be encrypted to protect the communication secrecy or integrity between 

the application client and the server (perhaps only when crossing a dangerous area), or to protect the data from 

unauthorized adaptation, the planner can select encryption and matching decryption adaptors to deploy at trusted 

nodes.  The planner may have several encryption/decryption pairs to choose from based on the desired encryption 

strength.  Each of these pairs of adaptors protects the data stream across one virtual li nk. 

Session keys for data encryption and decryption can be generated on the planner node, which is implicitly trusted.  

Typically only one key is required per type of encryption/decryption adaptor deployed for each session.  The planner 

needs to distribute the keys to those nodes where the keys are needed. 

Node authentication is the fundamental basis for key distribution.  Only trusted nodes should receive session keys, 

so the session key must be encrypted in a form that only the target can decrypt. Also, the receiver must be able to 

determine that the keys originated from a trusted distribution source, so the planner must provide authentication 

information for a session key in the same way it would for a plan (a digital signature). 

The planner may trust some Conductor-enabled nodes to adapt plaintext data while others nodes may only be given 

access to encrypted text.  In the first case, the planner will distribute a session key to the node along with an 

adaptation plan.  In the second case, the planner may still distribute an adaptation plan but no session key. 

3.2  Dynamic Selection of Security Schemes 

Conductor allows multiple pluggable security schemes.  Since there is no ubiquitous security scheme, and each 

connection may require a different level of protection, Conductor allows many security box implementations.  This 

flexibilit y makes it easy to add a new security scheme with a new security box implementation.  For one connection 

between an application client and a server, all i nvolved Conductor-enabled nodes use one particular security scheme.  

For another connection, a different security scheme may be employed.  Each Conductor-enabled node may get 

involved in more than one connection, and for each connection it can employ a different scheme.  
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Conductor ensures that all Conductor-enabled nodes involved in a connection use the same security scheme.  At the 

beginning of a planning process, the user selects an appropriate security scheme (or one is selected on his behalf) at 

the initiator.  A security scheme selector message is then forwarded toward the opposite end point, the planner node.  

This message tells which security scheme should be employed for this data connection.  Each selector message can 

also include parameters specific to a particular security scheme, such as the names of the desired public key 

encryption algorithm, message digest algorithm, signature algorithm, and so forth.  After receiving the selector 

message, each intermediate Conductor-enabled node will l oad the appropriate security box and forward the message 

to the next Conductor-enabled node on the path toward the planner.  As a result, each Conductor-enabled node on 

the path, including the planner, will enforce the corresponding security scheme for this connection.  

Furthermore, Conductor provides a mechanism to ensure that every node of a connection has indeed used the same 

security scheme throughout the planning process.  Protection of scheme selection is done via the security box itself.  

When a security scheme selector message is forwarded toward the planner, it is unprotected.  However, the planner 

node, as the last node to receive the selector message, sends back an indication of the security scheme that it has 

used.  This time the information is protected (typically signed) by the security box (Figure 3).  Each Conductor-

enabled node, including the initiator, can securely determine whether the planner has used the expected security 

scheme.  If the planner has used a different scheme (perhaps through subversion of the scheme selector during 

transmission), this will be caught by the initiator, if not earlier.  If other nodes have used a different scheme, they 

will not be authenticated by the planner and will t herefore not be selected in the plan. 

When a connection crosses multiple domains, each of which supports different security mechanisms, it may not 

always be possible to select one common security scheme.  We address this issue in Section 7. 

3.3  Security Roles of the Initiator and the Planner 

Conductor is careful in dividing tasks between the initiator and the planner.  Because of their full access to the data 

stream, both the initiator and the planner of a connection are trusted.  In principle, either of them can be responsible 

for the security scheme selection, session key generation, or a variety of other tasks.  Or these two endpoints could 

negotiate for these tasks.  However, since Conductor is frequently deployed where network conditions are poor, it 

attempts to minimize data transfer.  Conductor also assumes as littl e prior coordination between nodes as possible.  
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Since the planning process starts at the initiator of a connection, it is most economical i f the initiator is responsible 

for selecting security schemes.  A security scheme selector message can be delivered to the planner node along the 

same route as the planning information.  On the other hand, since the planner has authentication information for all 

nodes, it is in the best position to generate and distribute session keys. 

3.4  Establishing Trust In Intermediate Nodes 

After a planner authenticates an intermediate node, it must decide whether to authorize that node to adapt the data 

stream.  Similarly, an intermediate node also needs to determine whether to trust the plan from a particular planner 

node.  Here we focus on the former: that is, establishing a planner’s trust of intermediate nodes. 

Conductor can support a variety of authorization mechanisms.  In a simple form, each Conductor-enabled node can 

keep a static list of nodes that it trusts.  At the planner node, this list specifies those nodes that the planner trusts to 

adapt the data stream arbitrarily.  Nodes not on the list are not trusted for any adaptation. 

More flexible and dynamic models of trust can be enforced, typically by leveraging an automated trust management 

system.  KeyNote is one such system [3].  It provides a mechanism to determine whether an action (described by an 

action attribute set) by a principal (typically expressed as the holder of a particular cryptography key) complies to a 

security policy (expressed by policy and credential assertions) by querying a general-purpose compliance checker. 

KeyNote can be used to specify various trust relationships.  For instance, some nodes are authorized by a planner to 

provide input to the planning process and to have full access to the data (and thus adapt plaintext data arbitrarily). 

Other nodes may be authorized to participate in the planning process but may not be allowed to see the plaintext 

data stream, instead adapting only encrypted data.  Still other nodes may not be authorized even to provide input to 

the planning process.  Various degrees of trust may also be possible.  For instance, selective encryption of a layered 

encoding may be employed to allow partial access to (and adaptation of) plaintext data. 

In order for Conductor to employ KeyNote, each Conductor-enabled node will have to enforce its specific security 

policy, describe those actions to check, and interact with the compliance checker.  The security policy itself must be 

specified by the user.  Several plausible mechanisms for designing policies are given below: 

• The user specifies certain companies (ISPs, ASPs, content providers, etc.) that are trusted.  Since any IP 

address is associated with a domain that is associated with a company, such a policy can be applied. 
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• The user assumes that bonded companies will have a set of Conductor nodes throughout the network, and 

the user will have a list of those companies. 

• The user shares with his friends, lists of nodes that can be trusted. 

3.5  Security Issues Not Addressed 

We do not intend to address issues of denial-of-service in this work.  If a Conductor-enabled node attempts to thwart 

the planning process by refusing to forward control information to the planner, the system will fail .  However, this 

result is the same as a router refusing to forward data in any stream.  This issue is, therefore, beyond the scope of 

this research.  The safety of adaptor code is also not addressed.  We intend to leverage existing research results on 

mobile code safety [2] [18] [26]. 

4.  Authentication Schemes 

Authentication is the basis of Conductor security.  Our design allows security boxes with different authentication 

schemes to be plugged in.  We have constructed three security boxes, null, tree and chain, each with a different 

authentication scheme.  Different schemes provide different levels of protection, require different amounts of 

infrastructure (which may or may not be available), and have different levels of overhead.  The null scheme does not 

provide any authentication.  The other two schemes adopt authentication mechanisms based on public key 

cryptography, but with different assumptions on the structure of certificate authorities (CAs) and different methods 

for the collection and verification of public key certificates.   We will further ill ustrate the abilit y to plug in 

symmetric cryptosystem-based authentication scheme using Kerberos. 

4.1  Null Scheme 

The null scheme provides no real authentication enforcement.  It cannot be used when stream protection (and hence 

key distribution) is required.  The null scheme is most useful for the case in which the user does not require security.  

In addition, having such a scheme can help demonstrate the added cost of the security architecture. 

4.2 Authentication Using Public Key Cryptography 

We have designed and implemented two authentication schemes, tree and chain, based on public key cryptography.  

Here, the authentication of a node is, in fact, the authentication of the public key of that node.  The tree scheme 
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assumes that a certificate hierarchy infrastructure is available.  The chain scheme assumes there is no certificate 

hierarchy; instead, CAs are distributed in a flat topology.  In both the tree and chain schemes, each Conductor-

enabled node has one associated CA (both schemes can be easily extended to allow each node to have multiple 

associated CAs, but in this paper we only discuss the single-CA case). 

In a security box with either authentication scheme, planning information is authenticated using a digital signature 

based on public key cryptography.  When a Conductor-enabled node provides its own planning information, it is 

signed with its own private key.  When the planner node receives the planning information, it can check the 

authenticity of the planning information based on the signature, which in turn necessitates the authentication of the 

public key of that Conductor-enabled node.  The authentication information for the public key of each Conductor-

enabled node is included in an authenticator message. 

Similarly, the authenticity of a plan is assured with the signature of the planner.  When a node wants to install a 

distributed plan, it needs to ensure that the plan is authentic.  The node checks the signature of the plan with the 

public key of the planner node.  This operation requires the authentic public key of the planner node.  The 

authentication information for the public key of the planner node is transmitted in a reverse authenticator message, 

which is similar to the authenticator. 

When the public key of a node can be authenticated, a session key can be securely distributed to support data 

secrecy.  Before a planner delivers a session key to a Conductor-enabled node, it can sign the session key with its 

own private key and encrypt with the authenticated public key of the node.  Only the target recipient can decrypt the 

session key with its private key.  The node can also verify that the session key is indeed from the planner after 

authenticating the public key of the planner. 

Each different authentication scheme has its own protocol to generate authenticator and reverse authenticator 

messages and use them to do authentication and select trusted nodes.  

4.2.1  Authentication scheme: tree 

The tree scheme assumes a certificate hierarchy infrastructure is available.  In this hierarchy, all CAs are organized 

in a tree structure, each at a particular level.  The CA at the top (the parent) produces certificates for the next level 
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down (the child).  This repeats recursively.  The public key for the CA at the root of the tree (level 0) is universally 

known.  

With such a structure, multiple certificates from the hierarchy may be required to authenticate a public key.  The 

authenticator message (or the reverse authenticator message) sent by a Conductor-enabled node includes a list of all 

necessary certificates to verify the public key of that node.  To build such a message, a node contacts its associated 

CA, CA(n), for a certificate of the node’s public key signed by CA(n), cert(node, CA(n)).  The certificate shows that 

CA(n-1) is the parent of CA(n).  The node then contacts CA(n-1) for a certificate of CA(n)’s public key signed by 

CA(n-1).  This repeats until a certificate signed by the root is returned.  

Note that the set of certificates needed to certify a node’s public key is static in this scheme.  A node can therefore 

cache all of the certificates it will need to authenticate itself to any other node.  

After the planner receives the authenticator message of a Conductor-enabled node, or a Conductor-enabled node 

receives the planner’s reverse authenticator message, the list of certificates is retrieved from the message.  Starting at 

the root, for which all nodes have a valid public key, lower-level CA certificates are authenticated recursively.  

Eventually, the certificate of the node in question is authenticated. 

4.2.2  Authentication scheme: chain 

4.2.2.1  Chain of trust 

The deployment of a CA hierarchy is not required by the chain scheme.  Instead, CAs are flatly distributed, as 

shown in Figure 4, possibly deployed independently by a variety of administrative authorities. 

A CA typically provides certificates for the nodes in its “neighborhood,” but may also contain a small number of 

“distant” nodes whose public keys are frequently queried.  

We assume a certain degree of overlap between “neighboring” CAs.  A CA may store the public keys for some 

"nearby" nodes and CAs. 

This certification overlap can allow one node to authenticate to another by forming a chain of trust.  As in other 

systems, a chain of trust is a chain of certificates, in which one end is the certificate for the public key of the node in 
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question, the other end is the certificate signed by the CA associated with the node running the authentication, and 

each certificate involved is verified. 

4.2.2.2  Certificate collection 

In the chain scheme, each node may add certificates useful in authenticating other nodes.  When forwarding 

authentication information, each Conductor-enabled node asks its associated CA for every potentially useful 

certificate, and includes them in authenticator or reverse authenticator messages. 

During the information-gathering portion of planning, each Conductor-enabled node along the path must 

authenticate itself to the planner.  As demonstrated in Figure 5, the data stream from an application client to an 

application server is intercepted by four Conductor-enabled nodes, A, B, C and D.  D is the planner for this 

connection.  Each Conductor-enabled node (for example nodes A, B and C in Figure 5) initially generates a single-

certificate authenticator.  This authenticator contains a certificate for that node from its associated CA, the identity 

of the node, and the identity of the CA.  This authenticator is then forwarded to the next node toward the planner.  

When an authenticator is received, each downstream Conductor-enabled node contacts its own associated CA to add 

two more certificates signed by this CA (if available): one certificate for the node specified in the authenticator and 

one for the CA specified in the authenticator.  This node further forwards the authenticator message toward the 

planner node.  Each authenticator, therefore, can be enhanced as it is forwarded toward the planner node. 

While a Conductor-enabled node can ask for a certificate by contacting its associated CA, certificate caches can be 

deployed at Conductor-enabled nodes to improve performance.  A negative certificate cache might also be 

employed; if a certificate is already known not to be contained in its associated CA, a node does not need to contact 

that CA. 

The planner may receive multiple certificates in each authenticator message.  In Figure 6, each square represents a 

certificate that may be finally available at the planner D of Figure 5.   For instance, the authenticator for node A 

could include the certificates in the rows labeled “Node A” and “CA-A.”  

The same certificate collection principle is applied in the reverse direction.  However, only a single reverse 

authenticator message flows along the reverse path toward the initiator (node A in Figure 7).  So, in addition to 
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asking for certificates for the planner and the planner’s associated CA, each Conductor-enabled node also asks for a 

certificate for every CA listed in the reverse authenticator; for example, cert(CA-C, CA-B) as shown in Figure 7. 

4.2.2.3  Authentication 

Authentication in the chain scheme requires a search for a valid chain of trust.  Multiple chains are possible for a 

given node.  Any valid chain to a node that includes only trusted CAs leads to a trusted public key.  So, each 

possible chain must be checked until a trusted chain is discovered. 

If the planner node (node D in Figure 5) receives a certificate for A signed by CA-D, since D knows the public key 

of CA-D, D can authenticate and obtain A’s public key.  This is a chain of trust composed of only one certificate, 

cert(A, CA-D).  However, if cert(A, CA-D) is not available, D will still try to verify A’s public key by searching 

other chains of trust.  For instance, if node D can get cert(A, CA-A) and cert(CA-A, CA-D), a chain of trust 

(cert(A,CA-A), cert(CA-A, CA-D)) is formed.  D then can authenticate A’s public key: CA-A’s public key can be 

verified using cert(CA-A, CA-D) and CA-D’s public key; CA-A’s public key can then be used to verify cert(A, CA-

A). 

The chain can be longer.  The longest valid chain here would be cert(A, CA-A), cert(CA-A, CA-B), cert(CA-B, 

CA-C), cert(CA-C, CA-D).  As long as there is a chain of trust in which CA-D is the last element, the public key 

certified by the first certificate of the chain can be verified; otherwise, the authentication fails. 

Along the reverse direction, each Conductor-enabled node authenticates the planner in the same way.  For instance, 

in Figure 7 at node B, planner D’s public key can be verified if a chain of trust can be formed as (cert(D, CA-D), 

cert(CA-D, CA-C), cert(CA-C, CA-B)). 

4.3  Authentication Using Kerberos 

Integrating Kerberos [21] into Conductor as an authentication scheme is straightforward. 

4.3.1  The Kerberos model 

To authenticate to a service using Kerberos, an application obtains a ticket and then presents that ticket to the service 

for authentication.  At an extremely high level, a client sends a request to Kerberos to authenticate to a particular 

service.  The client receives (in the end) a session key for talking with the requested service, encrypted with a key it 
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shares with Kerberos, along with a ticket that it can send to the service.  The ticket contains (among other things) the 

identity of the nodes involved and a session key for talking with the client encrypted with a secret that the service 

shares with Kerberos. 

To authenticate to the service, the client sends an Kerberos authenticator (a time-stamp, a checksum, etc.) encrypted 

using the session key to the service along with the ticket.  The service can obtain the session key using the key it 

shares with Kerberos and use it to decrypt the authenticator and therefore verify the authenticity of the client.  The 

server can (optionally) send an authenticator back to the client, again encrypted with the session key, allowing the 

client to authenticate the server. 

The session key used for authentication of the session can now be used by the client and server for whatever they 

like (typically encryption). 

4.3.2  Integration with Conductor 

In Conductor, each node along the path needs to authenticate itself to the planner node by sending an authentication 

message.  Thus, each node needs to share a secret with Kerberos.  At connection setup time, a given node will send a 

request to Kerberos to allow the node to authenticate with the planner node.  Kerberos will provide a session key and 

a ticket for authenticating to that service. 

The authentication message sent from a Conductor-enabled node to the planner will t hus contain the Kerberos 

authenticator (encrypted with the session key) and ticket.  The planner node will t hen be able to obtain the session 

key from the ticket and verify the authenticity of the sender’s identity from the authenticator. 

The planner' s reverse authentication message will consist of a Kerberos authenticator (encrypted using the session 

key).  Again, the client will be able to use the session key it already has to verify the identity of the planner node. 

Once established, the Kerberos session keys can also be used to digitally sign both the planning information and 

plan distribution messages.  Key distribution can be accomplished by encrypting the Conductor session keys using 

the Kerberos session key.  A signature is not required for key distribution since the Kerberos session key is known 

only to a given node and the planner. 
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Note that Kerberos requires a Conductor-enabled node to know the identity of the planner, and vice versa.  This is 

possible because the planner is assumed to be on the same machine as the server of the connection in question.  (In 

Section 8 we will relax this assumption.) 

4.3.3  Cross-realm authentication 

If a client and planner that wish to communicate are in different domains, they will li kely have different Kerberos 

servers.  The Kerberos infrastructure is already designed to handle this case.  While the client may have to 

communicate with several Kerberos servers, it will eventually end up with a session key and ticket that have been 

generated by the remote endpoint's Kerberos server. 

This is not particularly desirable, because a given Conductor node may have to go through several rounds with 

remote services in order to obtain the required ticket.  Once obtained, however, no further communication with 

Kerberos is required.   

4.4  Other Authentication Schemes 

The chain scheme has similarities to PGP/X.509 where the chain of trust principle is also applied [11]; the tree 

scheme is similar to the PEM [14] authentication model, in which a CA hierarchy is also assumed.  

Our design is open to other authentication models as well , and a new scheme can be easily plugged in.  For instance, 

researchers at the University of Cali fornia, Davis, proposed a solar trust model [5].  With this model, with respect to 

each specific CA (the sun), other CAs are ordered based on the trust degree (planets in orbit around the sun).  Each 

CA has a rule set determining the trustworthiness of information signed by other CAs.  Applying this model to our 

system, each authenticator would be formed in the same way as the chain scheme, but each certificate inside the 

authenticator would also have a rule set attached.  To authenticate a public key, a node would need to apply the 

corresponding rule set for each involved certificate. 

5.  Attacks and Countermeasures 

In this section we describe possible attacks and the countermeasures employed by Conductor.  These attacks are 

independent of the security scheme selected, but the countermeasures and the effectiveness depend on specific 

mechanisms adopted by security boxes.  We will show that the tree and chain schemes we developed are effective. 
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5.1  Node Impersonation 

A node may attempt to impersonate another Conductor-enabled node in order to send a planner node fake planning 

information.  A node may also impersonate the planner to distribute a fake plan or fake session keys.  Recall that 

planning messages must pass through the security box at each Conductor-enabled node.  The security box is 

responsible for preventing node impersonation. 

The protection strength of the security box depends on the power of the adopted security scheme in the security box.  

The null scheme does not attempt to protect against node impersonation.  In the tree or chain scheme, assuming the 

public key cryptography is not broken and CAs are not subverted, impersonation is not possible without knowing 

the private key of the node being impersonated.  Upon receipt of a message, such an attack can be detected by 

obtaining the authentic public key of the sender and using the key to verify the signature of the planning messages 

from that node. 

5.2  Key Stealing 

The security box at each Conductor-enabled node aids session key distribution.  In Conductor a session key is 

generated and distributed from the planner.  The session key must be encrypted to ensure it is readable only by the 

intended recipient.  

In the tree or chain scheme, when a session key is distributed to selected nodes, it is encrypted with each selected 

node’s public key, which is already authenticated by the planner.  Since the session key can only be decrypted with 

the node’s private key, it cannot be stolen unless the private key of the node is stolen or unless node authentication is 

subverted and the planner uses the wrong public key to encrypt the session key. 

5.3  Replay Attack 

A Conductor-enabled node that has been selected in the past may execute a replay attack if it is not selected in the 

current planning process.  Consider Figure 8 where both node B and C are selected, and the same session key K1 is 

to be delivered to B and C.  C receives encrypted session key K1 that only C can decrypt.  It also receives a second 

encrypted K1 in a form such that only B can decrypt.  Node C cannot decrypt the latter one and forwards it to node 

B. 
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Now consider a second connection as shown in Figure 9.  This time, node C is not selected.  It intercepts a new 

session key K2 destined for B that only B can decrypt.  Instead of forwarding K2 to B, node C forwards the 

previous session key K1 destined for B to B.  C knows K1, and will be able to decrypt anything that B sends it.  B 

will not be able to detect the problem when B receives K1. 

This attack is prevented by associating a random number with each round of the planning process (Figure 10).  The 

initiator injects a random number to each Conductor-enabled node.  When a session key is distributed, the session 

key and the random number are encrypted together.  Since in each planning process the random number is different, 

it is hard for C to provide B with an encrypted session key for the current round of planning. 

Other replay attacks may also happen.  The replay of a previous plan, for instance, occurs in a similar manner to the 

replay of session keys.  We solve this problem using the method discussed above. 

5.4  Security Scheme Replacement 

After a security scheme is specified, a security scheme selector message is forwarded toward the planner in plain 

text.  A corrupted node along the path could forge a different scheme and trick every node downstream into using 

that scheme.  For instance, a null scheme may be substituted for the original tree or chain scheme.  

The general principle of counteracting such an attack has been addressed in Section 3.2.  Here we take a further look 

at how this is done in the tree or chain scheme.  In the chain or tree scheme, the planner signs the scheme selector 

message, together with the ID of the current connection, and sends back the signature.  Each Conductor-enabled 

node will verify the signature.  If  it is inconsistent with the original scheme, this will be detected at the initiator, if 

not sooner.  In addition, a replay attack of the scheme selector signature cannot be successful since the ID of the 

current connection is unique, and it is signed together with the selector message. 

6.  Implementation and Experiments 

The Conductor security architecture is fully implemented.  We have also measured and analyzed the cost of using 

Conductor with different security schemes in terms of plan setup latency and bandwidth consumption. 
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6.1  Implementation  

The implementation of Conductor security follows the design discussed above.  We implemented the security box 

mechanism, and we also implemented the three pluggable security schemes, null, tree and chain.  We used a static 

list to manage the trust relationships between Conductor-enabled nodes.  The tools we used include the Java 

Cryptography Architecture [13] and the cryptix public domain encryption library 3.0.3 [6]. 

Additionally, we implemented a public key certificate authority (CA).  A certificate client can send a request to a 

CA for the certificate of a node’s public key.  The CA in turn can return a certificate if one is available.  We do not 

address certificate revocation. 

6.2  Experiments 

We measured the cost of providing Conductor security and the cost of different security schemes.  

6.2.1  Experiment design 

The security costs we consider include the latency to set up a plan and the bandwidth consumed during the plan 

setup procedure.  Each time an application establishes a connection, a path of a certain number of Conductor-

enabled nodes will be discovered.  Our experiments measured how the security cost varies with the number of 

Conductor-enabled nodes (including the two endpoints).   

Neither latency nor bandwidth consumption by the data stream was measured.  The stream starts after the plan is 

deployed, and its cost is irrelevant to setting up the security scheme.  

Four different scenarios were measured: none, null, tree, and chain.  In the none scenario, each Conductor-enabled 

node along the path has no security implementation at all .  None of the security mechanisms discussed in this paper 

are in place for the none scenario.  In the null scenario, the entire generic security mechanism is in place, but no 

authentication is actually invoked for the connection.  In the null, tree, and chain scenarios, each Conductor-enabled 

node along the path will enforce the selected scheme. 

In the tree scenario, a three-level CA hierarchy was composed.  The CA associated with each Conductor-enabled 

node was at the bottom level.  Costs would vary with certificate hierarchies of different depths. 
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In the chain scenario, each Conductor-enabled node was associated with a different CA (Figure 11).  Each CA could 

only certify 1) the node it was associated with and 2) the CAs associated with the Conductor-enabled nodes within 

the immediate neighborhood (Table I).  Thus, for any pair of claimant and verifier, the only feasible chain of trust 

that we provided is the one containing all  the CAs from the claimant to the verifier, which is the longest possible 

chain of trust.  

To decrease the cost of obtaining a certificate, Conductor-enabled nodes can use a certificate cache, reducing the 

number of times they must consult a CA.  We compared the chain scenario, with exactly the same environment 

setup, in two different cases.  In one case there was no cache at all .  In the other case optimal caching was deployed 

at each Conductor-enabled node, so the node never needed to contact its associated CA. 

In both the chain scenario with optimal caching and the tree scenario, certificate retrieval from CAs is avoided, and 

the location of CAs has no impact on measurement results.  But this is not true with the chain scenario without 

caching—certificate retrieval cost varies with the location of CAs.  However, certificate retrieval cost can also 

significantly vary with many other factors.  Therefore, we simply chose to collocate the associated CA of each 

Conductor-enabled node on the same machine. 

Only successful cases were measured.  Authentication never fails in the chain and tree scenarios.  The RSA 

algorithm was used for public key encryption [25].  The signature algorithm was RSA-based with a SHA-1 message 

digest algorithm [22]. 

6.2.2  Resources 

All Conductor-enabled nodes in these experiments were the same.  Each was a Dell Inspiron 3500 machine running 

Linux Redhat 6.0 and IBM JDK 1.1.8 [10], with Intel Mobile Pentium II 333Mhz, 256KB cache, 64MB RAM, 4GB 

harddrive, and 100Mb/s Ethernet connection.  

Each CA associated with a Conductor-enabled node shared the same resources as the Conductor-enabled node, 

collocated on the same machine.  For the tree scenario, each non-leaf CA was running under Linux Redhat 6.0 on an 

Intel Celeron 300Mhz with 128KB cache, 128MB SDRAM, and a 100 Mb/s Ethernet connection. 
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Each Conductor-enabled node was also homogeneous in the sense that each machine was kept under the same 

workload with the same set of processes running.  Only processes related to the experiment and normal system 

processes were running. 

6.3  Results and Analysis 

6.3.1  Plan setup latency 

For each of the four scenarios, Figure 12 shows plan setup latency versus the number of Conductor-enabled nodes 

between two endpoints.  Here, in the chain scenario, optimal caching is deployed. 

The null scenario differs from the none scenario by including the entire security framework, but with no actual 

authentication.  The difference between the performance of the null and none scenarios is thus the cost of the 

security framework devoid of cryptographic operations or other authentication mechanisms.  That difference is 

statistically indistinguishable at the 99% confidence level (Figure 12). 

Use of a security scheme such as the tree or chain (with optimal caching) introduces greater latency in plan setup 

than the null or none scenario (Figure 12). The increased costs include cryptographic operations and the 

transmission and handling of cryptographic messages.  Recall that Conductor uses these cryptographic operations 

both to protect planning messages and do node authentication. 

To protect message integrity, every node in a connection needs to sign its planning information and have it verified 

by the planner of the connection.  Also the planner needs to sign both the plan and security scheme selector, which 

are verified afterwards by each node.  With n Conductor-enabled nodes, this leads to (n+1) signing operations and 

3(n-1) verification operations.  This is same for both the chain and the tree scenarios. 

Certificate verification distinguishes the chain scenario from the tree scenario in terms of plan setup latency.  In the 

chain scenario, with n total Conductor-enabled nodes (Figure 11), the planner needs to verify (n-i+1) certificates to 

verify the public key of Conductor-enabled node i (i could be 1, 2, ... , n-1).  Notice that a planner only needs to 

verify each certificate once; it verifies 2(n-1) certificates in total.  Conductor-enabled node i also must verify (n-i+1) 

certificates to authenticate the planner.  So, the total number of certificates to verify before the plan is set up is 
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In the tree scenario, to authenticate the public key of each Conductor-enabled node, the planner needs to verify k 

certificates, where k is the depth of the certificate hierarchy.  Since we assume the k certificates of one node do not 

overlap with those k certificates of another, the planner needs to do certificate verification k* (n-1) times.  Also, each 

Conductor-enabled node needs to verify k certificates to authenticate the public key of the planner.  So, the total 

number of certificates to verify before the plan is set up is 2*k* (n-1).  In our experiment, k=3, so the value is 6(n-1). 

The above analysis shows that as more nodes are involved, the increased cost due to cryptographic operations varies 

linearly in the tree scenario and quadratically in the chain scenario (with optimal caching).  This cost is paid once at 

setup time, and primarily represents cryptographic operations performed in Java.  (In our experimental setup and 

using the cryptix library version 3.0.3 [6], the time taken to compute and verify cryptographic signatures of various 

Conductor messages varied between a few milli seconds and a few tens of milli seconds.) 

The chain scenario without certificate caching incurs higher plan setup latency (Figure 13).  In our experiment, each 

Conductor-enabled node and its associated CA are collocated on the same machine; otherwise, the latency could be 

even higher.  But certificate retrieval latency is independent of the security implementation of Conductor. 

Although the chain scenario leads to higher plan setup latency in many cases, it is easier to deploy than the tree 

scenario.  The tree scenario requires a certificate hierarchy, and the root of the hierarchy must be trusted.  This is not 

feasible in many circumstances.  The chain scenario only requires each Conductor-enabled node to have an 

associated CA and some level of coverage overlap between CAs. 

6.3.2  Bandwidth consumption 

We analyzed bandwidth consumption during the plan setup procedure for four different scenarios.  In the chain 

scenario, when optimal caching is used, no bandwidth is consumed for certificate retrieval.  

To provide a fair comparison, we distributed the same plan in all four scenarios.  We chose a plan in which every 

Conductor-enabled node is selected but no adaptors are deployed.  
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Figure 14 shows the bandwidth consumption per link in the four scenarios.  In the null scenario, each Conductor-

enabled node needs to forward the security scheme selector message to the next Conductor-enabled node, in addition 

to transmitting all the same messages as those in the none scenario.  In the chain and tree scenarios, there are also 

other extra security-related messages consuming more bandwidth, such as the authenticator messages, the signatures 

of planning messages, and the signature of the scheme being used. 

The difference between the bandwidth consumed in the chain and tree scenarios is caused by the authenticator 

messages.  An authenticator is mainly composed of several certificates.  With our experiment setup, every 

authenticator message in the tree scenario includes three certificates.  In the chain scenario, however, every 

authenticator initially includes one certificate, and increases to two certificates after the first hop; in particular, the 

reverse authenticator of the planner will have one more certificate after every hop before reaching the initiator.  With 

n Conductor-enabled nodes in the connection, the average number of certificates passing a link is (1.5n+3) in the 

tree scenario, and (1.5n –1) in the chain scenario.  There are four certificates less per link on average in the chain 

scenario than in the tree scenario.  No attempt was made to compact the data in the authenticator messages.  

Therefore, we believe the bandwidth consumption could be further optimized.  Note that even without optimization 

with 9 nodes, the average bandwidth usage for any scenario is at most slightly more than 5000 bytes per link, which 

is acceptable for most situations. 

7.  Multiple Security Schemes 

The discussion thus far has assumed a single security scheme for each connection selected by the client node.  

However, the abilit y to use multiple security schemes is desirable to allow authentication of as many intermediate 

Conductor-enabled nodes as possible, considering each node may support a different set of security schemes.  In this 

section, we revisit the planning procedure and introduce an extended version of the secure planning procedure that 

supports multiple security schemes for a connection, with the cost of one additional round trip. 

7.1  Secure Planning Algorithm For Multiple Security Schemes 

If multiple security schemes are allowed, each node must select which scheme it will use to authenticate itself to the 

planner node, protect its planning information, and secure the deployment of a plan.  Such scheme negotiation and 

selection is done in the first round trip.  Each node may support several schemes.  The client and the planner nodes 
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also have a list of schemes that would be acceptable for a given type of connection.  Note that a client or planner 

may choose to accept a scheme that it does not support.  In the following, we describe the algorithm step by step. 

(1) The client node sends a list of acceptable schemes to the planner node.  Each node, including the client, also 

sends a list of supported schemes to the planner node, ordered by its preference.  The intermediate nodes do not need 

to see this message (but they may). 

(2) The planner node computes the intersection of (a) the schemes acceptable to the client, (b) the schemes 

acceptable to the planner, and (c) the schemes supported by the planner.  The result is the list of schemes selected for 

use in this connection. 

Because each node specified its level of preference for each supported scheme, the planner will also know which 

scheme each node will use. 

(3) The planner generates a message containing the list of selected schemes and the client’s acceptable schemes 

(literally, the first message from the client node in step 1).  Each selected scheme is used to generate a signature for 

this message.  The message and all of the signatures are sent toward the client, visiting each node in turn. 

(4) The planner generates an authenticator using each of the selected schemes, and sends it toward the client, visiting 

each node in turn. 

(5) Given the messages from steps 3 and 4, each node can verify the selected schemes.  If a node fails to verify the 

scheme, it will not participate.  If the client fails to verify the scheme, or if the copy of the message returned from 

step 1 does not match, the connection will fail (or be reattempted). 

If the above verification succeeds, each node sends its signed planning information and its reverse authenticator 

toward the planner, visiting other nodes along the way.  It will also send a signature for the list of supported schemes 

that it sent in step 1.  The scheme used to generate the signature and the authenticator should be the first one in the 

list of supported schemes sent from this node to the planner that was also selected by the planner for this connection.  

Note that the authenticator for a node may be augmented by other nodes along the way, no matter what scheme the 

intermediate node used to authenticate itself. 
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(6) Upon receipt of the messages from step 5, the planner will verify the identity of the nodes, select a set of 

authorized (trusted) nodes, and formulate a plan.  Any node that cannot be authenticated or trusted and any planning 

information that cannot be validated will not be considered in planning. 

The signature for supported schemes will also be verified.  The connection will fail i f the verification does not 

succeed. 

(7) The planner will send a message containing the plan toward the client, visiting each node in turn.  The planner 

will generate a set of signatures using each of the selected schemes and attach them to the message. 

(8) Each node will verify the plan using the attached signature and the authentication information received in step 4.  

If a node cannot validate the plan, it will not participate.  From an adaptation point of view, we can treat this as a 

node failure.      ♦ 

Figure 15 shows an example that involves four Conductor-enabled nodes.  Each node supports a different set of 

security schemes (Table II).  Employing the above steps, both scheme x and scheme y are used for the connection.  

This algorithm is justified as follows:  For a given connection, the client must ensure that its list of acceptable 

security schemes was used by the planner to select schemes (otherwise the client can be tricked into using an 

unacceptable scheme, such as a scheme not enforcing a desired level of security); this is satisfied by steps 3 and 4 

above.  In addition, the planner must ensure that the list of supported schemes from each node is authentic 

(otherwise a node that supports an acceptable scheme may be regarded as supporting an unacceptable scheme, and 

will be thus unable to participate the planning process); this is guaranteed through steps 5 and 6.  The planner also 

must ensure that the planning information from each node is authentic in order to form an effective plan; this is also 

enforced through steps 5 and 6.  Finally, to avoid falsified adaptation, every node must be able to ensure that a plan 

to deploy is authentic; this is guaranteed through steps 4, 7, and 8.  Every node also must ensure that a list of 

selected schemes is authentic (to avoid using a wrong scheme to authenticate itself to the planner and thus not be 

selected); this is implemented in steps 3 and 4. 
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7.2  Bridging Different Security Schemes 

One drawback of the algorithm presented in the previous section is that it cannot select any scheme that is not 

supported by the planner node.   This restriction is enforced in step 2 and ensures that the planner will be able to 

form a direct relationship with each participating node.  If a node does not support any scheme supported (and hence 

selected) by the planner, it cannot participate.  This is particularly troublesome since a group of neighboring nodes 

are likely to support a common security scheme, forming an island.  If the client and the planner belong to different 

islands, secure communication may not be possible.  However, this restriction can be removed if we allow nodes at 

the edges of islands that support more than one security scheme to act as bridges between security schemes. 

We revise the previous algorithm to support bridge nodes.  Below, we describe additions and changes to each step in 

the algorithm from Section 7.1. 

 (1) This step is unchanged. 

(2) We add bridge selection to this step.  Using the information in step 1, nodes are identified that can act as a 

bridge.  A node can be a bridge if it supports an acceptable scheme not supported by the planner and also supports 

either (1) an acceptable scheme that is supported by the planner, or (2) an acceptable scheme that is supported by a 

bridge between itself and the planner.  The list of selected schemes is then augmented by a list of bridge nodes and 

the translations they can perform.  Note that bridges should only be specified if they will be useful in translating for 

another node between the bridge and the client.  Some schemes that would not have been selected by the previous 

algorithm may be selected now because of the introduction of bridge nodes. 

A node that is acting as a bridge node has a greater abilit y to affect the resulting adaptation than other nodes in the 

stream.  A bridge node has capabiliti es similar to the planner.  It is therefore important that the planner have strong 

trust in a node before selecting it to act as a bridge. 

(3) The message (and its signature) sent by the planner in this step will receive special handling at bridge nodes.  

When the message reaches a bridge node, the bridge verifies the message signature and adds additional signatures 

for security schemes it is charged with translating.  Note that since this signature is generated by the bridge node, 

authentication information for the bridge node will be required by any node wishing to verify the signature (see 

revised step 4). 
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(4) The authenticator from the planner in this step will also be handled by a bridge node in a special manner.  When 

the authenticator reaches a bridge node, the bridge verifies the identity of the sender.  If the sender is deemed 

authentic and trusted by the bridge, the bridge generates a new authentication message (to authenticate itself) in the 

scheme it is charged with translating.  Note that the bridge knows to which nodes it is authenticating, because, like 

the planner, it can deduce what scheme each node will use. 

(5) Verification of selected schemes is the same except that the message of selected schemes may be signed by a 

bridge node instead of the planner.  Such messages can be verified using the bridge node’s authenticator in the 

revised step 4. 

Messages sent in this step, including each node’s signed planning information message, a signature message of its 

supported schemes, and its authenticator, will receive special handling by bridge nodes.  When a planning 

information message that has been signed in a manner that this bridge has been charged with translating is received 

at a bridge node, the bridge verifies the signature and replaces it with its own signature in a scheme supported by the 

planner or a downstream bridge.  The signature provided for the schemes supported by a node can be similarly 

verified and replaced by a bridge when required.  Finally, when an authenticator is received at a bridge node in a 

scheme that the bridge is charged with translating, the bridge verifies the identity of the source and replaces the 

message with a new authenticator for itself.  Note that this means that the node providing authentication information 

has to authenticate to the bridge, not to the planner. 

(6) This step is unchanged, except that a node’s planning information and its supported schemes may be signed by a 

bridge node, thus requiring verification based on the bridge’s authenticator from step 5. 

(7) Bridge nodes may attach additional signatures to the plan produced in this step. 

(8) This step is unchanged, except that the plan may be signed by a bridge node, thus requiring verification based on 

the bridge’s authenticator from step 4. ♦ 

Figure 16 shows the usage of a bridge node (node C) for the same connection as in Figure 15.  Node B can now 

participate using scheme z, because of the introduction of bridge node C.  Node B can verify the signature of the 

scheme selection message (signed by the bridge node C), authenticate itself (to bridge node C), have its planning 

information signed (verifiable by bridge node C), and finally verify the plan (signed by bridge node C).  
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Justification of this revised algorithm follows the same argument as the earlier algorithm in Section 7.1.  In addition, 

with the introduction of bride nodes, each message’s authenticity is now verified in two ways: either the message 

must come from a source as indicated, or the message must come from a trusted bridge that has already verified the 

message’s authenticity.  For the former, the previous justification can be applied.  The latter is complicated by the 

fact that several bridges may be used and may form a chain of trust.  If each node, including bridge nodes, verifies 

that a received message was sent either from the original node or an authorized bridge, then an appropriate chain can 

be formed.  Note that every node knows which nodes are authentic bridges from steps 3 and 4.  So long as each 

bridge is trusted and verifies the identity of the previous bridge, the chain will be verified. 

8.  Non-Conductor-Enabled Client and Server 

In the preceding sections we have assumed that both the client and the server of a connection are Conductor-

enabled.  We relax this assumption here.  The initiator and the planner will not necessarily be the same node as the 

client and the server, respectively. 

If the client is not Conductor-enabled, either because the client doesn' t care about security or because the client has 

specifically set up a Conductor node nearby that can be responsible for security decisions, then the initiator can act 

on behalf of the client with respect to security. 

If the planner is not on the same node as the server, in our original algorithm (Sections 3 and 4) the participating 

nodes will not know which node is the planner.  While public key-based security schemes do not require the nodes 

to know to whom they are authenticating, some authentication algorithms (notably Kerberos) do require such 

knowledge.  In our revised secure planning algorithm (Section 7), however, the planner authenticates itself to other 

Conductor-enabled nodes first (including the initiator), correcting this problem.  The assumption that the planner 

collocates with the server can be relaxed if either Kerberos-like authentication is not employed or the revised secure 

planning algorithm is used.  

9.  Other Open Architectures 

Our design for securing Conductor is applicable to many other open architectures.  In this section, we briefly address 

how to port the design to several adaptation systems and active networks. 
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9.1  Adaptation Systems 

The Dynamic Proxy architecture developed at Columbia University [29] relies on a single proxy node to adapt a 

data stream.  In this system the client dynamically selects and controls the adaptation performed at the proxy.  The 

server plays no role in proxy management.  To provide security for such a system in which the client also assumes 

the role of the planner in Conductor, we propose the following steps: 

(1) The client specifies to the proxy node what security scheme must be followed. 

(2) The proxy node, following the specified scheme in (1), sends to the client its authenticator and a signed planning 

information message. 

(3) The client authenticates the proxy, verifies the planning information, and forms a plan. 

(4) The client sends its reverse authenticator and the signed plan to the proxy node. 

(5) The proxy node authenticates the client, and verifies and deploys the plan.  ♦ 

A session key can also be distributed from the client to the proxy.  Using the authentication information of the proxy 

node from step 2, the client can generate a session key, encrypt it, and send it to the proxy.  For instance, if public 

key-based authentication is used, the proxy’s public key can be used to encrypt the session key. 

Protocol Boosters [8] adapts protocols by inserting boosters into a network.  While no planning procedure has been 

specified, a policy is needed in order to deploy protocol boosters.  If Conductor’s planning architecture were ported 

to Protocol Boosters, we believe that Conductor’s security design could also be utili zed. 

9.2  Active Networks 

The security design for Conductor can be used to secure both an active network application and active packets in 

general. 

9.2.1  Securing an active network application 

Consider "active traceroute" as a sample application: a message traveling from end1 to end2 is stamped with the 

identity of each active node en route and returns with a record of the path from end1 to end2.  The security task is to 
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ensure the identities are authentic.  Assuming a single security scheme is enforced, as in Conductor (Section 3), we 

can let each active node add its own authentication information and signature.  End2 can verify the authentication 

information, mark which recorded identity is authentic, and send the path information back to end1; this path 

information is signed by end2, requiring reverse authentication of end2 as well .  To support multiple security 

schemes, similar handling can be enforced as shown in Section 7. 

9.2.2  Securing active packets 

An active packet, carrying both data and instructions, faces a danger that a malicious node on the way may corrupt 

the packet.  Again, Conductor’s security mechanism can be adopted to solve this problem. 

With the goal to only allow trusted nodes to read/modify an active packet, a basic design follows, where a single 

scheme is enforced: 

(1) The client that is going to run an active application sends out its security scheme and an authenticator towards 

the server. 

(2) Each active node en route also authenticates itself to the server, using the selected scheme by the client. 

(3) The server authenticates each node and selects trusted active nodes.   

(4) For each selected trusted node, the server sends a reverse authenticator for itself, the signature of the client’s 

security scheme specification message, and an encrypted session key. 

(5) Each node authenticates the server, verifies that the specified security scheme is indeed enforced, and receives 

the distributed session key. 

(6) The client starts sending active packets, encrypted with the session key.  Only trusted active nodes will be able to 

decrypt the packets. ♦ 

10.  Related Work 

Security has been identified by many researchers as a key issue in open architectures.  Much research has focused on 

protecting network elements from malicious code [1] [19], while comparatively less attention has been paid to 
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protecting data streams from misbehaving network elements.  Murphy noted that in active networks, end-to-end 

security strategies do not always work because of the participation of intermediate active nodes [20].  Jackson 

proposed a possible packet format in active networks to support data integrity via signature [12], but data 

confidentiality is not addressed, and the approach is expensive on a per-packet basis.  Researchers at the University 

of W. Sydney, Australia, identified the need for data confidentiality in active networks, and analyzed the diff iculties 

with both end-to-end encryption and link encryption in supporting data confidentiality [27].  Researchers from NAI 

Labs proposed a hop-by-hop integrity model between active nodes that are “adjacent” in the active network 

topology, where a secret key returned from a trusted third-party is associated with each pair of active nodes; but this 

work assumes every active node is already trusted [7]. 

Research on data secrecy in open architecture has not typically included the notion that some nodes are trusted and 

some are not.  Secure planning (together with encryption) can be used to control modifications of the data stream.  

Virtual li nk encryption, as proposed in this paper, provides data security in open architecture networks while still 

allowing intermediate nodes to adapt the data with reduced performance overhead.  In particular, node 

authentication is required (as demonstrated in Conductor), and only those nodes scheduled to adapt data should 

receive session keys in order to access data plaintext. 

Applications can require different security policies in different situations.  An application should be able to select a 

specific security policy (or compose one as exempli fied in [17]) and enforce it.  Seraphim provides a framework that 

allows users or applications to enforce their own security policies in active networks, but it relies on a trusted third-

authority to authenticate the security policy [4].  Conductor instead relies on one or more security schemes, selected 

by the initiator and/or the planner of a connection, to ensure that only those schemes are used. 

IPsec [15] provides authentication, encryption and other security services at the IP layer.  IPsec is primarily designed 

for point-to-point services, in contrast to virtual li nk encryption where many points are involved.  If we used IPsec 

for Conductor security, a channel from each Conductor-enabled node to the planner (or a bridge node introduced in 

Section 7.2) or vice versa, bound with specific security association (SA) or SA bundles, would need to be 

independently established and maintained.  ISAKMP [16] provides a framework to establish an SA, but it still 

requires a key exchange protocol such as IKE [9].  Via each channel, a node could authenticate itself or transmit 

signed planning information to the planner.  Similarly, these channels allow the planner to authenticate itself or 
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transmit a signed plan or encrypted session key to each node.  As ill ustrated in the chain authentication scheme 

(Section 4.2.2), intermediate nodes can sometimes provide additional information, which allows a node to be 

authenticated when it otherwise would not.  Because IPsec channels are independent, the intermediate nodes are 

hidden from an IPsec channel and cannot provide such help.  If I Psec is also to be used to protect user data 

transmitted from one Conductor-enabled node to another, a corresponding IPsec channel needs to be built  as well .  

An SA must be separately set up for each individual virtual link. 

11.  Conclusions 

Open architecture systems will not always consist of fully trusted nodes.  Data transmissions of differing sensitivity 

will have different requirements about which adaptation nodes can be trusted to handle their data.  The complexity 

of open architectures and the speed required for controlli ng and interacting with them suggest that programs (the 

application, the underlying open architecture planning system, etc.) will frequently be required to make decisions on 

which open architecture components to trust with their data. 

We have described a design and implementation for a system to handle these problems in a challenging case.  

Conductor assumes no user control or interaction when a new data transmission is being handled.  Instead, 

Conductor must make all decisions itself, including security decisions, based on current conditions, predefined user 

preferences, and known characteristics of the data flow.   

Conductor’s security architecture allows individual data transmissions to use different security boxes to achieve 

different levels and styles of authentication security.  These security boxes could be chosen by pre-set user 

preferences, interaction with other security systems (such as intrusion detection systems), or by intelli gent analysis 

of the data stream and prevail ing security conditions.   

Our implementation of this design demonstrates the feasibilit y of the concept.  The security mechanisms described 

here add relatively littl e overhead to the connection setup phase, other than cryptographic operations required for 

authentication.  The ongoing transmission similarly pays few overhead costs beyond any cryptography that is 

necessary to achieve its security goals. 
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While designed for the Conductor system, the same security architecture could also be used for many other open 

architecture systems.  While it does not incorporate other security features required for success of open architectures 

(such as mobile code safety), the Conductor mechanism is compatible with solutions to these problems as addressed 

by other research groups. 

Overall , this work demonstrates that it is feasible to dynamically choose the open architecture nodes to be used for a 

sensitive data transmission.  Further, it is possible to design a sufficiently general system to allow different users and 

applications to apply their own authentication requirements to the node selection process.  As an early example of a 

system that attempts to provide this type of security for its users, the Conductor system also points out the necessity 

of securing the gathering of information used to choose a course of action, and the importance of securing the 

instructions on what that course of action will be.  
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Figure Captions 

 
Figure 1.  Planning process in Conductor 
 
Figure 2.  Security box in Conductor 
 
Figure 3.  Secured Planning process in Conductor.  The security scheme is dynamically selected. 

Figure 4.   CAs with flat distribution  
 
Figure 5.   Certificate collection in the chain scheme along the path toward the planner  
 
Figure 6.  All certificates that may be finally available at planner D 
 
Figure 7.  Certificate collection in the reverse direction in the chain scheme 
 
Figure 8.  Key distribution with C selected 
 
Figure 9.  Replay attack by C during key distribution (C is not selected) 
 
Figure 10.  Replay counteraction with random number 
 
Figure 11.  Configuration of Conductor-enabled nodes and CAs in the chain scenario 
 
Figure 12.  Plan setup latency with different security schemes or no security (confidence level: 

99%) 

Figure 13.  Comparison of plan setup latency in the chain scheme (confidence level: 99%) 

Figure 14. Average bandwidth consumption per link 
 
Figure 15.  Handling multiple security schemes in a single connection with four Conductor-

enabled nodes 

Figure 16.  Using bridge nodes to accommodate even more security schemes in a connection.  As 

in Figure 1 and 3, A, B, C, and D are four Conductor-enabled nodes involved in a connection, 

where D is the planner.  The parts in shaded area correspond to the additions or changes from 

Figure 15. 
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Figure 1
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Figure 3
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Figure 4
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Figure 5
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Figure 7
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Figure 8

 

A B C D 
K1 

K1 



` 46 

Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16 

A B C D 

A accepts:[x y z] 

A supports: [x] B supports: [z] C supports: [y z] selecting schemes 

 A’s authenticator x 

 C’s authenticator y 

 • node authentication 
 • node selection 
 • planning 
 • verification of 

supported schemes 
 

First round trip 

Second round trip 

1 2 

3 

6 

7 

     sig of [x] x 

     sig of [y z] y 

 D’s authenticator x 

4  D’s authenticator y 

plan 

 C’s authenticator z 

A’s planning info 

  sig x 

 B’s authenticator z 

       sig of [z] z        sig of [z] y 

8 

5 

  sig x 

  sig y 

  sig z 

C’s planning info 

  sig y 

B’s planning info B’s planning info 

  sig y 

  sig x 

  sig y 

  sig z 

   x A message used in security scheme x 

   A plaintext message  

  sig z 

i Step i of the algorithm in Section 7.2. 

   D selects: [x y z] 
   Bridge C: y ↔ z 

A accepts: [x y z] 



` 54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I 
  CA AND ITS COVERAGE IN THE CHAIN SCENARIO 

 
CA nodes that CA can certify 
C1 1, C2 
C2 2, C1, C3 
… … 
Ci i, Ci-1, Ci+1 
… … 
Cn n, Cn-1 
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Table II  
ACCEPTED AND SUPPORTED SCHEMES BY EACH NODE 

            schemes 
nodes 

accepted  
schemes 

supported 
schemes 

A x, y, z x 
B  z 
C  y, z 
D x, y, z x, y 
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