
A Comparison of SYN Flood Detection Algorithms

Matt Beaumont-Gay
UCLA Computer Science

mattb@cs.ucla.edu

February 20, 2007

Abstract

The problem of detecting distributed denial of service
(DDoS) attacks, and particularly SYN flood attacks,
has received much attention in current literature. A
variety of algorithms for detecting such attacks have
been published. Researchers have tested their own al-
gorithms using traces containing real or synthetic at-
tacks, and have reported good results based on those
tests. However, the traces used and parameters of
the attacks seen or generated vary greatly between
published works.

This paper compares three published SYN flood
detection algorithms using traces collected from the
UCLA Computer Science Department network and
synthetic attacks in an Emulab network. The algo-
rithms vary significantly in the speed at which they
detect the start and end of attacks, their false positive
and false negative rates, the types of non-DDoS ac-
tivity they detect, and other properties. Their qual-
itative strengths and weaknesses are discussed, and
suggestions are made for enhancements.

1 Introduction

A SYN flood attack is one in which an attacker sends
a large number of TCP SYN packets to a victim.
This causes the victim to use scarce resources (CPU
time, bandwidth, and, in the absence of SYN cookies
[1], memory) to respond to the attacker’s SYNs. If
the attack rate is high enough, the server will begin
to drop excess SYNs, and legitimate clients will be
unable to connect, leading to a denial of service.

These attacks have plagued the Internet since the
mid-1990s. In the early 2000s, a series of attacks
against high-profile web sites focused a great deal
of attention to the problem. The network security
research community has proposed many methods of
detecting and preventing such attacks. To test and

validate their designs, researchers have used simula-
tion, testbed networks, and real network traces. How-
ever, there is no single agreed-upon scenario, or even
a single general methodology, for testing new defense
systems. Simulations have many tunable parameters;
testbed networks can be set up in arbitrary topologies
and with any commercially available equipment; and
traces used by researchers are not only highly vari-
able in their contents but are also sometimes simply
too old to be relevant to modern network traffic.

I selected and implemented of three SYN flood de-
tection algorithms from the network security litera-
ture. I then evaluated the three algorithms with at-
tacks run in an Emulab [24] testbed network and with
relatively recent network traces from the UCLA Com-
puter Science Department network. I make no claim
that these particular experiments are the gold stan-
dard of network security system evaluation. However,
by testing the algorithms under identical conditions,
I can make strong claims about their relative perfor-
mance.

The remainder of the paper is structured as fol-
lows. Related work is discussed in Section 2. Sec-
tion 3 describes in detail the three algorithms se-
lected for comparison. Section 4 presents the tests
that were run on an Emulab network and their re-
sults, and Section 5 presents the results from the
trace-driven experiments. In Section 6, offers some
discussion of the strengths and weaknesses of each of
the algorithms, and some suggestions for improving
their performance. Finally, Section 7 concludes the
paper.

2 Related Work

This paper, as a comparison study of published work,
is heavily indebted to the contributions of previous
researchers. The three algorithms evaluated here are

1



taken from [23], [21], and [11]. They are described in
some depth in Section 3.

Many distributed denial of service (DDoS) detec-
tion mechanisms have been proposed by the network
security research community. MULTOPS [7] is a
clever data structure for detecting flooding sources;
however, it is ineffective against spoofed traffic. Hop-
Count Filtering [9] detects spoofed traffic at the des-
tination. Source IP Monitoring [18] combines an ob-
servation in [10] and a statistical technique (also used
in [23] and [21]) to determine when traffic is coming
from unusual sources. Several authors have proposed
other statistical and information-theoretic methods,
including [12], [6], and [17]. [15] provides a major
survey of DDoS defense mechanisms.

Network security metrics have only recently be-
come a focus of research activity. Mirkovic et al. pro-
pose metrics for denial of service measurement in [16],
and propose a DDoS defense evaluation methodology
in [14]. In other security areas, particularly in operat-
ing system security, there are established evaluation
procedures and metrics [4].

3 Descriptions of Algorithms
Tested

I selected three different algorithms for this study.
The algorithms were chosen because they each pos-
sess certain similar characteristics. The primary sim-
ilarity is that each algorithm is intended to detect the
same kind of attack, SYN flooding. Also, each is de-
signed to be deployed at the edge of a leaf network,
uses a constant amount of state, operates on a time
scale of tens of seconds, and uses only TCP control
packets (SYNs, SYN/ACKs, FINs, and RSTs) as its
input.

All of the algorithms have a handful of tunable pa-
rameters. I used the parameter values selected by the
original authors wherever possible.

3.1 SynFinDiff

Wang, Zhang, and Shin present an algorithm in “De-
tecting SYN Flood Attacks” [23] which will be re-
ferred to as SynFinDiff. The core of their algorithm
is the CUSUM method described in [2], which be-
longs to the class of sequential change point detection
methods. Roughly speaking, the CUSUM method
determines when the mean µ0 of some independent
Gaussian random variables changes to µ1 6= µ0. The
challenge, then, is to distill network traffic down to a

Gaussian random variable with a mean that is sta-
tionary during normal operation but that changes
when a SYN flood attack begins.

Wang et al. use the difference between the count of
incoming SYNs and that of outbound FINs, ∆n, over
an observation period of length t0. The collection pe-
riod for FINs begins at an offset of td later than the
start of the collection period for SYNs to allow for the
longevity of TCP connections. ∆n is normalized by
an exponentially weighted moving average (EWMA)
of the number of FINs seen in past observation peri-
ods, F̄ . The authors define X̃n = ∆n/F̄ −a, where a
is a constant chosen to make the mean of X̃n negative
during normal operation. They then define y0 = 0
and yn = (yn−1 + X̃n)+ (for n > 0; x+ is x if x > 0
and 0 otherwise). The algorithm reports an attack if
yn > N for some threshold N .

Wang et al. set t0 to 20 seconds and td to 10 sec-
onds.1 They choose a = 1 and calculate a corre-
sponding N = 1. They do not specify the decay
parameter for F̄ . I arbitrarily chose 0.9; that is,
F̄ (n) = 0.9F̄ (n − 1) + 0.1F (n), where F (n) is the
count of FINs seen in the current observation period.

3.2 SynRate

The second algorithm is the CUSUM-based algorithm
in “Application of Anomaly Detection Algorithms for
Detecting SYN Flooding Attacks,” by Siris and Papa-
galou [21], hereafter termed SynRate. It is similar to
SynFinDiff, and in fact Siris and Papagalou explicitly
compare their algorithm to that of Wang et al., claim-
ing better performance from their algorithm. The
statistic that Siris and Papagalou feed to CUSUM is
the number of incoming SYNs seen in a 10-second
interval, xn, minus an EWMA of SYN counts from
past intervals, µ̄n−1. The intuition is that the EWMA
gives a likely value for the next SYN count, and a sig-
nificant deviation from that likely value is defined as
an anomaly.

The final equation derived by Siris and Papagalou
for the test statistic gn is

gn =
[
gn−1 +

αµ̄n−1

σ2

(
xn − µ̄n−1 −

αµ̄n−1

2

)]+

1They justify the 10-second figure by referring to an empir-
ical study performed in 1997 [22], which gives 12 to 19 seconds
as the average observed connection duration. However, this fig-
ure says little about the distribution of connection durations.
In the traces described in Section 5.1, I found that the 80th
percentile of connection duration ranged from 10 to 16 seconds
across different traces, though the average was, in some cases,
much higher.

2



where α is an “amplitude percentage parameter” cor-
responding to a “probable percentage of increase of
the mean rate” after an attack begins, and σ2 is the
variance of the xi. The superscript + indicates that
the bracketed expression is forced to 0 if it is less than
0. It is not explicitly stated in the paper whether the
variance is estimated somehow or calculated exactly;
I chose to calculate it exactly while calculating gn.
Similarly to SynFinDiff, SynRate signals an attack
when gn > h, for a fixed threshold h. The parame-
ters chosen by Siris and Papagalou are α = 0.5, h = 5,
and 0.98 for the SYN-count EWMA decay rate.

3.3 PCF

The PCF, or Partial Completion Filter, was intro-
duced by Kompella, Singh, and Varghese in “On Scal-
able Attack Detection in the Network” [11]. PCFs are
a probabilistic method of detecting significant num-
bers of SYNs without corresponding FINs (or, gen-
erally, significant numbers of the first of any paired
operations without the second of the pair). A PCF
is built from a set of k hash tables, termed “stages”
by Kompella et al., which use independent hash func-
tions. Each bucket is a counter. When a SYN is seen,
for each stage, the pair of the destination IP address
and destination port (<dstIP, dstport> for short) is
hashed and the corresponding bucket is incremented.
Likewise, when a FIN is seen, the same pair is hashed
and the corresponding bucket is decremented. If,
at any point, all of the buckets to which a <dstIP,
dstport> pair hashes are greater than some thresh-
old, the PCF reports an attack. All of the buckets
are zeroed out after a fixed measurement interval.

The experiments performed by Kompella et al.
used k = 3 stages, 5000 buckets per stage, an alert
threshold of 150, and a measurement interval of 60
seconds. For the independent hash functions, I paired
the input tuple with the index of the stage and ap-
plied the object hash function built into Python [19].

4 Synthetic Attacks

I implemented the three algorithms listed in Section
3 in a program which took input from tcpdump. I
set up a small Emulab [24] network with two HTTP
servers and several clients, and ran SYN flood attacks
against one of the servers with the attack detection
program running on the border router of the servers’
LAN.

n-4
10.1.3.14

n-1
10.1.1.11

n-0
10.1.1.10

n-2
10.1.1.1
10.1.2.1

n-3
10.1.3.1
10.1.2.2

n-7
10.1.3.17

n-6
10.1.3.16

n-5
10.1.3.15

Figure 1: The Emulab network used for the synthetic
tests.

4.1 Test Environment

Figure 1 depicts the network used in the attack tests.
The network links were all 100Mb. The hardware
assigned by Emulab varied somewhat between tests;
the CPUs were 2GHz Intel Pentium 4s or 3GHz Intel
Xeons with 512MB or 2GB of RAM, respectively. All
nodes ran Linux 2.6.12; the servers, in particular, had
SYN cookies [1] enabled. Nodes n-0 and n-1 were the
HTTP servers, running Apache 1.3.33. Nodes n-4
and n-5 were clients, each requesting a 1MB file from
each web server approximately once per second for
the duration of each experiment. Nodes n-6 and n-7
were attackers; at a specified time in each experiment,
they both began a SYN flood against n-0. Nodes n-
2 and n-3 acted as the border routers for the server
and client/attacker networks, respectively. The SYN
flood detection program ran on n-2. Packet loss by
the tcpdump process was negligible in all experiments.

4.2 Experiments

Each experiment consisted of three consecutive
phases. The first phase, “warmup,” lasted for 180
seconds. In this phase, the only traffic was the client
nodes making HTTP requests to the servers using
a command-line HTTP client. The SynFinDiff and
SynRate algorithms used this time to stabilize their
respective EWMAs. Next was the “attack” phase. As
implied by the name, the attacking nodes perpetrated

3



Expt. SYN Rate Ramp-Up
ID (SYN/s) Time (s)
1 20 N/A
2 200 N/A
3 600 N/A
4 1200 N/A
5 1600 N/A
6 2000 N/A
7 2400 N/A
8 2000 15
9 2000 30
10 2000 60
11 2000 180
12 2000 360

Table 1: Experiment parameters.

their SYN floods during this time. This phase lasted
360 seconds. Finally, after the attacks ended, there
was a 180-second “cooldown” phase, with the clients
continuing to make requests to the web servers. This
phase was included to observe how each algorithm
responded to the end of an attack. Each experiment
was run once; there was no significant stochastic el-
ement to the experiments, so repeated runs would
not provide extra information. Traffic generation was
started approximately 5 seconds after the start of the
measurement program to avoid edge effects related to
the algorithms’ measurement periods.

The primary variable across the experiments was
the rate of attack. This rate ranged from 10 SYNs
per second from each attacker up to 1200 SYNs per
second per attacker. In addition, I ran a series of
experiments with each attacker using a linear ramp-
up in its attack rate. The final rate was set at 1000
SYNs per second per attacker and the ramp-up time
was varied from 15 to 360 seconds; that is, the rate of
increase varied from 133.3 SYN/s2 to 5.55 SYN/s2.
Table 1 shows the full set of values used for these
parameters. The “SYN Rate” column shows the total
attack rate, i.e., twice the per-attacker rate.

4.3 Results

4.3.1 Detection Time

The speed with which an attack is reported is one
of the most important metrics used to judge an at-
tack detection algorithm. Figure 2 shows, for the at-
tack rates used in Experiments 1 through 7 (the non-
ramped experiments), the time between the start of

0

50

100

150

200

T
im

e
to

d
et

ec
ti

o
n

(s
)

T
im

e
to

d
et

ec
ti

o
n

(s
)

0 500 1000 1500 2000 2500

Attack rate (SYN/s)Attack rate (SYN/s)

SynFinDiff

SynRate

PCF

Figure 2: Time between attack start and attack de-
tection as a function of attack rate.

the attack and the time at which each algorithm re-
ported the attack. Both PCF and SynFinDiff show an
essentially flat response time over most of the range
tested, with SynFinDiff’s response time being about
20 seconds slower than PCF’s due to the former’s
20-second sampling period. PCF takes 9 seconds to
respond to the smallest (20 SYN/s) attack, versus 1
to 3 seconds for any higher rate.

The behavior of SynRate is apparently counterin-
tuitive; that is, one might expect that larger attacks
would lead to faster detection, yet SynRate’s detec-
tion time goes up with an increasing attack rate. The
explanation lies in the equation which generates Syn-
Rate’s test statistic gn. In that equation, the vari-
ance appears in the denominator of the term which
is added to gn−1. Thus, an increased variance results
in a smaller increment to the test statistic. A larger
jump in the traffic rate, as produced by the onset of
a large attack, produces a much higher variance. For
instance, in Experiment 1, with a 20 SYN/s attack
rate, the variance at the measurement interval follow-
ing the start of the attack is about 180. The variance
at the corresponding interval in Experiment 7, the
maximum tested attack rate, is about 4 million. The
implications of this result will be discussed further in
Section 6.

Figure 3 shows the time to detection for Experi-
ments 8 through 12, in which the attackers increase
their attack to 2000 SYN/s over a varying portion of
the attack phase, as well as Experiment 6, in which
the attackers immediately begin attacking at 2000
SYN/s (equivalent to a ramp-up time of 0). Syn-
FinDiff is insensitive to the ramp-up time across the
range tested, with a detection time of approximately
25 seconds in all experiments. PCF shows an ap-

4



0

50

100

150

200

T
im

e
to

d
et

ec
ti

o
n

(s
)

T
im

e
to

d
et

ec
ti

o
n

(s
)

0 60 120 180 240 300 360

Ramp-up time (s)Ramp-up time (s)

SynFinDiff

SynRate

PCF

Figure 3: Time between attack start and attack de-
tection as a function of the time taken for the attack
to reach full strength (2000 SYN/s).

proximately linear increase in detection time, from
3 seconds to detection for a 15-second ramp-up to
9 seconds for a 360-second ramp-up. SynRate again
shows counterintuitive behavior: its detection time
decreases dramatically as the ramp-up time increases.
As with the results for the detection time in the non-
ramped case, SynRate’s behavior here is due to the
variance term in the test statistic equation. A slower
ramp-up gives a smaller variance, which in turn al-
lows the test statistic to increase more quickly.

4.3.2 Quiescence Time

Another metric of interest is how fast an algorithm
detects the end of an attack; that is, how long it
takes to return to a non-alert or quiescent state after
an attack has ended. For SynFinDiff and SynRate,
a quiescent state is precisely when the test statistic
is under the alert threshold. PCF has returned to a
non-alert state when an entire measurement interval
passes without an attack being detected.

SynFinDiff performs very poorly with regards to
this metric. In none of the experiments did it return
to a quiescent state before the end of the experiment.
In each experiment, its test statistic rose to a level
proportional to the volume of the attack, and then,
after the attack had concluded, began to decline at
a rate of 1 per 20-second observation period. In Ex-
periment 1, which had the smallest attack volume,
the test statistic peaked at approximately 187, and
declined to approximately 180 by the end of the ex-
periment. Extrapolation yields a time to quiescence
of over an hour. For the experiment with the largest
attack volume, Experiment 7, the peak value of the

50

75

100

125

150

175

T
im

e
to

q
u
ie

sc
en

ce
(s

)
T

im
e

to
q
u
ie

sc
en

ce
(s

)

0 500 1000 1500 2000 2500

Attack rate (packets/s)Attack rate (packets/s)

SynRate

PCF

Figure 4: Time to quiescence.

test statistic was approximately 26362, giving a time
to quiescence of over six days.

Figure 4 shows the time to quiescence for SynRate
in Experiments 2 through 7 and for PCF in Experi-
ments 1 through 7. In Experiment 1, SynRate’s test
statistic was still above the detection threshold at the
end of the experiment; it would have fallen below the
threshold within a few minutes. Notably, PCF ap-
pears to detect the end of the attack in Experiment 1
in only 55 seconds. This is slightly misleading, as the
end of the attack comes only 5 seconds after the be-
ginning of a measurement interval, before PCF raises
an alert for that interval. For the remainder of the
experiments, PCF raises an alert less than 1 second
after the beginning of the last interval containing a
portion of the attack.

For Experiments 8 through 12, PCF has a constant
quiescence time of 115 seconds, equal to the time it
achieves for most of the non-ramped attacks. This is
expected, as the attack rate at the end of the ramped
attack is sufficient to cause immediate detection at
the beginning of a measurement interval.

SynRate’s behavior in Experiments 8 through 12 is
somewhat more interesting. The time its test statis-
tic takes to fall below the alert threshold is directly
proportional to the maximum value to which the test
statistic rises during the attack. This maximum is
affected positively by the overall attack volume, and
negatively by the variance of the traffic rate, as dis-
cussed above. The smallest maximum value across
the experiments with ramped attacks is seen in Ex-
periment 9, though Experiment 8’s maximum is only
slightly higher. As shown in Figure 5, the test statis-
tic in Experiment 8 both rises and falls faster than
it does in Experiment 9, though the former’s initial
jump at the start of the attack is smaller. The shape

5



0

2.5

5

7.5

10

12.5

g
n

g
n

200 300 400 500 600 700

Time (s)Time (s)

Experiment 8

Experiment 9

Figure 5: The SynRate test statistic gn from the start
of the attack phase through the end of the experiment
in Experiments 8 and 9.

of the curves for the test statistic in Experiments 10–
12 is very similar to that seen in Figure 5; those ex-
periments show a faster increase and slower decrease
than seen in either Experiment 8 or Experiment 9.

5 Trace-Driven Tests

The other major piece of work done for this study was
to run each algorithm against a set of large network
traces captured several years ago. The traces happen
to contain several SYN flood attacks, as well as some
other interesting features which affect the algorithms
tested.

5.1 Traces Used

The four traces used in this portion of the study
were collected at the border of the UCLA Computer
Science Department network in August 2001. The
size of each trace was limited by compressing it with
gzip and truncating the compressed file to exactly
2GB, save Trace 2, which is only 1.97GB compressed.
Thus, the traces vary in actual length, depending on
the degree of redundancy in the traffic (and thus the
compression ratio), and in duration, depending on
the average packet rate seen. Some pertinent statis-
tics on the traces are shown in Table 2. At most 128
bytes of each Ethernet frame were captured; this was
sufficient to record the IP and transport-layer head-
ers, and some application data.

One notable feature of Traces 1 and 2 is that they
were captured while the Code Red worm [3] was ac-
tive. The scanning activity from Code Red-infected

hosts raised the average SYN rate seen during these
traces well above the expected level given the number
of FINs and RSTs seen. This caused significant prob-
lems for SynFinDiff: in each trace, a traffic anomaly
causes the test statistic to rise well above the de-
tection threshold, after which it stays at an elevated
level for the remainder of the trace. In Trace 1, the
test statistic rises nearly monotonically. I filtered out
traffic on port 80 (the port scanned by Code Red)
from the two affected traces to create Traces 1a and
2a, and re-ran SynFinDiff on the new traces.

5.2 Methodology

I ran all three algorithms on each trace (with ex-
ceptions due to the Code Red-induced problems in
Traces 1 and 2, as noted above), producing lists of
time intervals during which each algorithm raised an
alarm. For each time interval, I examined the cor-
responding portion of the trace to determine what
caused the alarm. For many anomalies, it was suffi-
cient to generate a frequency count of source or desti-
nation IP addresses or ports, or of some combination
of those. During a port scan, for instance, one source
address might show up an order of magnitude more
often than any other address. If that technique failed
to show an obvious anomaly, I inspected the trace
in Ethereal [5]. This was sufficient to identify the
anomaly or to classify the alarm as a false positive.

The major weakness of this approach is that there
may be anomalies in the traces that were not flagged
by any of the algorithms. Therefore, my analysis of
false negatives is optimistic, since the set of anomalies
detected by all of the algorithms is a subset (though
not necessarily a proper subset) of the anomalies ac-
tually present in the traces. The only way to estab-
lish a ground truth is to manually inspect each trace.
Of course, the amount of effort necessary to inspect
nearly 100 million packets is prohibitive, to say the
least.

5.3 Results

Tables 3–6 summarize the alerts produced by each
algorithm for each trace. The “In Trace” row in each
table shows the number of distinct events flagged by
the algorithms.

5.3.1 SYN Floods

There were three clearly identifiable SYN flood at-
tacks seen over the total 55-plus hours worth of traces

6



Trace Date Start Duration Size Packets TCP Control Pkts
1 2001-08-02 16:54:18 15:09:57 2.872GB 33941098 1324158
1a 2001-08-02 16:54:18 15:09:57 N/A N/A 554180
2 2001-08-03 14:12:37 14:20:26 2.625GB 30884752 1196948
2a 2001-08-03 14:12:37 14:20:26 N/A N/A 476072
3 2001-08-21 10:22:41 16:19:10 2.974GB 33738416 1311138
4 2001-08-23 10:12:21 9:32:52 2.942GB 33332981 1312611

Table 2: Summary statistics of the traces used in this section. Start times are PDT. “TCP Control Pkts”
counts the number of TCP packets seen with the SYN, FIN, or RST bit set. Traces 1a and 2a are versions
of Traces 1 and 2, respectively, with traffic on port 80 removed.

Total Events SYN Floods Port Scans P2P False Positives Other
SynFinDiff 4 1 2 1 0 1
SynRate 5 1 1 1 2 0
PCF 2 1 0 0 0 1
In Trace 4 1 2 1 - -

Table 3: Results for Trace 1.

Total Events SYN Floods Port Scans P2P False Positives Other
SynFinDiff 5 1 4 0 0 0
SynRate 7 1 5 0 1 0
PCF 2 2 0 0 0 0
In Trace 7 2 5 0 - -

Table 4: Results for Trace 2.

Total Events SYN Floods Port Scans P2P False Positives Other
SynFinDiff 8 0 2 1 0 5
SynRate 4 0 2 1 0 1
PCF 2 0 0 2 0 0
In Trace 5 0 2 3 - -

Table 5: Results for Trace 3.

Total Events SYN Floods Port Scans P2P False Positives Other
SynFinDiff 1 0 1 0 0 0
SynRate 18 0 1 4 6 7
PCF 4 0 0 2 0 2
In Trace 5 0 1 4 - -

Table 6: Results for Trace 4.

7



— one in Trace 1 and two in Trace 2. The attack in
Trace 1 was targeted at TCP port 1214 (the port
used by the Kazaa peer-to-peer file sharing service)
on a host that was actively participating in the Kazaa
network. The attack consisted of three large bursts
of approximately 580 to 670 packets apiece, lasting
from 0.4 seconds to 1.2 seconds; the bursts occurred
approximately one minute apart. The source address
on each attack packet was from a private (RFC1918
[20]) address block. The TCP headers on all of the at-
tack packets in each burst were identical, even down
to the checksum; since the source address varied per
packet, the TCP checksum for each packet was incor-
rect.

The first of the attacks in Trace 2 was targeted
at TCP port 80 at an address from which no pack-
ets were seen during the trace (i.e., there was prob-
ably no host at that address). The attack consisted
of three bursts of over 400 packets each; each burst
lasted approximately half a second. As with the at-
tack in Trace 1, all of the attack packets bore source
addresses from a private address block, and had iden-
tical TCP headers with incorrect checksums.

The second SYN flood seen during Trace 2 was,
like the attack in Trace 1, targeted at the Kazaa ser-
vice on a host that was active in the Kazaa network.
The attack consisted of 27 bursts of approximately
60 packets each, the packets in each burst arriving
over a span of only 20 milliseconds. Again, the nom-
inal sources were RFC1918 addresses, and the TCP
checksum on each packet was incorrect. The first few
bursts came just 3 to 6 seconds apart, but later bursts
were spaced by minutes to tens of minutes.

All three algorithms nominally detected the attack
in Trace 1; however, PCF signaled an alert for sig-
nificant time periods before and after the attack as a
result of a high rate of apparently legitimate traffic
to the target host. PCF detected both of the attacks
in Trace 2. SynRate detected the first, but not the
second; the long delay between bursts in the second
attack kept the test statistic from rising above a neg-
ligible amount before falling back to 0. SynFinDiff
did not detect the first attack, since it was targeted
at port 80 and thus filtered out of Trace 2a, but did
detect the second. While its test statistic also did not
rise very much due to any given burst, the small rises
seen were enough to push it above the alert threshold.

5.3.2 Port Scans

The most common type of event detected was the
port scan. All of the detected scans were horizontal;

that is, a particular port was probed on each of a
large number of addresses. All but one of the scans
were of ports 111 and 515; the one exception was a
scan of port 53 in Trace 3. At least one scan of either
port 111 or port 515 was seen in every single trace.
These port scans were prominent within the traces.
As a representative example, take the single scan seen
in Trace 4, targeted at port 111. The scanning host
sent SYNs to 211 of the addresses on a particular
/24 network, mostly in numerical order, in slightly
over 20 milliseconds. 12 seconds later it probed 254
hosts in a nearby /24, again in a little over 20 mil-
liseconds. This was repeated several times, with 25
different /24 prefixes receiving at least one probe each
in three minutes, and 23 of those receiving over 100
probes. Some /24s were even scanned twice. The av-
erage SYN rate due to other traffic over a 300-second
interval surrounding the scan was 10 SYNs per sec-
ond.

For SynFinDiff and SynRate, scans like this are ex-
tremely obvious. However, since any individual des-
tination address received at most two SYNs from the
probing host, PCF did not report any of the scans.2

In Trace 1, SynFinDiff reported one more scan than
SynRate; that scan was much smaller than most oth-
ers seen, only raising the SynRate test statistic to
about half of its detection threshold. In Trace 2,
SynRate and SynFinDiff reported significantly differ-
ent sets of scans. Four large scans over an interval
of approximately 100 minutes were reported as three
distinct events by SynRate, but as only one event by
SynFinDiff. As seen in the Emulab experiments, Syn-
FinDiff takes much longer to reach quiescence than
does SynRate; this is clearly borne out by Trace 2.
On the other hand, SynFinDiff detected two smaller
scans which were missed by SynRate.3 The two al-
gorithms detected the same scans in Traces 3 and 4.

5.3.3 Peer-to-Peer (P2P) Activity

Another major category of detected anomalies is re-
lated to various peer-to-peer file-sharing applications,
particularly Gnutella [8] and Kazaa, as identified by
the ports used. P2P-related anomalies appeared both
inbound and outbound; that is, some alerts were
caused by P2P clients on the UCLA CS network mak-
ing (or attempting to make) a large number of con-

2As mentioned in [11], PCF can be easily applied to port
scan detection, by hashing the source IP address instead of the
<destination IP, destination port> pair.

3Even when run on the reduced data set of Trace 2a, Syn-
Rate did not detect those smaller scans.

8



nections to peers elsewhere on the Internet, and some
were caused by many P2P clients from the Internet
at large trying to connect to a client on the UCLA
network. For instance, in Trace 3, an event flagged
by SynFinDiff was caused by a local client connect-
ing to the Gnutella network by trying to open many
connections, causing spikes in the SYN rate of up to
20 SYN/s, but with only about a 10% rate of re-
turned SYN/ACKs. On the other side, nearly all of
the alerts raised by PCF in Trace 1 were due to a
single host receiving nearly 19,000 SYNs, with only
5000 FINs seen.

5.3.4 False Positives

SynRate raised several alarms for which there were
no apparent events visible in the trace. These gener-
ally appeared during periods of light network activity,
where an increase in the average SYN rate from, say,
5 SYN/s to 10 SYN/s for a brief period would cause
SynRate’s test statistic to spike above the detection
threshold. All of these alarms lasted only one or two
measurement periods.

5.3.5 Other Anomalies

There were several anomalies in the traces that did
not fit into the above categories. The most inter-
esting of these was an anomaly flagged by SynFin-
Diff in Trace 1a. It was apparently the result of a
brief spike in the observed SYN rate, followed by a
lengthy period during which the rate of FINs and
RSTs was significantly lower than during surrounding
time intervals. Upon further investigation, I deter-
mined that the drop in TCP traffic was the result of
a major increase in the rate of incoming DNS queries.
During a two-hour period during which the FIN and
RST rates were clearly depressed, over 254,000 DNS
queries were seen. A total of about 324,000 queries
were seen over the entire 15-hour trace. Of the queries
in the anomaly, the majority (167,000) were A-type
queries for a single hostname. The next most com-
mon queries were A queries for two other hosts, with
10,000 queries seen for each.

Several of the alerts raised by SynRate in Trace 4
were caused by a host making connections to a web
server at a rate of 5–10 SYN/s for three to ten sec-
onds. This behavior could be the result of “download
accelerator” software, or just a web browser that does
not use the HTTP keep-alive extension. Even though
these were small events in absolute terms, they oc-
curred during periods where the prevailing SYN rate

was under 5 SYN/s; thus, an additional 5–10 SYN/s
was a large percentage increase, which caused Syn-
Rate’s test statistic to rise briefly. Likewise, in Trace
3, one single host was persistently trying to connect
to an FTP server which was not available. It was the
single largest source of SYNs in that trace, outstrip-
ping the next external source by nearly a factor of
5. While its SYN rate was small in absolute terms,
during periods of low activity, it raised the aggregate
SYN rate enough relative to the aggregate FIN rate
to cause a number of brief SynFinDiff alerts.

5.3.6 Detection and Quiescence Time

When any of the algorithms detected a SYN flood,
it did so very quickly. SynFinDiff and SynRate
raised alerts at the end of the measurement peri-
ods within which the attacks began, and PCF raised
alerts within a few seconds of the start of the at-
tacks.4 Across the numerous port scans detected by
both SynFinDiff and SynRate, neither of those algo-
rithms showed a clear advantage in detection time; in
all cases, the algorithms’ detection times were within
40 seconds of each other.

The trace-driven tests generally support the results
from the Emulab experiments regarding SynRate’s
advantage over SynFinDiff in time to quiescence. For
the one SYN flood detected by both algorithms, Syn-
FinDiff actually reported the end of the attack 200
seconds before SynRate did. However, after many of
the port scans detected by both algorithms, SynFin-
Diff’s test statistic remained above the alert threshold
for anywhere from 15 minutes to nearly an hour after
SynRate had become quiescent.

6 Discussion

Over the course of the experiments described above,
several interesting qualitative behaviors of the algo-
rithms became apparent. In this section, as well as
discussing those behaviors, I consider possible attacks
against the algorithms themselves, and offer some
suggestions for improvements.

6.1 Non-DDoS Activities Detected

Stated in detail, the problem of network-based SYN
flood detection is to determine when a host on the

4Though the attack in Trace 1 was in the middle of a larger
event flagged by PCF, the alert for the measurement interval
containing the beginning of the attack occurred within less
than a second of the arrival of the first attack packet.

9



network is being forced to waste resources on ille-
gitimate TCP connections. Precisely determining
this has been shown to require per-flow state [13].
Constant-space algorithms, then, can only give ap-
proximate answers. As particularly brought to light
in Section 5, for the approximations provided by each
of the algorithms studied in this paper, there are con-
ditions for which the approximation breaks down.

A major lesson from the trace-driven tests is that
there are many other network events which look to
some extent like a SYN flood. The most egregious
example of this is port scans. The algorithms which
disregard packets’ destination addresses in effect ag-
gregate a port scan’s probes into one very large event.
Worm activity can be viewed as a distributed port
scan; as seen in Traces 1 and 2, worm probes signifi-
cantly affect SynFinDiff’s performance.

The exceedingly noisy behavior of various peer-to-
peer file sharing applications was initially surprising.
However, it is worth noting that Kazaa, in particu-
lar, is a commercial application which speaks a pro-
prietary protocol; the protocol design was not re-
viewed by any Internet standards body which may
have taken exception to its high connection rate.

Both SynFinDiff and SynRate raised a number of
alarms for events so small that the alarms might less
charitably be called false positives. These algorithms
both seek to not require tuning to site-specific traffic
parameters, so they define anomalous activity by a
proportional increase over the ambient traffic level.
However, at very low traffic levels, a small, perhaps
coincidental increase in traffic can be a proportionally
large increase, thus causing an alarm. Suggestions for
mitigating this problem are discussed below.

6.2 Second-Order Attacks

The results presented in Sections 4 and 5 suggest
some weaknesses in the algorithms that might be ex-
ploited by an attacker. One attack exploits SynRate’s
dependency on the variance of the inbound traffic
rate. As seen in Section 4, a higher variance in the
traffic rate increases the time before SynRate raises
an alarm. By sending attack traffic in a pattern such
as to deliberately increase the variance of the traf-
fic rate seen at the target network, the attacker may
be able to effect a denial of service without SynRate
raising an alarm, or at least delaying the alarm by a
significant time.

A weakness of quite a different character lies in the
large interval at which PCF clears its state. Assume
that the attacker actually wants to trigger PCF, e.g.,

to trigger a defensive mechanism with undesirable
side effects. The attacker can send a relatively small
burst of traffic (a few hundred packets) at the be-
ginning of a measurement period, thus causing PCF
to raise an alarm and trigger the defensive system.
The attacker only needs to repeat this once every 60
seconds to keep PCF in a perpetual state of alert.

6.3 Proposed Enhancements

Given the flaws described above, it is clear that there
is room for improvement in each of the algorithms.
One notable property of PCF as presented in [11]
is that it does not account for connections closed
by RSTs. While the majority of TCP connections
may close neatly with FINs, there were several in-
stances in the trace-driven experiments where one
host closed many connections via RSTs, which PCF
ignored. This led to PCF overestimating the number
of open connections and raising an alarm. Thus, a
simple but highly beneficial modification to PCF is,
when a RST packet is seen, to decrement the source’s
counters.5 When this modified PCF is run against
the traces used in this study, all of the SYN floods
are still detected, and of the many alarms due to over-
active P2P clients, only two remain.

Finally, many of the false alarms and minor anoma-
lies seen by SynFinDiff and SynRate spring from
small increases in traffic during periods of light net-
work activity. For modern operating systems running
on modern hardware, there is a threshold traffic rate
below which any supposed attack is irrelevant. Set-
ting this threshold at, for instance, 20 SYN/s (a fairly
conservative figure), and not reporting an attack for
any period during which traffic is under the thresh-
old, would eliminate many of the false positives from
SynFinDiff and SynRate.

6.4 Broader Applicability

SYN floods are by no means the only type of DDoS
attack seen on the Internet today. UDP floods, and
to a lesser extent ICMP floods, are also of concern.
The three algorithms discussed in this paper may be
modifiable to detect these attacks. In fact, both Siris
and Papagalou and Kompella et al. suggest that their
methods can be applied to other types of attacks.

5Decrementing the destination’s counters would lead to a
trivial evasion attack: the attacker could open a large number
of connections to the target, and then send RSTs to the target
with source ports not used for the actual connections.

10



For protocols which have a simple request–response
behavior, such as DNS or ICMP Echo, the analogy
to TCP’s SYN–FIN pair makes the modifications
straightforward. For instance, SynFinDiff’s inputs
could be the numbers of DNS requests and responses
seen during a measurement period.6 PCF could be
modified in a similar manner, and either of those two
could be just as easily modified to count ICMP Echo
Request and Echo Reply packets.

SynRate is a slightly different case, as it only uses
incoming requests (SYNs) as its input. This gives it
more flexibility; for instance, its input could be sim-
ply the total number of bytes inbound to a network
during a measurement interval, which would allow
it to detect bandwidth attacks no matter what the
protocol. It could also be applied to more specific
inputs such as DNS or ICMP Echo; however, the dis-
cussion above regarding minimum traffic thresholds
would hold just as much as it does for the original
SYN input. In fact, such a threshold might be more
important for ICMP, given that the average rate of
ICMP traffic seen is much lower than that of TCP
SYNs.

7 Conclusion

I implemented three SYN flood detection algorithms
from the literature: SynFinDiff, SynRate, and PCF.
I tested the algorithms by running them on a sim-
ple Emulab network and by using traces from the
UCLA Computer Science Department network as in-
put. The Emulab tests showed the following: Syn-
FinDiff has good detection speed but takes a very
long time to return to a non-alert state; SynRate is
significantly and negatively affected by attacks that
create high variance in the traffic rate, but is faster
than SynFinDiff at signaling the end of an attack;
and PCF performs very well with regards to both de-
tection time and quiescence time. The main lesson to
take away from the trace-driven tests is that there are
many significant and common network events other
than SYN floods which are detected by these algo-
rithms. Designers of network attack detection algo-
rithms should keep in mind the noisy, hostile network
conditions seen throughout the Internet today.

6Recall that the measurement intervals for SYNs and FINs
are offset by a certain duration to account for longevity of TCP
connections. If the algorithm is used to detect DNS flooding,
the measurement periods should not be offset.

8 Acknowledgements

Thanks to Kevin Eustice and Matt Schnaider for
many valuable discussions, and to my adviser, Dr. Pe-
ter Reiher, for his support and patience.

References

[1] Dan J. Bernstein. SYN cookies. http://cr.yp.
to/syncookies.html, 1997.

[2] B. E. Brodsky and B. S. Darkhovsky. Non-
parametric Methods in Change-Point Problems.
Kluwer Academic Publishers, 1993.

[3] CERT Coordination Center. CERT Advi-
sory CA-2001-9 “Code Red” worm exploit-
ing buffer overflow in IIS indexing service
DLL. http://www.cert.org/advisories/
CA-2001-19.html, Jul 2001.

[4] The Center for Internet Security. http://www.
cisecurity.org/.

[5] Ethereal. http://www.ethereal.com/.

[6] Laura Feinstein, Dan Schnackenberg, Ravinda
Balupari, and Darrell Kindred. Statistical ap-
proaches to DDoS attack detection and response.
In Proc. of DISCEX, 2003.

[7] Thomer M. Gil and Massimiliano Poletto. MUL-
TOPS: a data structure for bandwidth attack de-
tection. In Proc. of USENIX Security. USENIX,
Aug 2001.

[8] The Gnutella protocol. http://www.the-gdf.
org/.

[9] Cheng Jin, Haining Wang, and Kang G. Shin.
Hop-count filtering: an effective defense against
spoofed DDoS traffic. In Proc. of CCS. ACM
SIGSAC, 2003.

[10] Jaeyeon Jung, Balachander Krishnamurthy, and
Michael Rabinovich. Flash crowds and denial
of service attacks: Characterization and impli-
cations for CDNs and web sites. In Proc. of the
World Wide Web Conference, May 2002.

[11] Ramana Rao Kompella, Sumeet Singh, and
George Varghese. On scalable attack detection
in the network. In Proc. of Internet Measure-
ment Conference. ACM SIGCOMM, 2004.

11



[12] Amit Kulkarni and Stephen Bush. Detecting
distributed denial-of-service attacks using Kol-
mogorov complexity metrics. Technical Report
2002GRC086, General Electric Global Research
Center, May 2002.

[13] Kirill Levchenko, Ramamohan Paturi, and
George Varghese. On the difficulty of scalably
detecting network attacks. In Proc. of CCS.
ACM SIGSAC, Oct 2004.

[14] Jelena Mirkovic, E. Arikan, S. Wei, Sonia
Fahmy, Roshan Thomas, and Peter Reiher.
Benchmarks for DDoS defense evaluation. In
Proc. of Milcom, Oct 2006.

[15] Jelena Mirkovic and Peter Reiher. A taxonomy
of DDoS attack and DDoS defense mechanisms.
Computer Communications Review, 24(2), Apr
2004.

[16] Jelena Mirkovic, Peter Reiher, Sonia Fahmy,
Roshan Thomas, Alefiya Hussain, Steven
Schwab, and Calvin Ko. Measuring denial-of-
service. In Proc. of Quality of Protection Work-
shop, Oct 2006.

[17] Yuichi Ohsita, Shingo Ata, and Masayuki Mu-
rata. Detecting distributed denial-of-service at-
tacks by analyzing TCP SYN packets statisti-
cally. In Proc. of Globecom. IEEE Communica-
tions Society, 2004.

[18] Tao Peng, Cristopher Leckie, and Kotagiri Ra-
mamohanarao. Proactively detecting distributed
denial of service attacks using source IP address
monitoring. In Proc. of Networking 2004. IFIP,
2004.

[19] The Python programming language. http://
www.python.org/.

[20] Yakov Rekhter, Robert G. Moskowitz, Daniel
Karrenberg, Geert Jan de Groot, and Eliot Lear.
RFC 1918: Address allocation for private inter-
nets, Feb 1996.

[21] Vasilios A. Siris and Fotini Papagalou. Applica-
tion of anomaly detection algorithms for detect-
ing SYN flooding attacks. In Proc. of Globecom.
IEEE Communications Society, 2004.

[22] Kevin Thompson, Gregory J. Miller, and Rick
Wilder. Wide-area Internet traffic patterns and
characteristics. IEEE Network, 11(6), Nov 1997.

[23] Haining Wang, Danlu Zhang, and Kang G. Shin.
Detecting SYN flooding attacks. In Proc. of IN-
FOCOM. IEEE Communications Society, 2002.

[24] Brian White, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An
integrated experimental environment for dis-
tributed systems and networks. In Proc. of
OSDI, Boston, MA, Dec 2002. USENIX.

12


