
A Comparison of SYN Flood Detection Algorithms

Matt Beaumont-Gay
UCLA Computer Science
mattb@cs.ucla.edu

Abstract

The problem of detecting distributed denial of ser-
vice (DDoS) attacks, and particularly SYN flood at-
tacks, has received much attention in current literature.
A variety of algorithms for detecting such attacks have
been published. Researchers have tested their own
algorithms using traces containing real or synthetic
attacks, and have reported good results based on those
tests. However, the traces used and parameters of
the attacks seen or generated vary greatly between
published works. This paper compares three published
SYN flood detection algorithms using traces collected
from the UCLA Computer Science Department network
and synthetic attacks in an Emulab network. The
algorithms vary significantly in the speed at which
they detect the start and end of attacks, their false
positive and false negative rates, the types of non-
DDoS activity they detect, and other properties. Their
qualitative strengths and weaknesses are discussed,
and suggestions are made for enhancements.

1. Introduction
A SYN flood attack is one in which an attacker

sends a large number of TCP SYN packets to a victim.
This causes the victim to use scarce resources (CPU
time, bandwidth, and, in the absence of SYN cookies
[1], memory) to respond to the attacker’s SYNs. If the
attack rate is high enough, the server will begin to drop
excess SYNs, and legitimate clients will be unable to
connect, leading to a denial of service.

The network security research community has pro-
posed many methods of detecting and preventing such
attacks. To test and validate their designs, researchers
have used simulation, testbed networks, and real net-
work traces. However, there is no single agreed-upon
scenario, or even a single general methodology, for
testing new defense systems. Simulations have many
tunable parameters; testbed networks can be set up
in arbitrary topologies and with any commercially
available equipment; and traces used by researchers
are not only highly variable in their contents but are
also sometimes simply too old to be relevant to modern
network traffic.

I selected and implemented three SYN flood detec-
tion algorithms from the network security literature. I
then evaluated the three algorithms with attacks run
in an Emulab [8] testbed network and with relatively
recent network traces from the UCLA Computer Sci-
ence Department network. I make no claim that these
particular experiments are the gold standard of network

security system evaluation. However, by testing the al-
gorithms under identical conditions, I can make strong
claims about their relative performance.

2. Descriptions of Algorithms Tested

I selected three different algorithms for this study.
The algorithms were chosen because they each possess
certain similar characteristics. The primary similarity
is that each algorithm is intended to detect the same
kind of attack, SYN flooding. Also, each is designed
to be deployed at the edge of a leaf network, uses a
constant amount of state, operates on a time scale of
tens of seconds, and uses only TCP control packets
(SYNs, SYN/ACKs, FINs, and RSTs) as its input.

All of the algorithms have a handful of tunable
parameters. The authors of each paper discuss how
the parameters are tuned and select particular values
for their own experiments; I use these values where
possible.

2.1. SynFinDiff

Wang, Zhang, and Shin present an algorithm in [7]
which will be referred to as SynFinDiff. The core of
their algorithm is the CUSUM method described in [2],
which belongs to the class of sequential change point
detection methods. Roughly speaking, the CUSUM
method determines when the mean µ0 of some inde-
pendent Gaussian random variables changes to µ1 6=
µ0. The challenge, then, is to distill network traffic
down to a Gaussian random variable with a mean that
is stationary during normal operation but that changes
when a SYN flood attack begins.

Wang et al. use the difference between the count
of incoming SYNs and that of outbound FINs, ∆n,
over an observation period of length t0. The collection
period for FINs begins at an offset of td later than the
start of the collection period for SYNs to allow for the
longevity of TCP connections. ∆n is normalized by an
exponentially weighted moving average (EWMA) of
the number of FINs seen in past observation periods,
F̄ . They define X̃n = ∆n/F̄ − a, where a is a
constant chosen to make the mean of X̃n negative
during normal operation. They then define y0 = 0 and
yn = (yn−1 + X̃n)+ (for n > 0; x+ is x if x > 0
and 0 otherwise). The algorithm reports an attack if
yn > N for some threshold N .



2.2. SynRate

The second algorithm is the CUSUM-based algo-
rithm in [6] by Siris and Papagalou, hereafter termed
SynRate. It is similar to SynFinDiff, and in fact Siris
and Papagalou explicitly compare their algorithm to
that of Wang et al., claiming better performance from
their algorithm. The statistic that Siris and Papagalou
feed to CUSUM is the number of incoming SYNs
seen in a 10-second interval, xn, minus an EWMA of
SYN counts from past intervals, µ̄n−1. The intuition is
that the EWMA gives a likely value for the next SYN
count, and a significant deviation from that likely value
is defined as an anomaly.

The final equation derived by Siris and Papagalou
for the test statistic gn is

gn =
[
gn−1 +

αµ̄n−1

σ2

(
xn − µ̄n−1 −

αµ̄n−1

2

)]+

where α is an “amplitude percentage parameter” cor-
responding to a “probable percentage of increase of
the mean rate” after an attack begins, and σ2 is the
variance of the xi. The superscript + indicates that
the bracketed expression is forced to 0 if it is less than
0. Similarly to SynFinDiff, SynRate signals an attack
when gn > h, for a fixed threshold h.

2.3. PCF

The PCF, or Partial Completion Filter, was in-
troduced by Kompella, Singh, and Varghese in [4].
PCFs are a probabilistic method of detecting significant
numbers of SYNs without corresponding FINs (or,
generally, significant numbers of the first of any paired
operations without the second of the pair). A PCF is
built from a set of k hash tables, termed “stages” by
Kompella et al., which use independent hash functions.
Each bucket is a counter. When a SYN is seen, for
each stage, the pair of the destination IP address
and destination port (<dstIP, dstport> for short) is
hashed and the corresponding bucket is incremented.
Likewise, when a FIN is seen, the same pair is hashed
and the corresponding bucket is decremented. If, at any
point, all of the buckets to which a <dstIP, dstport>
pair hashes are greater than some threshold, the PCF
reports an attack. All of the buckets are zeroed out
after a fixed measurement interval.

3. Synthetic Attacks

I implemented the three algorithms listed in Section
2 in a program which took input from tcpdump. I set
up a small Emulab [8] network with two HTTP servers
and several clients, and ran SYN flood attacks against
one of the servers with the attack detection program
running on the border router of the servers’ LAN.

3.1. Test Environment

Figure 1 depicts the network used in the attack
tests. All nodes ran Linux 2.6.12; the servers, in
particular, had SYN cookies [1] enabled. Nodes n-
0 and n-1 were the HTTP servers. Nodes n-4 and

n-4
10.1.3.14

n-1
10.1.1.11

n-0
10.1.1.10

n-2
10.1.1.1
10.1.2.1

n-3
10.1.3.1
10.1.2.2

n-7
10.1.3.17

n-6
10.1.3.16

n-5
10.1.3.15

Figure 1. The Emulab network used for the syn-
thetic tests.

n-5 were clients, each requesting a 1MB file from
each web server approximately once per second for
the duration of each experiment. Nodes n-6 and n-7
were attackers; at a specified time in each experiment,
they both began a SYN flood against n-0. Nodes n-
2 and n-3 acted as the border routers for the server
and client/attacker networks, respectively. The SYN
flood detection program ran on n-2. Packet loss by the
tcpdump process was negligible in all experiments.

3.2. Experiments

Each experiment consisted of three consecutive
phases. The first phase, “warmup,” lasted for 180 sec-
onds. In this phase, the only traffic was the client nodes
making HTTP requests to the servers. The SynFinDiff
and SynRate algorithms used this time to stabilize their
respective EWMAs. Next was the “attack” phase; the
attacking nodes perpetrated their SYN floods during
this time. This phase lasted 360 seconds. Finally, after
the attacks ended, there was a 180-second “cooldown”
phase, with the clients continuing to make requests to
the web servers. This phase was included to observe
how each algorithm responded to the end of an attack.
Traffic generation was started approximately 5 seconds
after the start of the measurement program to avoid
edge effects related to the algorithms’ measurement
periods.

The primary variable across the experiments was the
rate of attack. This rate ranged from 10 to 1200 SYNs
per second from each attacker. In addition, I ran a
series of experiments with each attacker using a linear
ramp-up in its attack rate. The final rate was set at
1000 SYNs per second per attacker and the ramp-up
time was varied from 15 to 360 seconds. Table 1 shows
the full set of values used for these parameters. The
“SYN Rate” column shows the total attack rate, i.e.,
twice the per-attacker rate.

2



Expt. ID SYN Rate (SYN/s) Ramp-Up Time (s)
1 20 N/A
2 200 N/A
3 600 N/A
4 1200 N/A
5 1600 N/A
6 2000 N/A
7 2400 N/A
8 2000 15
9 2000 30
10 2000 60
11 2000 180
12 2000 360

Table 1. Experiment parameters

3.3. Results

3.3.1. Detection Time. The speed with which an
attack is reported is one of the most important metrics
used to judge an attack detection algorithm. Figure
2 shows, for the attack rates used in Experiments
1 through 7 (the non-ramped experiments), the time
between the start of the attack and the time at which
each algorithm reported the attack. Both PCF and
SynFinDiff show an essentially flat response time over
most of the range tested, with SynFinDiff’s response
time being about 20 seconds slower than PCF’s due to
the former’s 20-second sampling period. PCF takes 9
seconds to respond to the smallest (20 SYN/s) attack,
versus 1 to 3 seconds for any higher rate.

The behavior of SynRate bears some explanation.
In the equation for SynRate’s test statistic gn, the
variance appears in the denominator of the term which
is added to gn−1. Thus, an increased variance results
in a smaller increment to the test statistic. A larger
jump in the traffic rate, as produced by the onset of
a large attack, produces a much higher variance. The
implications of this result will be discussed further in
Section 5.

Figure 3 shows the time to detection for Experiments
8 through 12, in which the attackers increase their
attack to 2000 SYN/s over a varying portion of the
attack phase, as well as Experiment 6, in which the
attackers immediately begin attacking at 2000 SYN/s
(equivalent to a ramp-up time of 0). SynFinDiff is
insensitive to the ramp-up time across the range tested,
with a detection time of approximately 25 seconds in
all experiments. PCF shows an approximately linear
increase in detection time, from 3 seconds to detection
for a 15-second ramp-up to 9 seconds for a 360-
second ramp-up. SynRate again shows counterintuitive
behavior: its detection time decreases dramatically as
the ramp-up time increases. As with the results for
the detection time in the non-ramped case, SynRate’s
behavior here is due to the variance term in the test
statistic equation. A slower ramp-up gives a smaller
variance, which in turn allows the test statistic to
increase more quickly. Note, however, the rise in
detection time as the ramp-up time goes from 0 to
15 seconds; here, the greater traffic volume seen with
the 0-second ramp-up slightly outweighs the larger

0

50

100

150

200

T
im

e
to

d
et

ec
ti

o
n

(s
)

T
im

e
to

d
et

ec
ti

o
n

(s
)

0 500 1000 1500 2000 2500

Attack rate (SYN/s)Attack rate (SYN/s)

SynFinDiff

SynRate

PCF

Figure 2. Time between attack start and attack
detection as a function of attack rate.

variance, leading to faster detection.

3.3.2. Quiescence Time. Another metric of interest is
how fast an algorithm detects the end of an attack; that
is, how long it takes to return to a non-alert or quiescent
state after an attack has ended. For SynFinDiff and
SynRate, a quiescent state is precisely when the test
statistic is under the alert threshold. PCF has returned
to a non-alert state when an entire measurement inter-
val passes without an attack being detected.

SynFinDiff performs very poorly with regards to
this metric. In none of the experiments did it return
to a quiescent state before the end of the experiment.
In each experiment, its test statistic rose to a level
proportional to the volume of the attack, and then,
after the attack had concluded, began to decline at
a rate of 1 per 20-second observation period. As an
extreme example, in the experiment with the largest
attack volume, Experiment 7, extrapolation gives a
time to quiescence of over six days.

Figure 4 shows the time to quiescence for SynRate
in Experiments 2 through 7 and for PCF in Experi-
ments 1 through 7. In Experiment 1, SynRate’s test
statistic was still above the detection threshold at the
end of the experiment; it would have fallen below the
threshold within a few minutes. Notably, PCF appears
to detect the end of the attack in Experiment 1 in
only 55 seconds. This is slightly misleading, as the
end of the attack comes only 5 seconds after the
beginning of a measurement interval, before PCF raises
an alert for that interval. For the remainder of the
experiments, PCF raises an alert less than 1 second
after the beginning of the last interval containing a
portion of the attack.

For Experiments 8 through 12, PCF has a constant
quiescence time of 115 seconds, equal to the time it
achieves for most of the non-ramped attacks. This is
expected, as the attack rate at the end of the ramped
attack is sufficient to cause immediate detection at the
beginning of a measurement interval.

4. Trace-Driven Tests
The other major piece of work done for this study

was to run each algorithm against a set of large

3



0

50

100

150

200

T
im

e
to

d
et

ec
ti

o
n

(s
)

T
im

e
to

d
et

ec
ti

o
n

(s
)

0 60 120 180 240 300 360

Ramp-up time (s)Ramp-up time (s)

SynFinDiff

SynRate

PCF

Figure 3. Time between attack start and attack
detection as a function of the time taken for the
attack to reach full strength (2000 SYN/s).

network traces captured several years ago. The traces
happen to contain several SYN flood attacks, as well
as some other interesting features which affect the
algorithms tested.

4.1. Traces Used

The four traces used in this portion of the study were
collected at the border of the UCLA Computer Science
Department network in August 2001. The size of each
trace was limited by compressing it with gzip and
truncating the compressed file to exactly 2GB, save
Trace 2, which is only 1.97GB compressed. Thus, the
traces vary in actual length, depending on the degree of
redundancy in the traffic, and in duration, depending on
the average packet rate seen. Some pertinent statistics
on the traces are shown in Table 2. At most 128
bytes of each Ethernet frame were captured; this was
sufficient to record the IP and transport-layer headers,
and some application data.

One notable feature of Traces 1 and 2 is that they
were captured while the Code Red worm [3] was
active. The scanning activity from Code Red-infected
hosts raised the average SYN rate seen during these
traces well above the expected level given the number
of FINs and RSTs seen. This caused significant prob-
lems for SynFinDiff: in each trace, a traffic anomaly
causes the test statistic to rise well above the detection
threshold, after which it stays at an elevated level for
the remainder of the trace. I filtered out traffic on
port 80 (the port scanned by Code Red) from the two
affected traces to create Traces 1a and 2a, and re-ran
SynFinDiff on the new traces.

4.2. Methodology

I ran all three algorithms on each trace, producing
lists of time intervals during which each algorithm
raised an alarm. For each time interval, I examined the
corresponding portion of the trace to determine what
caused the alarm. For many anomalies, it was sufficient
to generate a frequency count of source or destination

50

75

100

125

150

175

T
im

e
to

q
u
ie

sc
en

ce
(s

)
T

im
e

to
q
u
ie

sc
en

ce
(s

)

0 500 1000 1500 2000 2500

Attack rate (packets/s)Attack rate (packets/s)

SynRate

PCF

Figure 4. Time to quiescence.

IP addresses or ports, or of some combination of those.
During a port scan, for instance, one source address
might show up an order of magnitude more often than
any other address. If that technique failed to show an
obvious anomaly, I inspected the trace in a graphical
trace analysis tool. This was sufficient to identify the
anomaly or to classify the alarm as a false positive.

The major weakness of this approach is that there
may be anomalies in the traces that were not flagged
by any of the algorithms. Therefore, my analysis of
false negatives is optimistic, since the set of anomalies
detected by all of the algorithms is a subset (though not
necessarily a proper subset) of the anomalies actually
present in the traces.

4.3. Results

Table 3 summarizes the alerts produced by each
algorithm for each trace. The “In Trace” rows show the
number of distinct events flagged by the algorithms.

4.3.1. SYN Floods. There were three clearly identi-
fiable SYN flood attacks seen over the total 55-plus
hours worth of traces — one in Trace 1 and two in
Trace 2. All three attacks used spoofed source ad-
dresses. Two of the attacks targeted port 1214 (the port
used by the Kazaa peer-to-peer file sharing service);
the other targeted port 80. The peak attack rate seen
was over 600 SYN/s. All of the attack traffic came in
short bursts, the longest of which was 1.2 seconds.

All three algorithms nominally detected the attack in
Trace 1; however, PCF signaled an alert for significant
time periods before and after the attack as a result
of a high rate of apparently legitimate traffic to the
target host. PCF detected both of the attacks in Trace
2. SynRate detected the first, but not the second; the
bursts in that attack were too small and widely spaced
to keep SynRate’s test statistic at an elevated level.
SynFinDiff did not detect the first attack, since it was
targeted at port 80 and thus filtered out of Trace 2a,
but did detect the second. While its test statistic also
did not rise very much due to any given burst, the
small rises seen were enough to push it above the alert
threshold.

4



Trace Duration Size Packets SYNs/FINs/RSTs
1 15:09:57 2.872GB 33941098 1324158
1a 15:09:57 N/A N/A 554180
2 14:20:26 2.625GB 30884752 1196948
2a 14:20:26 N/A N/A 476072
3 16:19:10 2.974GB 33738416 1311138
4 9:32:52 2.942GB 33332981 1312611

Table 2. Summary statistics of the traces used in
this section

4.3.2. Port Scans. The most common type of event
detected was the port scan. All of the detected scans
were horizontal; that is, a particular port was probed
on each of a large number of addresses. These port
scans were prominent within the traces. For example,
the scan seen in Trace 4 comprised over 5600 SYNs
in a little over three minutes, with peak rates of over
250 SYN/s. The average SYN rate due to other traffic
over a 300-second interval surrounding the scan was
10 SYNs per second.

For SynFinDiff and SynRate, scans like this are
extremely obvious. However, since any individual des-
tination address received at most two SYNs from
the probing host, PCF did not report any of the
scans. In Trace 1, SynFinDiff reported one more scan
than SynRate; that scan was much smaller than most
others seen, only raising the SynRate test statistic
to about half of its detection threshold. In Trace 2,
SynRate and SynFinDiff reported significantly differ-
ent sets of scans. Four large scans over an interval
of approximately 100 minutes were reported as three
distinct events by SynRate, but as only one event
by SynFinDiff. As seen in the Emulab experiments,
SynFinDiff takes much longer to reach quiescence than
does SynRate; this is clearly borne out by Trace 2. On
the other hand, SynFinDiff detected two smaller scans
which were missed by SynRate. The two algorithms
detected the same scans in Traces 3 and 4.

4.3.3. Peer-to-Peer (P2P) Activity. Another major
category of detected anomalies is related to vari-
ous peer-to-peer file-sharing applications, particularly
Gnutella and Kazaa, as identified by the ports used.
P2P-related anomalies appeared both inbound and out-
bound; that is, some alerts were caused by P2P clients
on the UCLA CS network making (or attempting to
make) a large number of connections to peers else-
where on the Internet, and some were caused by many
P2P clients from the Internet at large trying to connect
to a client on the UCLA network.

4.3.4. False Positives. SynRate raised several alarms
for which there were no apparent events visible in the
trace. These generally appeared during periods of light
network activity, where an increase in the average SYN
rate from, say, 5 SYN/s to 10 SYN/s for a brief period
would cause SynRate’s test statistic to spike above the
detection threshold. All of these alarms lasted only one
or two measurement periods.

4.3.5. Detection and Quiescence Time. When any
of the algorithms detected a SYN flood, it did so

SYN Port P2P False Other
Floods Scans Positives

SynFinDiff 1 2 1 0 1
SynRate 1 1 1 2 0
PCF 1 0 0 0 1
In Trace 1 1 2 1 - -
SynFinDiff 1 4 0 0 0
SynRate 1 5 0 1 0
PCF 2 0 0 0 0
In Trace 2 2 5 0 - -
SynFinDiff 0 2 1 0 5
SynRate 0 2 1 0 1
PCF 0 0 2 0 0
In Trace 3 0 2 3 - -
SynFinDiff 0 1 0 0 0
SynRate 0 1 4 6 7
PCF 0 0 2 0 2
In Trace 4 0 1 4 - -

Table 3. Results from trace-driven experiments

very quickly. SynFinDiff and SynRate raised alerts
at the end of the measurement periods within which
the attacks began, and PCF raised alerts within a few
seconds of the start of the attacks. Across the numerous
port scans detected by both SynFinDiff and SynRate,
neither of those algorithms showed a clear advantage
in detection time; in all cases, the algorithms’ detection
times were within 40 seconds of each other.

The trace-driven tests generally support the results
from the Emulab experiments regarding SynRate’s
advantage over SynFinDiff in time to quiescence.
For the one SYN flood detected by both algorithms,
SynFinDiff actually reported the end of the attack 200
seconds before SynRate did. However, after many of
the port scans detected by both algorithms, SynFinD-
iff’s test statistic remained above the alert threshold
for anywhere from 15 minutes to nearly an hour after
SynRate had become quiescent.

5. Discussion
Over the course of the experiments described above,

several interesting qualitative behaviors of the algo-
rithms became apparent. In this section, as well as
discussing those behaviors, I consider possible attacks
against the algorithms themselves, and offer some
suggestions for improvements.

5.1. Non-DDoS Activities Detected

Stated in detail, the problem of network-based SYN
flood detection is to determine when a host on the net-
work is being forced to waste resources on illegitimate
TCP connections. Precisely determining this has been
shown to require per-flow state [5]. Constant-space
algorithms, then, can only give approximate answers.
As particularly brought to light in Section 4, for the
approximations provided by each of the algorithms
studied in this paper, there are conditions for which
the approximation breaks down.

5



A major lesson from the trace-driven tests is that
there are many other network events which look to
some extent like a SYN flood. The most egregious
example of this is port scans. The algorithms which
disregard packets’ destination addresses in effect ag-
gregate a port scan’s probes into one very large event.
Worm activity can be viewed as a distributed port scan;
as seen in Traces 1 and 2, worm probes significantly
affect SynFinDiff’s performance.

The exceedingly noisy behavior of various peer-to-
peer file sharing applications was initially surprising.
However, it is worth noting that Kazaa, in particular, is
a commercial application which speaks a proprietary
protocol; the protocol design was not reviewed by
any Internet standards body which may have taken
exception to its high connection rate.

Both SynFinDiff and SynRate raised a number of
alarms for events so small that the alarms might less
charitably be called false positives. These algorithms
both seek to not require tuning to site-specific traffic
parameters, so they define anomalous activity by a
proportional increase over the ambient traffic level.
However, at very low traffic levels, a small, perhaps
coincidental increase in traffic can be a proportionally
large increase, thus causing an alarm. Suggestions for
mitigating this problem are discussed below.

5.2. Proposed Enhancements

One notable property of PCF as presented in [4]
is that it does not account for connections closed by
RSTs. While the majority of TCP connections may
close neatly with FINs, there were several instances
in the trace-driven experiments where one host closed
many connections via RSTs, which PCF ignored. This
led to PCF overestimating the number of open connec-
tions and raising an alarm. Thus, a simple but highly
beneficial modification to PCF is, when a RST packet
is seen, to decrement the source’s counters. When this
modified PCF is run against the traces used in this
study, all of the SYN floods are still detected, and of
the many alarms due to overactive P2P clients, only
two remain.

Finally, many of the false alarms and minor anoma-
lies seen by SynFinDiff and SynRate spring from small
increases in traffic during periods of light network
activity. For modern operating systems running on
modern hardware, there is a threshold traffic rate below
which any supposed attack is irrelevant. Setting this
threshold at, say, 20 SYN/s (a fairly conservative
figure), and not reporting an attack for any period
during which traffic is under the threshold would
eliminate many of the false positives from SynFinDiff
and SynRate.

6. Conclusion
I implemented three SYN flood detection algorithms

from the literature: SynFinDiff, SynRate, and PCF. I
tested the algorithms by running them on a simple
Emulab network and by using traces from the UCLA
Computer Science Department network as input. The
Emulab tests showed the following: SynFinDiff has
good detection speed but takes a very long time to

return to a non-alert state; SynRate is significantly and
negatively affected by attacks that create high variance
in the traffic rate, but is faster than SynFinDiff at
signaling the end of an attack; and PCF performs very
well with regards to both detection time and quiescence
time. The main lesson to take away from the trace-
driven tests is that there are many significant and
common network events other than SYN floods which
are detected by these algorithms. Designers of network
attack detection algorithms should keep in mind the
noisy, hostile network conditions seen throughout the
Internet today.

Acknowledgements
Thanks to Kevin Eustice and Matt Schnaider for

many valuable discussions, and to my adviser, Dr. Peter
Reiher, for his support and patience. Thanks also
to the anonymous reviewers for their comments and
suggestions.

References

[1] Dan J. Bernstein. SYN cookies. http://cr.yp.to/
syncookies.html, 1997.

[2] B. E. Brodsky and B. S. Darkhovsky. Nonparametric
Methods in Change-Point Problems. Kluwer Academic
Publishers, 1993.

[3] CERT Coordination Center. CERT Advisory CA-2001-
9 “Code Red” worm exploiting buffer overflow in IIS
indexing service DLL. http://www.cert.org/advisories/
CA-2001-19.html, Jul 2001.

[4] Ramana Rao Kompella, Sumeet Singh, and George
Varghese. On scalable attack detection in the network.
In Proc. of Internet Measurement Conference. ACM
SIGCOMM, 2004.

[5] Kirill Levchenko, Ramamohan Paturi, and George
Varghese. On the difficulty of scalably detecting network
attacks. In Proc. of CCS. ACM SIGSAC, Oct 2004.

[6] Vasilios A. Siris and Fotini Papagalou. Application of
anomaly detection algorithms for detecting SYN flood-
ing attacks. In Proc. of Globecom. IEEE Communica-
tions Society, 2004.

[7] Haining Wang, Danlu Zhang, and Kang G. Shin. De-
tecting SYN flooding attacks. In Proc. of INFOCOM.
IEEE Communications Society, 2002.

[8] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In
Proc. of OSDI, Boston, MA, Dec 2002. USENIX.

6


