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Abstract: Realistic measurement of large-scale distributed systems poses unique 
challenges.  Empirical measurements can capture the true behavior of a real 
system, but this approach is only feasible when the system is small in scale.  
Simulation is more scalable, but without running real software, it is diff icult 
for simulation tools to capture all realistic effects. 

This paper explores a different approach to measuring large-scale distributed 
systems.  We introduce an overloading technique that uses a relatively small 
number of physical machines but supports the deployment of a distributed 
system consisting of a large number of logical nodes.  We discuss the 
challenges and advantages of this approach and demonstrate its use to measure 
the Revere security update dissemination system. 

1. INTRODUCTION 

Conventional methods of measuring the performance of a distributed 
system face a dilemma between scalability and realism.  Realistic 
measurements of large-scale distributed systems are particularly challenging.  
While empirical measurements can capture the true behaviour of a real 
system, the cost of gaining access to, configuring, maintaining, and 
obtaining results from more than a few hundred nodes is typically 
prohibitive.  Simulation is a more scalable approach, but it is diff icult for a 
simulation to capture all aspects of a real system, such as hidden costs and 
subtle timing effects.  In addition, the simulated version of a software system 
is typically different from the software that would actually be deployed. 

We explore a different approach to measuring large-scale distributed 
systems in this paper.  In this approach, each individual node in a distributed 
system runs the real code, and a fairly large number of nodes may be used.  
Our approach employs a technique called “overloading” in which multiple 
instances of a software system execute on the same physical node. 

In the purely real world, a physical machine typically maps to one 
individual node of a distributed system.  Via this overloading technique, 
however, a physical machine can be overloaded with many nodes of a 
distributed system, where each logical node still runs the real code and 
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communicates with other logical nodes, just as it would in the real world.  
Large scale can then be achieved using multiple physical machines, each 
supporting many logical nodes. 

One fundamental issue that arises is how to run a distributed system with 
this overloading technique while still achieving accurate measurement 
results.  In particular, messages between the nodes will now follow different 
transmission paths than would be taken in the purely real world.  For 
example, two logical nodes that are collocated on the same physical node 
will now communicate without crossing a wire.   

We address these and other issues that arise from overloading in this 
paper.  Section 2 will describe how a large-scale distributed system can run 
with a limited number of physical machines, using a virtual topology to 
assign logical nodes to a smaller number of physical machines and to model 
the communication between those nodes.  In Section 3 we discuss 
measurement using this overloading approach, including techniques that 
compensate for resource sharing between logical nodes on physical nodes.  
In Section 4, we illustrate our measurement approach by applying it to a 
specific example—measuring the performance of a security-update 
dissemination system.  Section 5 describes open issues remaining in this 
approach, and we conclude the paper in Section 6. 

2. RUNNING ATOP A VIRTUAL TOPOLOGY 

The nodes of any distributed system must exist on top of some topology.  
When overloaded on top of physical machines, however, the nodes of a 
distributed system will have a different topology than they would in the real 
world.  Such a topology, which may consist of a single machine, will not, by 
itself, reflect the characteristics of the topology of the distributed system. 

A virtual topology can be employed to solve this problem.  Each node of 
a particular distributed system can be viewed as attached to a particular 
location in a virtual topology.  Such a node communicates through this 
virtual topology to another node, which is attached to the same virtual 
topology.  A virtual topology can be generated using one of many existing 
topology generation tools, such as GT-ITM [1], Tiers [3], Inet [4], or Brite 
[5], depending on the characteristics of the distributed system. 

With the notion of a virtual topology, a distributed system can be created 
as follows.  After generating a virtual topology, treat each logical node in the 
virtual topology as an individual node of the distributed system.  For each 
virtual node, run the software of the distributed system on top of a physical 
machine, where multiple instances of the software program may be invoked 
on the same machine.  As a result, the performance of this distributed system 
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can be measured.  (We will discuss the measurement procedure in the next 
section.)  

While it may be possible to map all nodes of a virtual topology to a 
single physical machine, multiple machines will typically be required for 
larger scalability, each assigned a subset of nodes from the common virtual 
topology.  The node assignment can be fulfilled by contacting a virtual 
topology server that keeps track of which nodes are already assigned and 
which are still outstanding.   

Figure 1 shows a virtual topology in which a distributed application runs 
with 20 nodes that communicate across transit-domain routers and stub-
domain routers.  As shown in the figure, these 20 nodes are assigned to three 
physical machines. 

One important issue is to ensure that the real software still functions in 
this new mode of execution.  One side effect of overloading is the 
identification of each node in the distributed system.  In a real system, the 
address of the underlying physical machine can be used to identify a logical 
node.  Since each physical node is overloaded with multiple logical nodes, 
logical nodes can no longer be identified using the machine address.  To 
solve this, each node now has to be identified using the machine address 
coupled with some unique number, such as a TCP port number bound to the 
logical node (which is unique since two logical nodes will not be allowed to 
use the same port number). 

Fig. 1. A virtual topology with nodes of a distributed system 

The nine hollow circles attached to token-ring networks represent nodes assigned to the 
same physical machine, the three shaded circles attached to an Ethernet represent nodes on 
another physical machine, and the eight solid circles are to a third physical machine. 

stub-domain router 

nodes in a distributed application 

transit-domain router 
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3. MEASURING ATOP A VIRTUAL TOPOLOGY  

Since overloading typically maps several logical nodes onto a single 
physical node, the logical nodes must share the resources of the physical 
node.  This resource sharing can, but does not necessarily, affect the 
performance of individual logical nodes. 

Many results obtained in a virtual topology will not differ from those 
obtained while running atop a real topology with the same structure.  For 
example, whether the underlying topology is real or virtual, the storage cost 
or bandwidth cost incurred at an individual node of a distributed system will 
not typically be affected.   

Also, the characteristics of the communication paths between any two 
nodes of a distributed system can be easily determined based on the 
specification of a virtual topology.  For instance, if the length of every link 
in a virtual topology is known, the shortest path between any two nodes on 
the virtual topology can be calculated using Dij kstra’s algorithm [2], instead 
of being measured. 

However, logical nodes on the same physical node must share the 
processor and memory.  Thus, the processing time of each individual node 
performing a particular task will be affected.  Due to the overloading of the 
underlying physical machine, multiple nodes, if running concurrently, will 
cause resource contention and result in longer processing times. 

This problem can be solved in three ways.  The first approach is to 
remove the resource contention, thus causing the measured processing time 
on an overloaded node to be the same as the real value.  If only a single 
logical node at a time is allowed to proceed with full usage of system 
resources, the time spent by this node on a task should incur approximately 
the same amount of time as it would in the real world.  However, this 
approach may require a logical node to wait for access to the resources to 
perform a particular task.  If latency is important, this approach will not be 
appropriate. 

The second approach is to calculate a slowdown factor and apply that to 
the measured processing latency.  A slowdown factor can be estimated by 
overloading with a different number of nodes on a physical machine and 
comparing the impacts.  For example, if a task consumes t0 seconds when n 
nodes of a distributed system are evenly loaded into n physical machines, 
but t seconds if all n nodes are overloaded on one physical machine, we then 
can obtain a slowdown factor t/t0 for physical nodes overloaded by a factor 
of n.  This method works well when the processing time slows down 
linearly; otherwise, it must be carefully applied.  To gain a more accurate 
understanding of the slowdown factor of a distributed system, measurement 
of overloading factors should be performed. 
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The third approach, using a divide-and-conquer method, is to divide the 
task being measured into several disjoint subtasks that are more easily 
measured.  Here, some conditions must be met: (1) every subtask must be 
independent of the others, (2) subtasks must not overlap in terms of 
processing latency, and (3) the sum of all subtasks must be the total 
processing latency.  For example, to evaluate the delay of forwarding a 
packet from source to destination, literally measuring the interval from 
sending time to receiving time is inaccurate when machines are overloaded.  
On the other hand, by dividing the whole delay into transmission delay along 
the wire, processing delay at each router, and queuing delay at each router, 
each component can be measured separately. 

The first approach usually requires a new resource-control mechanism to 
coordinate the usage of system resources.  Thus, this approach will be easier 
to implement for some distributed systems than it is for others.  The third 
approach is preferable to the second if a task can be easily divided into 
several subtasks, and each subtask can be easily and accurately measured.  It 
may also be possible to combine these approaches.  For example, a subtask 
may be measured by applying a corresponding slowdown factor.  In the next 
section, we will illustrate the use of the first and the third approach in an 
example system. 

4. EXAMPLEMEASURING REVERE 

Revere is a system that provides secure information dissemination at 
Internet scale [6].  For instance, Revere can be used to distribute virus 
signature updates from a secure dissemination center.  Participating Revere 
nodes organize themselves into an overlay network on top of the Internet, so 
that each node is able to both hear security updates and forward updates to 
others.  This overlay network uses redundant data paths to provide fast and 
resilient service.   

Rather than first deploying Revere into the Internet, Revere’s 
performance can be measured using the overloading technique.  In this 
section we introduce several key metrics for measuring Revere, describe our 
measurement procedure, justify our measurement method, and show several 
results. 

4.1 Metrics 

1. Join latency: Revere allows a new node to join Revere by attaching itself 
to one or more parent nodes on the overlay network.  Join latency is the 
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time that a new node spends becoming a participant in the Revere 
overlay network. 

2.  Join bandwidth: The bandwidth spent to join the Revere overlay network. 
3. Dissemination latency: The latency for a security update to reach an 

individual Revere node.  Also relevant is the time needed to reach a 
certain percentage of all Revere nodes.  

4. Overlay network resiliency: The percentage of Revere nodes that can still 
receive security updates, given that each node has a particular probability 
of failure.   

4.2 Applying the Measurement Methodology to Revere  

To overload different numbers of Revere nodes onto physical nodes, we 
used a testbed that consisted of ten machines.  Every machine was equipped 
with an AMD Thunderbird 1.333 GHz CPU, 1.5GB SDRAM, and a 
100 Mbps Ethernet interface.   

To create virtual topologies, we used GT-ITM [1] to generate a router-
level topology and designated certain numbers of Revere nodes to each 
router node.  In each experiment, a topology server assigns every testbed 
machine the same number of Revere nodes. 

We artificially divided the lifetime of Revere into three phases: the join 
phase, the dissemination phase, and the resiliency test phase.  During the 
join phase, nodes sequentially join Revere and gradually form an overlay 
network.  After all nodes have joined, the system advances into the 
dissemination phase, during which the dissemination center sends security 
updates through the overlay network to individual nodes for ten rounds.  
Finally, in the resiliency test phase, dissemination is tested in the face of 
broken nodes. 

During the join phase, the join latency will be artificially increased if 
every physical machine is overloaded with a number of Revere nodes.  The 
join bandwidth should not be affected by overloading.  To gain accurate 
results, a token-controlled mechanism was designed to evaluate the join 
performance of each individual node, corresponding to the first approach 
discussed in Section 3.  A Revere node can only begin running after it is 
granted a token by a token server, and it must return the token after it joins 
Revere.  By enforcing only one token for all Revere nodes on all physical 
machines, only one node will be in the process of the join procedure at any 
time during the joining phase.  Other nodes may be temporarily activated 
when requested to interact with the joining node.  In doing so, the measured 
results of join latency and join bandwidth should be approximately the same 
as the real cost of joining a single node. 
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During the dissemination phase, each node behaves in a store-and-
forward manner.  But again, because many Revere nodes are running on a 
physical machine, simply measuring the interval between sending a security 
update and receiving it at a node cannot reflect the realistic value of 
dissemination latency.  Given the artificially heavy load on the physical 
machines, both the processing delay and the kernel-space-crossing delay will 
be lengthened.  

To solve this problem, we employed the divide-and-conquer method as 
described in Section 3.  First, we divided the latency of disseminating a 
security update into three parts: the security update processing delay at each 
hop, the transmission delay of crossing the virtual topology, and the kernel-
space-crossing delay.  Second, we evaluated each part separately.  Without 
overloading a physical node, the true processing delay per hop can be 
measured in a separate experiment.  In the same manner, the kernel-space-
crossing delay per hop can also be measured.  The communication latency 
can be calculated using Dijkstra’s algorithm over the virtual topology graph 
underneath.  To transmit a 1-kilobyte security update over the virtual 
topology we used, the router-to-router latency ranges from 1ms to 70ms, 
with the average 23ms.  Third, we added all parts of the dissemination 
latency together.  Notice that with a given overlay network structure, the 
hops that a security update travels to reach a node are invariant, no matter 
how many nodes are simultaneously running on the same physical node.  By 
multiplying the processing delay per hop and the kernel-space-crossing 
delay per hop, and adding the communication latency, we can obtain a very 
good approximation of the dissemination latency in large-scale scenarios.  

During the resiliency test phase, each node on the overlay network was 
assigned a uniform probability of failure to test how many nodes are stil l 
reachable during the dissemination procedure.  The divide-and-conquer 
method was again used to evaluate the latency of disseminating security 
updates toward the remaining nodes.  The dissemination latency was 
divided, as before, into three parts, and measurement was performed as in 
the dissemination phase. 

4.3 Selected Measurement Results  

Figure 2 shows the outbound bandwidth that each node incurs during the 
join phase, for various sizes of Revere networks.  This bandwidth cost 
includes the messages that a node sends when joining the overlay network 
and the messages sent responding to the join requests of other nodes. 

Figure 3 shows the latency experienced by a node joining Revere, in 
Revere networks of various sizes.  In this experiment, each node completes 
the join procedure after successfully attaching itself to two existing Revere 



   J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning 

nodes.  The cost of both outbound join bandwidth and join latency are 
acceptable, basically following logarithmic trends as the number of nodes 
grows.  

To understand the dissemination property of Revere, we first measured 
the average and maximum hop count for disseminating security updates 
(Figure 4).  Both also 
follow logarithmic trends 
versus the total number 
of nodes.   

We obtained the 
dissemination latency of 
each node and derived 
the percentage of nodes 
covered as the 
dissemination proceeds.  
Figure 5 shows the 
dissemination coverage 
over time for a 3000-
node dissemination.  In 
this case, 100% of the 
nodes are reached in a 
short time (less than 1 
second).   

Figure 6 depicts the resiliency characteristics of the Revere network.  
After the failure of as many as 15% of the nodes, a high percentage (93%) of 
the remaining nodes are still able to receive security updates without 
readjusting the structure of the dissemination overlay network.   
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Fig. 2. Outbound bandwidth per node during 

joining phase (confidence level: 95%) 
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Fig. 3. Join latency per node 

(confidence level: 95%) 
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Fig. 4. Hop count of security update dissemination 
(confidence level for average hop count: 99.9%) 
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5. OPEN ISSUES 

This approach to measuring large-scale distributed systems requires that 
multiple nodes of a distributed system, if collocated on a physical machine, 
can still perform correctly.  In practice, however, distributed systems are 
typically designed with the presumption that a single instance of the 
software executes on each physical node.  Slight modifications to the 
distributed system may be necessary to allow it to be measured using this 
approach.  As we pointed out earlier, for instance, systems that use an IP 
address as a node name will require modification.   

Theoretically, it is also possible to build a common framework based on 
this approach to support measurement of differing distributed applications, 
and a specific distributed system can be measured by simply plugging it into 
such a framework.  Designing an interface between the framework and the 
application being measured must be carefully considered.  

Another issue is the scalability of this approach itself.  Given that 
multiple nodes under this approach can contend for resources of the same 
physical machine, some resource locking mechanism is needed to obtain 
accurate results.  An example of this approach is the token mechanism used 
in measuring the join performance of Revere.  However, this technique 
slows down the measurement process.  The token-controlled mechanism 
used to measure joins in Revere, for example, required about 100 minutes of 
measurement for 3000 nodes.   
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Fig. 5. Security update dissemination 

coverage for a 3000-node dissemination 
(confidence level of coverage: 99%) 
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Fig. 6. Resili ency test for a 3000-node  
dissemination with 15% of nodes failed 

(confidence level of coverage: 99%) 
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6. CONCLUSIONS  

As more distributed systems run at Internet scale, understanding the 
performance of a system at large scale is important.  Unfortunately, it can be 
diff icult to measure a system that consists of very large numbers of nodes 
that are part of a large-scale network. 

Without actual deployment, measurement of a large-scale system can be 
performed in two ways: simulation or the overloading approach described in 
this paper.  Simulation is a popular approach for large-scale systems.  
However, since a simulation does not typically use the actual software and 
cannot accurately emulate all environmental factors, it is very hard for 
simulation tools to capture all the real effects of the system. 

Our overloading methodology collocates a large number of nodes of a 
distributed system on a machine, while still allowing each node to run the 
real software.  This methodology can accurately report those metrics that are 
invariant with respect to overloading, and can minimize those inaccuracies 
introduced due to overloading and resource contention. 

Meaningful results can be obtained.  We demonstrated this using the 
overloading approach for a security update dissemination system.  While the 
measurements reported in this paper correspond to a 3000-node network, the 
results were obtained using only 10 nodes.  We believe that Internet-scale 
results can be obtained using only a few hundred or a few thousand nodes.  
In addition, we believe that this approach can be further generalized into a 
common framework to support measurement of different distributed 
systems. 
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