

Supercritical Speedup

 David Jefferson

UCLA
Los Angeles, CA 90024

 Peter Reiher
Jet Propulsion Laboratory

Pasadena, CA 91109

Abstract

The notions of the critical path of events and critical
time of an event are key concepts in analyzing the
performance of a parallel discrete event simulation. The
highest critical time of any event in a simulation is a lower
bound on the time it takes to execute a simulation using
any conservative simulation mechanism, and is also a
lower bound on the time taken by some optimistic
methods. However, at least one optimistic mechanismis
able to beat the critical path bound in a nontrivial way.

In this paper we make a systematic study of the meaning
of the critical path in parallel simulation, and describe
criteria that determine when a simulation is bounded by its
length and when it is not. We show (again) that no
conservative mechanism can beat the critical path, but that
at least four known optimistic mechanisms are all capable
of supercritical speedup. We give performance data for
the JPL Time Warp Operating System showing two
specially constructed applications using different methods
to beat the critical path.

1 Introduction

The notion of the critical path of a parallel discrete event
simulation has long been used as a standard of against
which parallel simulation mechanisms have been com-
pared. The length of the critical path in a simulation,
calculated from the real time it takes to exe cute each event
on a particular architecture and from the precedences
induced among the events by causal dependencies, is a
lower bound on the time it takes to execute a simulation
using any conservative simulation mechanism on that
architecture, and is also a lower bound on the time taken
by some optimistic methods. It is well-known that at least
one optimistic mechanism (Time Warp with lazy
cancellation) is able to beat the critical path bound in a
nontrivial way. Until recently this observation has not
been studied in detail, and has been treated as something
of a performance curiosity.

In this paper we make a systematic study of the meaning
of the critical path in parallel simulation, and describe
criteria that determine when a simulation mechanism is

bounded by its length and when it is not. We show
(again) that no conservative mechanism can beat the
critical path bound, but we also show that at least four
known optimistic mechanisms, Time Warp with lazy
cancellation, Time Warp with lazy rollback, Time Warp
with phase decomposition, and the Chandy-Sherman
space-time family of mechanisms, all can do so. As a
result, we say that those mechanisms are capable of super-
critical speedup.

Supercritical speedup is, for now at least, of more
theoretical than practical interest. We do not know of any
cases where a realistic simulation of some useful model
has ben shown to achieve a beginning-to-end supercritical
speedup in practice. However, if an implementation
contains one or more supercritical mechanisms, super-
critical speedup should occasionally be realized for short
periods during realistic simulations. We should thus
expect that supercritical mechanisms might have an overall
positive effect on a simulation’s performance if their
overhead is not too high.

Two of the supercritical mechanisms we discuss, lazy
cancellation and phase decomposition, are both imple-
mented in the JPL Time Warp Operating System (TWOS).
In the last section of this paper we give performance data
from two specially-constructed simulations to show that
the critical path can be beaten in practice, at least for
artificially constructed simulation models.

2 Critical Times and the Critical Path

The notion of the critical time of an event and the critical
path of a simulation can be defined for any discrete event
simulation that is statically decomposed into parallel
processes that communicate by event message. For
simplicity we will consider a rather well-structured model
of parallel simulation, with several semantically
troublesome cases excluded, though none of these
exclusions have any affect on the conclusions of this
paper.

Consider a simulation S decomposed into processes P1 ...
Pn, where each process Pi is in turn decomposed into

m(i) events which, when ordered by increasing simulation
time, we denote by ei,1 ... ei,m(i). For any event e we
denote by V(e) the virtual time (simulation time) at which e
occurs. In our model of simulation an event occupies only
a single instant of virtual time, although of course it takes
a nonzero interval of real time to execute.

The execution of a simulation induces four causality
relations on its events:

Event e is the (immediate) predecessor of e’, (or
e’ is the successor of e) if e and e’ are in the same
process P, and V(e) < V(e’), and there are no
events e’’ in P such that V(e) < V(e’’) < V(e’).
The predecessor of an event e (when defined)
will be denoted pred(e).

Event e is the antecedent of e’ if e schedules e’,
i.e. if e posts the event notice for e’, or (in
distributed terminology) if e sends the event
message that schedules e’. The antecedent of an
event e (when defined) will be denoted ante(e).

Notice that e can be the antecedent of e’ whether or not
they are in the same process. For simplicity we assume
that if e is the antecedent of e’, then V(e) < V(e’), thereby
excluding the case of “zero-delay” messages where V(e) =
V(e’). We also assume that no event has more than one
antecedent, i.e. that no two events are ever scheduled for
the same virtual time at the same process.

We define e <- e’ (e leads to e’) if either e is the
predecessor of e’ or e is the antecedent of e’.

Both the ante(e) and the predecessor of pred(e) are
immediate causal ancestors of e, with a semantically
symmetric relationship to e; but since in current
technology there are different performance issues
involved (e.g. the presence or absence of message com-
munication delay, and the notion of same or different
“process”) we will observe the somewhat artificial
distinction here. When the distinction is not relevant, we
will use e <- e’

Finally we let the <- relation induce a partial ordering <<
on the set of events in the simulation.

We define e<<e’ (e influences e’) if there exists a
sequence of events e=e0, e1, e2, ..., en=e’ such
that ei <- ei+1 for all 0 <= i < n. (Since 0 < n we
are excluding e<<e.)

These relations can be summarized in Figure 1, where the
events of a simulation are shown in a spacetime diagram.
Event e11 is the predecessor of e12, and e12 is the

predecessor of e13, etc. Event e11 is the antecedent of
e21, which in turn is the antecedent of e33. Event e31 is
both the predecessor and antecedent of e32. And any two
distinct events e and e’ have the property e<<e’ if there is
a path from e to e’ in the diagram that proceeds only
upward, and never downward. Hence e11<<e33, and
e31<<e13.

simulation
time

processes

P1 P2 P3
e11

e12

e13

e21
e31

e32

e33
e22

Figure 1: Precedence relations among events in the
spacetime diagram of a simulation. Vertical arcs
represent predecessor relationships; other arcs
represent antecedent relationships.

Some events (e11, e21, and e31) have no predecessors; we
will call such events initial. Some initial events have no
antecedents, e.g. e11, and we call them start events.
Nonstart events have exactly one antecedent, but an
event may be the antecedent of any number of events,
including zero.

The spacetime diagram of a simulation such as that of
Figure 1 expresses apparent (but not always actual)
precedence constraints on the order of event execution by
showing the paths of (potential) information flow among
events in the simulation. Any correct simulation
mechanism must execute the simula-tion in such a way
that it appears that the events were executed in a real time
order consistent with these constraints; it must appear
that if e<<e’, then e finished execution before e’ started.
Of course, it is not actually necessary to obey those
precedence relations strictly; it is only necessary that the
output of the execution be as if it were executed that way.

Let us associate with each event e the amount of real time
T(e) > 0 that it takes to execute e sequentially. We will call
T the timing function. We assume that events are atomic,

with no internal sequentiality, parallelism, synchronization,
etc. Once started, an event e proceeds to completion
without any delays, interrupts, context switches, rollbacks,
etc., always taking exactly T(e) seconds. The assump tion
that events have no internal sequential structure implies
that all messages sent by an event to schedule other
events must be considered to be sent in the last instant of
execution of that event, excluding the possibility that an
event sends several messages, one at a time, at different
points during its execution. Although most real parallel
simulation mechanisms permit event messages to be sent
sequentially during the execution of an event, properly
modeling this feature would force us to consider an
“event” to be a sequence of “microevents” each of which
is either the start of the event, the sending of an event
message, or the completion of the event. This would
merely complicate our analysis without changing our
results.

Once the simulation, the simulation method, and the timing
function have been fixed, we can define start(e) as the mo -
ment at which the exe cution of event e begins, and
complete(e) = start(e) + T(e) as the moment at which the
last instruction of e is finished and commit(e) as the
moment at which the execution of e is committed, i.e. the
moment at which the result of e is considered irreversible,
and all options for undoing any of its side-effects are
relinquished. We now define the critical time for each
event e recursively as

crit(e) = max(crit(ante(e)), crit(pred(e))) + T(e),

where if ante(e) is not defined, then the term crit(ante(e)) is
defined to be zero, and if pred(e) is not defined, then the
term crit(pred(e)) is defined to be zero. Because they
involve real time measurements, both T(e) and crit(e) are
machine-dependent.

A B C
1020

15

10

10

25

15

25

20

30
10

15

10

20

15

0

400

800

1200

Virtual
Time

Figure 2: Simulation’s computation times.
For a given simulation S and timing function T, there will a
set of events, called final events, whose critical times are
maximal. Critical paths through the simulation (not
necessarily unique) are sequences of events from start
events to terminal events defined most easily in reverse
chronological order as follows:

1) All final events are on a critical path

2) If e is on a critical path, and crit(ante(e)) >=

crit(pred(e)), then ante(e), if it exists, is
on a critical path.

3) If e is on a critical path, and crit(pred(e)) >=

crit(ante(e)), then pred(e), if it exists, is
on a critical path.

As an example, Figure 2 shows a simulation whose events
are annotated with the timing function T(e) that it takes to
execute events. In Figure 3, we show the same simulation
annotated with the critical times for each event, and
display the critical path of the simulation (unique in this
case) in bold. The event with the maximal critical time of
140 is the final event.

0

400

800

1200

Virtual
Time

A B C
1030

45

55

80

70

95

120

50

80
105

120

135

125

140

140

Figure 3: Critical times and critical path for the example

simulation of Figure 2.
3 Conservative and Optimistic Mechanisms

A parallel simulation method is called conservative if it
never uses any form of event undoing, abortion, or roll-
back. Once an event e starts executing, it executes directly
to completion in T(e) seconds, and is never undone or re-
executed. An optimistic mechanism, by contrast, is one
that is not conservative, i.e. it does use event rollback in at
least some circumstances. Some events may be executed,
and then rolled back, with their side-effects completely
nullified. An optimistic mechanism can be thought of as
tentatively executing an event and then deciding later
whether to commit it, or undo it (roll it back). If an event
execution ends up being committed, we will refer to it as a
real, or committed event; if it is eventually rolled back we
will refer to it as a pseudo-event. Hence, conservative
mechanisms execute only real events, while optimistic
mechanisms are characterized by the possibility of
pseudo-events. Of course, all correct simulation
mechanisms executing a particular simulation S decom-
posed into processes in a particular way will produce the
same trace of committed events connected by the same
antecedent, predecessor, <- and << relationships. But two
optimistic mechanisms executing S (or the same one exe -
cuting S twice) may differ on the set of pseudo-events.
The relationships of antecedent, predecessor, <- and <<,
and also the notions of critical time and critical path, will

be interpreted as applying only to committed events; they
do not apply to pseudoevents.

Even after completion of event e, an optimistic mechanism
may retain the option to undo its side-effects until it can
be ascertained that effects of all influencing events have
been included. At some point that option is relinquished,
and that moment is, by definition, the mo ment of
commitment. Hence, for optimistic methods there is a
distinction between the times of completion and
commitment, and the relationship between them is start(e)
< start(e) + T(e) = complete(e) <= commit(e), for all events
e.
We define elementary scheduling to be any event
scheduling mechanism such that for all committed events
e and e’, whenever e <- e’, then complete(e) <= start(e’).
Thus, an elementary scheduling mechanism enforces the
principle that no committed event can start exe cution
before its antecedent and predecessor committed events
(if any) are completed. Notice that the definition of
elementary scheduling says nothing about pseudoevents.

Theorem 1: For any simulation executed with elementary
scheduling, crit(e) <= complete(e), for all committed events
e.

Proof. By induction over committed events, using the <-
relation. If e is a start event, then crit(e) = complete(e)
trivially. If e is not a start event, then we will assume it has
both an antecedent and a predecessor, i.e. there are two
distinct committed events e’ and e’’ such that e’ <- e and
e’’ <- e. (The case where there is only an antecedent can
be handled similarly.) By definition

crit(e) = max(crit(e’), crit(e’’)) + T(e),
 = max(crit(e’)+T(e), crit(e’’)+T(e))

By the induction hypothesis crit(e’) <= complete(e’) and
crit(e’’) <= complete(e’’), so

crit(e) <= max(complete(e’)+T(e), complete(e’’)+T(e))

Since e’<-e and e’’<-e, we know by the hypothesis of
elementary scheduling that complete(e’) <= start(e) and
complete(e’’) <= start(e). Hence,

crit(e) <= max(start(e) +T(e), start(e) + T(e))
 = start(e) + T(e) = complete(e).

end proof

Hence, we can conclude that no committed event can ever
complete before its critical time unless the scheduling
mechanism is nonelementary. If the arcs in the spacetime
diagram are viewed as precedence constraints for
purposes of event scheduling, then a simulation
mechanism that can achieve supercritical speedup must
violate at least one precedence constraint: there must exist

two committed events e <- e’ on the critical path that are
scheduled in such a way that start(e’) < complete(e).

Theorem 2: All conservative mechanisms are bound by
the critical times of events, i.e. with a conservative
mechanism, for all simulations S and all events e in S,
crit(e) <= complete(e).

Proof: We show that all correct conservative simulation
mechanisms must use elementary scheduling. Suppose a
correct simulation mechanism does not use elementary
scheduling, and that e and e’ are two committed events in
S such that e < e’, with complete(e) > start(e’). We will
show that any conservative mechanism might execute the
simulation incorrectly.

Either e is the predecessor or the antecedent of e’. If e is
the predecessor of e’, then the last instruction of e might
create a side-effect that affects the process state for event
e’. If e’ is started before e finishes, then it cannot execute
in the context of the exact state produced by e; the last
instruction of e might produce a state change upon which
e’ depends. Hence e’ might execute incorrectly.

Likewise, if e is the antecedent of e’, then any mechanism
that would start to exe cute e’ before finishing e must in
effect be “guessing” that e’ will be scheduled at the end of
event e, and also “guessing” what the parameters from e
to e’ would be. (Recall our assumption that e can only
send the event message to schedule e’ at the very end of
e’s exe cution.) Since those guesses might be wrong, the
simulation might be incorrect.
End proof

4 Supercritical Simulation Mechanisms

In the following analysis we will take Time Warp with
aggressive cancellation and the Cancelback Protocol as
our “standard” Time Warp mechanism denoted by TW.
Other Time Warp mechanisms will be considered as
variations on TW.

A

C

D

A

B'

C'

D'

Figure 4a Figure 4b

P1 P2 P1 P2

s1

s3

s1

s2'

s3'

m2 m2'

m1'

From Theorem 2 we know that any simulation mechanism
that is able to achieve supercritical speedup must be
optimistic. But the converse is not true; not all optimistic
mechanisms can be supercritical. For example, in our
standard Time Warp, TW, if we extend our notation
momentarily to apply to pseudoevents, we can see that for
any pair of (pseudo)events e <- e’, if event e is rolled back,
then e’ is also rolled back. Hence, if we confine our atten-
tion only to committed event executions, ignoring pseudo-
event executions, we can see that for any pair e <- e’, even
though TW may execute e and/or e’ more than once it
always completes e for the last time (the committed
execution) before starting e’ for the last time. Hence,
TW’s scheduling is elementary; even though it is
optimistic, it cannot achieve supercritical speedup.

In this section we present the main theoretical results of
our paper: that four known optimistic mechanisms, Time
Warp with lazy cancellation (TWlazy-can), Time Warp
with lazy rollback (TWlazy-roll), Time Warp with phase
decomposition (TWphase), and the Chandy-Sherman
space-time family of mechanisms (SpaceTime) are all
capable of supercritical speedup. Three of these
mechanisms are Time Warp variants, and are not mutually
exclusive; in principle all three variations can be combined
into a single Time Warp variant that could be supercritical
more often than any of the individual variants. Of these
results, only the one for TWlazy-can

has been specifically noted. The fact that the possibility
of supercritical speedup is so common among optimistic
mechanisms suggests that there may be a deeper signifi-
cance to optimism than has heretofore been understood.

For a simulation mechanism to produce supercritical
speedup it is essential that there be at least one occasion
when there are two committed events e and e’ such that
e<-e’ and complete(e) > start(e’). We begin our
discussion of supercritical mechanisms by examining
Figures 4a and 4b, which show two stages in an optimistic
execution of a fragment of the critical path of a simulation
involving two processes P1 and P2. Figure 4a shows the
apparent relationship among events as it has been
computed up to a certain mo ment in real time by an
optimistic mechanism. Events A and C are apparently
successive events in process P1, with C scheduling event
D in process P2. At the moment shown in this snapshot
event A and pseudoevents C and D have all executed, and
the processes P1 and P2 have proceeded ahead to higher
simulation times.

Figure 4b shows the spacetime diagram describing the true
behavior of the same simulation as reached by the
optimistic execution some time later. All events, states,
and messages in Figure 4b are committed. The differences
between Fig. 4a and 4b all derive from the fact that mes-
sage m1’ requesting event B’ has (finally) arrived at
process P1 at a simulation time between that of A and C.
The state s1 that had been input to C has now been used
by event B’, producing a new state s2’; event C, which
had s1 as input to it, now has s2’ as input, and since that
presumably makes a difference, C has been relabeled as C’.
The message m2 that C sent to schedule event D may

have been affected as well, so m2 and D have been
relabeled m2’ and D’ to indicate the possible difference.
At the moment shown in the snapshot in Fig. 4b we
assume that events A, B’, C’, and D’ have all completed
and have been committed, and processes P1 and P2 have
executed ahead to higher simulation times, never to return
to revise this portion of the computation again.

As mentioned before, for a simulation mechanism to
produce supercritical speedup it is essential that there be
at least one situation in which there are two committed
events e and e’ on the critical path such that e<-e’ and
complete(e) > start(e’). Let us now suppose that in Figure
4b, events A, B’, C’, and D’ are all along a critical path,
and examine some of the known optimistic execution
mechanisms in such cases.

4.1 Time Warp With Lazy Cancellation

Let us denote by TWlazy-can

 our standard Time Warp
mechanism TW but with lazy cancellation substituted for
aggressive cancellation. The fact that TWlazy-can can
achieve supercritical speedup was first reported in [1] and
studied further in [2], [3], [4], [5], and [6]. For complete-
ness we repeat that result here with a different proof.

Figure 5b

A

B'

C

P1

s1

s2'

s3'

m1'

Figure 5a

A

B

C

P1

s1

s2

s3

m1

Suppose in Figs. 4a and 4b that m2 = m2’, so that event C
operating from state s1 sends exactly the same message to
process P2 that C’ does from state s2’. Then under
TWlazy-can the following sequence of events might occur
to take the simu lation from the situation in Fig. 4a to that
of Fig 4b.

1. Message m1’ arrives, causing process P1 to roll

back to state s1.

2. Event B’ executes, producing state s2’.

3. Event C’ executes, producing output message

m2’.

4. The lazy cancellation mechanism notes that m2’ =

m2, and suppresses its transmission to P2. As a
result, event D’, which is the same as D, is not re-
executed, and has a completion time before the
start of C’.

As a result of this analysis we have identified two critical
path events C’<-D’, such that
start(D’) < complete(D’) < start(C’) < complete(C’).

4.2 Time Warp With Lazy Rollback

Let us denote by TWlazy-roll

 our standard Time Warp
mechanism with the lazy rollback mechanism added.
TWlazy-roll does not necessarily include lazy cancel-
lation; the two are independent mechanisms. Lazy
rollback (also called lazy reevaluation and jump forward)
was first described, implemented and studied by Darrin
West in [7]. It is perhaps most easily described as the
state-message dual of lazy cancellation, i.e. it does for
states what lazy cancellation does for messages.

Figures Figs. 5a and 5b represent two snapshots of an
optimistic execution similar to those in Figs. 4a and 4b. In
Fig. 5a the computation has executed to the situation
shown, but in Fig 5b a rollback has caused message m1 to
be cancelled and replaced with m1’, causing event B to be
rolled back and re-executed as B’.

Assume that events A, B’, and C are all on the critical path
of the simulation, that the virtual time of B’ is the same as
the of B, and that s2 = s2’. Then under TWlazy-roll the
following sequence of events might occur to take the
simulation from the situation in Fig. 5a to that of Fig 5b.

1. Message m1’ arrives, causing process P1 to

rollback to state s1.

2. Event B’ executes, producing state s2’.

3. The lazy rollback mechanism notices that s2’ =

s2, and suppresses the re-execution of C, which
was already correctly executed.

As a result of this analysis we can see that committed
event C is completed before committed event B’, and we
have identified two critical path events B’<-C, such that
start(C) < complete(C) < start(B’) < complete(B’).

4.3 Time Warp With Phase Decomposition

Let us denote by TWphase

 our standard Time Warp
mechanism with the addition of phase decomposition (but
without either lazy cancellation or lazy rollback, though it
is compatible with both). Time Warp with phase
decomposition was first described in [8], and is a rather
dramatic departure from other Time Warp mechanisms.
Previously the fundamental unit into which simu lations
were decomposed was the process (or object). But with
this mechanism a process can be further decomposed
temporally into phases, where a phase is the execution of a
process during an interval of simulation time. For example,
a process P, might be decomposed into phases P[0..100),
P[100..500), and P[500..8). The three phases might reside
on different processors, and can even exe cute in parallel in
some circumstances.

Whenever a phase such as P[0..100) completes execution,
it produces a final state which must also be the first state
of the next phase, P[100..500). Hence, part of the phase
decomposition mechanism involves sending the final state
of P[0..100) to the processor where P[100..500) resides and
installing it as the first state of P[100..500). If at that
moment P[100..500) has executed beyond time 500, it must
roll back to 500. The feature that makes phase
decomposition behave supercritically is this: if P[0..100)
transmits a state s to P[100..500), and then later rolls back
and re-executes its final event, but produces the identical
final state s the second time as it did the first, then the
second transmission of s to P[100..500) is suppressed, and
P[100..500) need not roll back. Because this involves
comparison of states for equality, phase decomposition is
similar to lazy rollback permitted only at phase boundaries.

s1

s3

s4

Phase
P[0..100)

Phase
P[100..500)

Figure 6a

m2

m3

s1

s2'

s3''

m1'

s4

Phase
P[0..100)

Phase
P[100..500)

Figure 6b

m2

m3

A'

B'

C

B

C

Phase decomposition is illustrated in Figures 6a and 6b.
Two phases of process A are shown, P[0..100) and
P[100..500). Fig. 6a shows a snapshot of the optimistic
execution in which phase P[0..100) has tentatively
completed and transmitted state s3 to phase P[100..500),
which has executed beyond event C. Figure 6b shows the
final, true behavior of the simulation as reached later in the
optimistic execution. The difference is that a message m1’
has arrived for phase P[0..100), causing it to rollback and
to re-execute event B (now called B’) in state s2’ instead of
s1.

Suppose that events A’, B’, and C are on the critical path,
and that for some reason event B’ produces the same
output state, s3, as event B did, i.e. s3’ = s3. Then the
phase decomposition mechanism might behave as follows:

1. Message m1’ arrives, causing process P[0..100)

to rollback to state s1 and execute event A’,
producing state s2.

2. Event B’ executes, producing state s3’.

3. s3 is the final state of a phase, but the phase

decomposition mechanism notices that s3’ = s3,

and suppresses the transmission of s3’ to
A[100..500), which was already correctly
executed.

As a result, we can identify events B’ and C on the critical
path of the simulation such that B’ <- C, but start(C) <
complete(C) < start(B’) < complete(B’).

Supercritical speedup from phase decomposition is similar
to supercritical speedup from lazy rollback, but has one
other characteristic. Unlike lazy rollback, phase
decomposition permits two events for the same object to
be performed simultaneously on different nodes of a
processor, thereby allowing supercritical speedup under
some circumstances when lazy rollback could not achieve
it.

4.4 Chandy-Sherman Space-Time Method

Chandy and Sherman invented a very general theory of
parallel simulation called the Space-Time approach, first
described in [9] but then studied further in [10] and [11].
They imagine that a simulation has a space axis (roughly
corresponding to the parallel threads of activity in the
model being simulated) and a temporal axis (simulation
time). Their simulation method requires that the
programmer partition his model, not into processes (which
would correspond to vertical strips of space-time), but into
arbitrarily-shaped regions of space-time. Each region of
space-time is simulated in parallel and “communicates”
with neighboring regions of spacetime, including those
directly ahead and behind in simulation time. Since the
behavior of a model in a region of space-time depends
generally on the behavior of neighboring regions, Chandy
and Sherman propose a general relaxation scheme that
repeatedly simulates each region as long as its inputs from
neighboring regions are changing. Much of the
performance of this method is dependent on efficient
techniques for detecting convergence.

The Space-Time approach is not so much a single
mechanism as a family, so general that with suitable
specialization it can emulate all other known parallel
simulation mechanisms. For example, Time Warp with
phase decomposition is similar in spirit to the Space-Time
method restricted so that the regions of space-time must
be rectangular, and one process wide in the spatial
dimension. Hence, each of the examples given in Sections
4.1-4.3 could occur in principle in a Space-Time simulation,
and thus it too is capable, at least in principle, of
supercritical speedup.

5 Empirical results

Both lazy cancellation and phase decomposition are
implemented in the Time Warp Operating System (TWOS)

that runs at JPL on and 84-node BBN GP1000 [12]. In this
section we describe two artificial benchmarks that achieve
supercritical speedup under TWOS, and give the
performance measurements we have made to demonstrate
it.

•

•

•

•

•

•

Alpha Beta Gamma

0

30

10

20

40

50

Simulation
Time

Figure 7: LazyCrit’s Basic Cycle

The Lazycrit application achieves supercritical speedup
through lazy cancellation. It consists of three objects that
repeat a cycle of events until the cutoff time is reached.
Figure 7 shows one cycle of this simulation. In this
diagram, each arrow indicates a message sent by an
object. Object Alpha starts out with an event at time 0.
This event causes two messages to be sent, one to itself
at time 10, another to Beta at time 30. The second event at
Alpha, at time 10, causes one message to be sent to Beta,
at time 30. Beta’s event at time 20 sends no messages, and
its event at time 30 sends a message to Gamma at time 40.
Gamma sends a message to Alpha at time 50, restarting the
cycle at a higher set of virtual times.

With appropriate delay loops in each event, Beta will
execute the event at time 30 and send the message to
Gamma earlier in real time than Alpha sends the message
for time 20 to Beta. When that message does arrive at
Beta, Beta rolls back and executes at time 20, then re-
executes at time 30. However, the message sent to Gamma
is precisely the same regardless of whether the event at
time 20 had been performed or not, so lazy cancellation
does not resend that message. Gamma executes its event
at time 40 in parallel with Beta’s execution, despite Beta’s
event preceding Gamma’s on the critical path. This
violates the rules of elementary scheduling, and permits
the overall simulation to obtain supercritical speedup.

The actual value of the speedup depends on the lengths
of the delay loops in the various events. For the following
speedups, the delay loops in the events at time 0 and 30
took 2 milliseconds, the delay loops for the events at time
10 and 20 took 20 milliseconds, and the delay loop for the
event at time 40 took 40 milliseconds. For this set of delay
loop values, the critical path speedup for Lazycrit was
1.39, while Time Warp version 2.4.1 obtained a speedup of
1.47. The pattern of events shown in figure 7 was
repeated 750 times for the speedups just quoted.

A second TWOS application achieves supercritical
speedup through temporal decomposition. This
application, called Cassandra, was described in [8].
Briefly, it consists of ten objects that send messages to
themselves and each other. At the beginning of the
simulation, every Cassandra object sends itself a flock of
messages for all other integral simulation times up to the
end of the simulation. Each event caused by the arrival of
one of these messages causes the object to send a
message to every other Cassandra object one time unit in
the future, until the simulation end time is reached. The
states of the objects never change, and the result of
handling any message can be determined without having
handled any other message, including the rest of the
messages that will arrive for the same simulation time as
this event.

Cassandra is essentially a time-stepped simulation run on
an event driven simulation engine, with each of its ten
objects performing an event at each integral simulation
time step. Leaving aside some initialization and
termination events, Cassandra is perfectly parallel without
temporal decomposition. Cassandra has a critical path
speedup of 9.2 for ten objects, indicating that every object
can execute in parallel with every other object almost all of
the time.

However, since the results of any event do not depend on
anything other than the simulation time of that event and
the identity of the object running it, temporal
decomposition allows different phases of the same object
to run simultaneously. Once a phase has a state to work
with, it can correctly process any event for which at least
one input message has arrived. On forty nodes, using
temporal decomposition and splitting each object into four
parts, an experimental version of TWOS achieved a
speedup of 12.8.

6 Conclusions

There is as yet no final theory of the performance of
parallel discrete event simulations; we do not even have a
good nontrivial lower bounds, let alone an average-case
performance methodology. In this paper we show that
critical path theory, which at first glance seems to be a

plausible candidate around which a lower bound theory
might be built, does not provide a lower bound on the
execution time for parallel simulations, at least as naively
applied. Although it provides a lower bound to all
conservative mechanisms, it does not generally apply to
optimistic methods. It remains an open problem to give an
alternate formalism that provides a lower bound for all
parallel discrete event simulation mechanisms.

Acknowledgements

This work was funded by the U.S. Army Model
Improvement Program (AMIP) Management Office
(AMMO), NASA contract NAS7-918, Task Order RE-182,
Amendment No. 239, ATZL-CAN-DO.

The authors thank Steven Bellenot, Mike Di Loreto, Brian
Beckman, Fred Wieland, Phil Hontalas, and John Wedel
for their work on TWOS and TWOS applications. We also
thank Jack Tupman and Herb Younger for managerial
support, and Harry Jones of AMMO, and John Shepard
and Phil Lauer of CAA for sponsorship.

References

[1] O. Berry and D. Jefferson, “Critical Path Analysis of

Dis tributed Simulation”, Proceedings of the 1985 SCS
Conference on Distributed Simulation, San Diego,
January, 1985.

[2] O. Berry, “Performance Evaluation of the Time Warp

Distributed Simulation Mechanism”, Ph.D. thesis, Dept.
of Computer Science, University of Southern California,
May 1986.

[3] A. Gafni, “Space Management and Cancellation Mech-

anisms for Time Warp”, Ph.D. Dissertation, Dept. of
Computer Science, University of Southern California,
TR-85-341, December 1985.

[4] A. Gafni, “Rollback mechanisms for optimistic
distributed simulation systems”, Proceedings of the
1988 SCS Conference on Distributed Simulation,
Volume 19, No. 3, Society for Computer Simu lation,
February 1988.

[5] Y. Lin and E. Lazowska, “Optimality Considerations of

‘Time Warp’ Parallel Simulation”, Proceedings of the
1990 SCS Conference on Distributed Simulation,
Society for Computer Simulation, Volume 22, No. 2, San
Diego, January 1990.

[6] P. Reiher, R. Fujimoto, S. Bellenot, and D. Jefferson,
“Cancellation Strategies in Optimistic Execution
Systems”, Distributed Simulation Conference, San
Diego, January, 1990.

[7] D. West, “Optimizing Time Warp: Lazy Rollback and

Lazy Reevaluation”, M.S. Thesis, Dept. of Computer
Science, University of Calgary, January 1988.

[8] P. Reiher, S. Bellenot, and D. Jefferson, “Temporal

Decomposition of Simulations under the Time Warp
Operating System”, Parallel and Distributed Simulation
(PADS), San Diego, February, 1991.

[9] K. Chandy, and R. Sherman, “Space-Time and

simulation”, Proceedings of the 1989 SCS
Multiconference on Distributed Simulation, Society for
Computer Simulation, Volume 21, No. 2, Tampa, Fla.,
March 1989.

[10] R. Bagrodia, and W. Liao, “Maisie: A Language and
Optimizing Environment for Distributed Simulation,”
Proceedings of the 1990 SCS Conference on Dis-
tributed Simulation, Society for Computer Simulation,
Volume 22, No. 2, San Diego, January 1990.

[11] R. Bagrodia, W. Liao, “Parallel Simulation of the

Sharks World Problem”, Winter Simulation Conference,
New Orleans, Dec. 1990.

[12] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M.

DiLoreto, P. Hontalas, P. Laroche, K. Sturdevant, J.
Tupman, V. Warren, J. Wedel, H. Younger and S.
Bellenot, “Distributed Simulation and the Time Warp
Operating System”, 11th Symposium on Operating Sys-
tems Principles (SOSP) , Austin, Texas, November 1987.

