
A Position Statement: An Approach to Measuring
Large-Scale Distributed Systems

Jun Li, Peter Reiher, Gerald Popek Mark Yarvis Geoff rey H. Kuenning
 { lij un, reiher, popek} @cs.ucla.edu mark.d.yarvis@intel.com geoff@cs.hmc.edu
 University of California, Los Angeles Intel Labs Harvey Mudd College

Abstract: Realistic measurement of large-scale distributed systems poses unique
challenges. Empirical measurements can capture the true behavior of a real
system, but this approach is only feasible when the system is small in scale.
Simulation is more scalable, but without running real software, it is diff icult
for simulation tools to capture all realistic effects.

This paper explores a different approach to measuring large-scale distributed
systems. We introduce an overloading technique that uses a relatively small
number of physical machines but supports the deployment of a distributed
system consisting of a large number of logical nodes. We discuss the
challenges and advantages of this approach and demonstrate its use to measure
the Revere security update dissemination system.

1. INTRODUCTION

Conventional methods of measuring the performance of a distributed
system face a dilemma between scalability and realism. Realistic
measurements of large-scale distributed systems are particularly challenging.
While empirical measurements can capture the true behaviour of a real
system, the cost of gaining access to, configuring, maintaining, and
obtaining results from more than a few hundred nodes is typically
prohibitive. Simulation is a more scalable approach, but it is diff icult for a
simulation to capture all aspects of a real system, such as hidden costs and
subtle timing effects. In addition, the simulated version of a software system
is typically different from the software that would actually be deployed.

We explore a different approach to measuring large-scale distributed
systems in this paper. In this approach, each individual node in a distributed
system runs the real code, and a fairly large number of nodes may be used.
Our approach employs a technique called “overloading” in which multiple
instances of a software system execute on the same physical node.

In the purely real world, a physical machine typically maps to one
individual node of a distributed system. Via this overloading technique,
however, a physical machine can be overloaded with many nodes of a
distributed system, where each logical node still runs the real code and

 J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

communicates with other logical nodes, just as it would in the real world.
Large scale can then be achieved using multiple physical machines, each
supporting many logical nodes.

One fundamental issue that arises is how to run a distributed system with
this overloading technique while still achieving accurate measurement
results. In particular, messages between the nodes will now follow different
transmission paths than would be taken in the purely real world. For
example, two logical nodes that are collocated on the same physical node
will now communicate without crossing a wire.

We address these and other issues that arise from overloading in this
paper. Section 2 will describe how a large-scale distributed system can run
with a limited number of physical machines, using a virtual topology to
assign logical nodes to a smaller number of physical machines and to model
the communication between those nodes. In Section 3 we discuss
measurement using this overloading approach, including techniques that
compensate for resource sharing between logical nodes on physical nodes.
In Section 4, we illustrate our measurement approach by applying it to a
specific example—measuring the performance of a security-update
dissemination system. Section 5 describes open issues remaining in this
approach, and we conclude the paper in Section 6.

2. RUNNING ATOP A VIRTUAL TOPOLOGY

The nodes of any distributed system must exist on top of some topology.
When overloaded on top of physical machines, however, the nodes of a
distributed system will have a different topology than they would in the real
world. Such a topology, which may consist of a single machine, will not, by
itself, reflect the characteristics of the topology of the distributed system.

A virtual topology can be employed to solve this problem. Each node of
a particular distributed system can be viewed as attached to a particular
location in a virtual topology. Such a node communicates through this
virtual topology to another node, which is attached to the same virtual
topology. A virtual topology can be generated using one of many existing
topology generation tools, such as GT-ITM [1], Tiers [3], Inet [4], or Brite
[5], depending on the characteristics of the distributed system.

With the notion of a virtual topology, a distributed system can be created
as follows. After generating a virtual topology, treat each logical node in the
virtual topology as an individual node of the distributed system. For each
virtual node, run the software of the distributed system on top of a physical
machine, where multiple instances of the software program may be invoked
on the same machine. As a result, the performance of this distributed system

An Approach to Measuring Large-Scale Distributed Systems

can be measured. (We will discuss the measurement procedure in the next
section.)

While it may be possible to map all nodes of a virtual topology to a
single physical machine, multiple machines will typically be required for
larger scalability, each assigned a subset of nodes from the common virtual
topology. The node assignment can be fulfilled by contacting a virtual
topology server that keeps track of which nodes are already assigned and
which are still outstanding.

Figure 1 shows a virtual topology in which a distributed application runs
with 20 nodes that communicate across transit-domain routers and stub-
domain routers. As shown in the figure, these 20 nodes are assigned to three
physical machines.

One important issue is to ensure that the real software still functions in
this new mode of execution. One side effect of overloading is the
identification of each node in the distributed system. In a real system, the
address of the underlying physical machine can be used to identify a logical
node. Since each physical node is overloaded with multiple logical nodes,
logical nodes can no longer be identified using the machine address. To
solve this, each node now has to be identified using the machine address
coupled with some unique number, such as a TCP port number bound to the
logical node (which is unique since two logical nodes will not be allowed to
use the same port number).

Fig. 1. A virtual topology with nodes of a distributed system

The nine hollow circles attached to token-ring networks represent nodes assigned to the
same physical machine, the three shaded circles attached to an Ethernet represent nodes on
another physical machine, and the eight solid circles are to a third physical machine.

stub-domain router

nodes in a distributed application

transit-domain router

 J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

3. MEASURING ATOP A VIRTUAL TOPOLOGY

Since overloading typically maps several logical nodes onto a single
physical node, the logical nodes must share the resources of the physical
node. This resource sharing can, but does not necessarily, affect the
performance of individual logical nodes.

Many results obtained in a virtual topology will not differ from those
obtained while running atop a real topology with the same structure. For
example, whether the underlying topology is real or virtual, the storage cost
or bandwidth cost incurred at an individual node of a distributed system will
not typically be affected.

Also, the characteristics of the communication paths between any two
nodes of a distributed system can be easily determined based on the
specification of a virtual topology. For instance, if the length of every link
in a virtual topology is known, the shortest path between any two nodes on
the virtual topology can be calculated using Dij kstra’s algorithm [2], instead
of being measured.

However, logical nodes on the same physical node must share the
processor and memory. Thus, the processing time of each individual node
performing a particular task will be affected. Due to the overloading of the
underlying physical machine, multiple nodes, if running concurrently, will
cause resource contention and result in longer processing times.

This problem can be solved in three ways. The first approach is to
remove the resource contention, thus causing the measured processing time
on an overloaded node to be the same as the real value. If only a single
logical node at a time is allowed to proceed with full usage of system
resources, the time spent by this node on a task should incur approximately
the same amount of time as it would in the real world. However, this
approach may require a logical node to wait for access to the resources to
perform a particular task. If latency is important, this approach will not be
appropriate.

The second approach is to calculate a slowdown factor and apply that to
the measured processing latency. A slowdown factor can be estimated by
overloading with a different number of nodes on a physical machine and
comparing the impacts. For example, if a task consumes t0 seconds when n
nodes of a distributed system are evenly loaded into n physical machines,
but t seconds if all n nodes are overloaded on one physical machine, we then
can obtain a slowdown factor t/t0 for physical nodes overloaded by a factor
of n. This method works well when the processing time slows down
linearly; otherwise, it must be carefully applied. To gain a more accurate
understanding of the slowdown factor of a distributed system, measurement
of overloading factors should be performed.

An Approach to Measuring Large-Scale Distributed Systems

The third approach, using a divide-and-conquer method, is to divide the
task being measured into several disjoint subtasks that are more easily
measured. Here, some conditions must be met: (1) every subtask must be
independent of the others, (2) subtasks must not overlap in terms of
processing latency, and (3) the sum of all subtasks must be the total
processing latency. For example, to evaluate the delay of forwarding a
packet from source to destination, literally measuring the interval from
sending time to receiving time is inaccurate when machines are overloaded.
On the other hand, by dividing the whole delay into transmission delay along
the wire, processing delay at each router, and queuing delay at each router,
each component can be measured separately.

The first approach usually requires a new resource-control mechanism to
coordinate the usage of system resources. Thus, this approach will be easier
to implement for some distributed systems than it is for others. The third
approach is preferable to the second if a task can be easily divided into
several subtasks, and each subtask can be easily and accurately measured. It
may also be possible to combine these approaches. For example, a subtask
may be measured by applying a corresponding slowdown factor. In the next
section, we will illustrate the use of the first and the third approach in an
example system.

4. EXAMPLEMEASURING REVERE

Revere is a system that provides secure information dissemination at
Internet scale [6]. For instance, Revere can be used to distribute virus
signature updates from a secure dissemination center. Participating Revere
nodes organize themselves into an overlay network on top of the Internet, so
that each node is able to both hear security updates and forward updates to
others. This overlay network uses redundant data paths to provide fast and
resilient service.

Rather than first deploying Revere into the Internet, Revere’s
performance can be measured using the overloading technique. In this
section we introduce several key metrics for measuring Revere, describe our
measurement procedure, justify our measurement method, and show several
results.

4.1 Metrics

1. Join latency: Revere allows a new node to join Revere by attaching itself
to one or more parent nodes on the overlay network. Join latency is the

 J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

time that a new node spends becoming a participant in the Revere
overlay network.

2. Join bandwidth: The bandwidth spent to join the Revere overlay network.
3. Dissemination latency: The latency for a security update to reach an

individual Revere node. Also relevant is the time needed to reach a
certain percentage of all Revere nodes.

4. Overlay network resiliency: The percentage of Revere nodes that can still
receive security updates, given that each node has a particular probability
of failure.

4.2 Applying the Measurement Methodology to Revere

To overload different numbers of Revere nodes onto physical nodes, we
used a testbed that consisted of ten machines. Every machine was equipped
with an AMD Thunderbird 1.333 GHz CPU, 1.5GB SDRAM, and a
100 Mbps Ethernet interface.

To create virtual topologies, we used GT-ITM [1] to generate a router-
level topology and designated certain numbers of Revere nodes to each
router node. In each experiment, a topology server assigns every testbed
machine the same number of Revere nodes.

We artificially divided the lifetime of Revere into three phases: the join
phase, the dissemination phase, and the resiliency test phase. During the
join phase, nodes sequentially join Revere and gradually form an overlay
network. After all nodes have joined, the system advances into the
dissemination phase, during which the dissemination center sends security
updates through the overlay network to individual nodes for ten rounds.
Finally, in the resiliency test phase, dissemination is tested in the face of
broken nodes.

During the join phase, the join latency will be artificially increased if
every physical machine is overloaded with a number of Revere nodes. The
join bandwidth should not be affected by overloading. To gain accurate
results, a token-controlled mechanism was designed to evaluate the join
performance of each individual node, corresponding to the first approach
discussed in Section 3. A Revere node can only begin running after it is
granted a token by a token server, and it must return the token after it joins
Revere. By enforcing only one token for all Revere nodes on all physical
machines, only one node will be in the process of the join procedure at any
time during the joining phase. Other nodes may be temporarily activated
when requested to interact with the joining node. In doing so, the measured
results of join latency and join bandwidth should be approximately the same
as the real cost of joining a single node.

An Approach to Measuring Large-Scale Distributed Systems

During the dissemination phase, each node behaves in a store-and-
forward manner. But again, because many Revere nodes are running on a
physical machine, simply measuring the interval between sending a security
update and receiving it at a node cannot reflect the realistic value of
dissemination latency. Given the artificially heavy load on the physical
machines, both the processing delay and the kernel-space-crossing delay will
be lengthened.

To solve this problem, we employed the divide-and-conquer method as
described in Section 3. First, we divided the latency of disseminating a
security update into three parts: the security update processing delay at each
hop, the transmission delay of crossing the virtual topology, and the kernel-
space-crossing delay. Second, we evaluated each part separately. Without
overloading a physical node, the true processing delay per hop can be
measured in a separate experiment. In the same manner, the kernel-space-
crossing delay per hop can also be measured. The communication latency
can be calculated using Dijkstra’s algorithm over the virtual topology graph
underneath. To transmit a 1-kilobyte security update over the virtual
topology we used, the router-to-router latency ranges from 1ms to 70ms,
with the average 23ms. Third, we added all parts of the dissemination
latency together. Notice that with a given overlay network structure, the
hops that a security update travels to reach a node are invariant, no matter
how many nodes are simultaneously running on the same physical node. By
multiplying the processing delay per hop and the kernel-space-crossing
delay per hop, and adding the communication latency, we can obtain a very
good approximation of the dissemination latency in large-scale scenarios.

During the resiliency test phase, each node on the overlay network was
assigned a uniform probability of failure to test how many nodes are stil l
reachable during the dissemination procedure. The divide-and-conquer
method was again used to evaluate the latency of disseminating security
updates toward the remaining nodes. The dissemination latency was
divided, as before, into three parts, and measurement was performed as in
the dissemination phase.

4.3 Selected Measurement Results

Figure 2 shows the outbound bandwidth that each node incurs during the
join phase, for various sizes of Revere networks. This bandwidth cost
includes the messages that a node sends when joining the overlay network
and the messages sent responding to the join requests of other nodes.

Figure 3 shows the latency experienced by a node joining Revere, in
Revere networks of various sizes. In this experiment, each node completes
the join procedure after successfully attaching itself to two existing Revere

 J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

nodes. The cost of both outbound join bandwidth and join latency are
acceptable, basically following logarithmic trends as the number of nodes
grows.

To understand the dissemination property of Revere, we first measured
the average and maximum hop count for disseminating security updates
(Figure 4). Both also
follow logarithmic trends
versus the total number
of nodes.

We obtained the
dissemination latency of
each node and derived
the percentage of nodes
covered as the
dissemination proceeds.
Figure 5 shows the
dissemination coverage
over time for a 3000-
node dissemination. In
this case, 100% of the
nodes are reached in a
short time (less than 1
second).

Figure 6 depicts the resiliency characteristics of the Revere network.
After the failure of as many as 15% of the nodes, a high percentage (93%) of
the remaining nodes are still able to receive security updates without
readjusting the structure of the dissemination overlay network.

y = 4862.8Ln(x) - 19219

4

8

12

16

20

24

28

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

o
u

tb
o

u
n

d
 b

an
d

w
id

th

p
er

 n
o

d
e

(K
B

)

Fig. 2. Outbound bandwidth per node during

joining phase (confidence level: 95%)

y = 338.93Ln(x) - 1128.3

0

500

1000

1500

2000

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

jo
in

 la
te

n
cy

 p
er

 n
o

d
e

(m
s)

Fig. 3. Join latency per node

(confidence level: 95%)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

av
er

ag
e

an
d

 m
ax

im
u

m

h
o

p
 c

o
u

n
t

p
er

 n
o

d
e

average hop count trendline: y=0.77lnx-1.81

maximum hop count trendline: y=1.82lnx-3.90

Fig. 4. Hop count of security update dissemination
(confidence level for average hop count: 99.9%)

An Approach to Measuring Large-Scale Distributed Systems

5. OPEN ISSUES

This approach to measuring large-scale distributed systems requires that
multiple nodes of a distributed system, if collocated on a physical machine,
can still perform correctly. In practice, however, distributed systems are
typically designed with the presumption that a single instance of the
software executes on each physical node. Slight modifications to the
distributed system may be necessary to allow it to be measured using this
approach. As we pointed out earlier, for instance, systems that use an IP
address as a node name will require modification.

Theoretically, it is also possible to build a common framework based on
this approach to support measurement of differing distributed applications,
and a specific distributed system can be measured by simply plugging it into
such a framework. Designing an interface between the framework and the
application being measured must be carefully considered.

Another issue is the scalability of this approach itself. Given that
multiple nodes under this approach can contend for resources of the same
physical machine, some resource locking mechanism is needed to obtain
accurate results. An example of this approach is the token mechanism used
in measuring the join performance of Revere. However, this technique
slows down the measurement process. The token-controlled mechanism
used to measure joins in Revere, for example, required about 100 minutes of
measurement for 3000 nodes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 r

ea
ch

ed

Fig. 5. Security update dissemination

coverage for a 3000-node dissemination
(confidence level of coverage: 99%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
w

o
rk

in
g

 n
o

d
es

 r
ea

ch
ed

Fig. 6. Resili ency test for a 3000-node
dissemination with 15% of nodes failed

(confidence level of coverage: 99%)

 J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

6. CONCLUSIONS

As more distributed systems run at Internet scale, understanding the
performance of a system at large scale is important. Unfortunately, it can be
diff icult to measure a system that consists of very large numbers of nodes
that are part of a large-scale network.

Without actual deployment, measurement of a large-scale system can be
performed in two ways: simulation or the overloading approach described in
this paper. Simulation is a popular approach for large-scale systems.
However, since a simulation does not typically use the actual software and
cannot accurately emulate all environmental factors, it is very hard for
simulation tools to capture all the real effects of the system.

Our overloading methodology collocates a large number of nodes of a
distributed system on a machine, while still allowing each node to run the
real software. This methodology can accurately report those metrics that are
invariant with respect to overloading, and can minimize those inaccuracies
introduced due to overloading and resource contention.

Meaningful results can be obtained. We demonstrated this using the
overloading approach for a security update dissemination system. While the
measurements reported in this paper correspond to a 3000-node network, the
results were obtained using only 10 nodes. We believe that Internet-scale
results can be obtained using only a few hundred or a few thousand nodes.
In addition, we believe that this approach can be further generalized into a
common framework to support measurement of different distributed
systems.

REFERENCES

[1] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling Internet Topology,” IEEE
Communications Magazine 35, 6 June 1997.

[2] E.W. Dijkstra. “A note on two problems in connexion with graphs,” Numerische
Mathematik, 1:269--271, 1959.

[3] M. B. Doar. “A better model for generating test networks,” Proceedings of Global
Internet, November 1996.

[4] C. Jin, Q. Chen, and S. Jamin. “ Inet: internet topology generator,” University of Michigan
Technical Report CSE-TR-433-00, 2000.

[5] A. Medina, I. Matta, and J. Byers. “On the origin of power laws in Internet topologies,”
ACM Computer Communication Review, 30(2), April 2000.

[6] Revere project home page. http://lasr.cs.ucla.edu/revere.

