
Security Exercises for the Online Classroom with DETER

Peter A. H. Peterson, Peter L. Reiher
{pahp, reiher}@cs.ucla.edu

University of California, Los Angeles

Abstract

Creating high-quality homework with an emphasis on
creativity and open-ended learning is challenging. This
is especially true for online classes, which must be both
accessible via the Internet and comparable in quality and
value to projects that could be used in a traditional class-
room. UCLA recently began offering an online master’s
degree program in computer science, which includes a
course in computer security. This motivated the design
of online coursework intended to take the place of the
traditional in-class homework and group projects. The
resulting security labs use standard security tools and the
DETER testbed, which can be organized into networks of
physical machines running real software. In these envi-
ronments, students perform open-ended exercises involv-
ing file permissions, firewalls, software vulnerabilities,
eavesdropping and injection, man-in-the-middle attacks,
computer forensics, and network intrusion detection sys-
tems. We also created an extensive online lab manual to
accompany the exercises. With some important techni-
cal caveats, DETER proved to be an excellent platform
for online education, and the labs themselves have been
a great success since they were introduced in 2008.

1 Introduction

In 2007 UCLA created an online master’s degree pro-
gram in computer science which inspired the design of
new online security coursework emphasizing the prac-
tice of computer security. Web-based education presents
a special challenge to exercise designers, because the
coursework must have the same quality and educational
value as “offline” homework, and must be easy to access
and use without much face-to-face interaction. Brick-
and-mortar graduate-level CS courses at UCLA typi-
cally include a quarter-long research project, often in-
cluding regular discussions with the professor during of-
fice hours, progress reports and presentations. While

some of this communication could take place over video
chat, the online master’s program uses prerecorded lec-
tures and is thus attractive to students who work full time
and may not have compatible schedules. Because of this
communication obstacle, it would have been easier to use
more traditional pen-and-paper homework for the online
course.

However, we felt that “hands on” labs were essential.
Computer security is only successful when proper theory
is married with correct practice, and the practice of com-
puter security is tied to the real world of software and
hardware. While the theory itself can be straightforward,
applying that theory with the insecure protocols and sys-
tems we actually have can make engineering end-to-end
security quite challenging. Students who leave a security
course with an understanding of both theory and practice
are have advantage over students who only understand
one or the other. To achieve this, we wanted the labs to
reinforce the theoretical security curriculum with exer-
cises using current software and hardware.

We also wanted the labs to be topical and engaging.
Part of what makes computer security interesting is the
social, political and economic significance of security is-
sues in today’s world. Accordingly, we tried to use inter-
esting and realistic scenarios in the labs that would en-
gage students’ imaginations so that they could see how
their knowledge and actions could affect security in their
own research and work.

We could have used virtualization instead of a testbed
to support these labs. Free, high-quality virtualization
platforms have allowed many traditional computer sci-
ence courses to use real operating systems and software
within virtual machines, rather than using simulators or
toy operating systems. However, a number of issues with
virtualization led us to use the DETER testbed as our ex-
ercise platform.

The DETER testbed is a collection of physical ma-
chines and programmable routers that can be configured
dynamically and accessed via the Internet. Our labs cus-

1



tomize DETER Linux disk images to create live security
exercises involving realistic scenarios. All portions of
the labs were created using popular and widely available
open source tools, several of which are canonical tools
for security work. This infrastructure is accompanied by
an extensive lab manual with background information,
engaging scenarios, links to online resources, and short
introductions to the relevant software tools.

2 Why Not Virtualization?

It would be tempting to use virtual machines such as
QEMU,1 Virtualbox,2 or VMware,3 as the platforms for
our exercises. Under such an approach, virtual machines
(VMs) would run on our students’ personal computers
and would reproduce experimental environments by run-
ning the actual system software in question. In order
to do this, the students would download the virtualiza-
tion software, virtual machine images, and perform most
lab work within those virtual machines. Several popular
computer science courses at UCLA, such as the under-
graduate and graduate operating systems courses and the
undergraduate databases and web applications courses,
use virtual machines to do just that. However, there are
a number of reasons why we felt that virtual machines
were not the best choice for our exercises, some of which
are outlined below.

First, some of the labs require multiple hosts. For
example, the Man-In-The-Middle (MITM) lab requires
four independent hosts: alice and bob, an eavesdrop-
ping host, eve, and a simulated Ethernet switch. This
would require running up to four independent VMs plus
the host OS simultaneously. This represents significant
resource consumption, even for modern machines.

Additionally, the download for the labs discussed in
this paper totals approximately ten gigabytes uncom-
pressed, not including VM software. This includes five
or more system disks, three additional hard drive images
(for the Forensics lab), and all necessary software. While
the courseware could be written to carefully reuse all
common data, doing so could produce fragile software
and be costly to develop.

Next, there is often a significant support cost to using
virtualization for class projects — even in the traditional
classroom. One virtualization system can change signif-
icantly between versions, and differences often crop up
between various platforms for the same VM software.
Also, multiple virtual machines, as used in our labs, re-
quire virtual networking or virtual network hardware.
For example, the MITM lab is based on ARP-poisoning
[3] and thus requires a virtual link layer. Virtual network-
ing configurations can easily change between versions
of the same virtualization system, between platforms, or
even between kernel versions.

Another reason we felt VMs were less suitable is that
they would be difficult to change in the event of bug-
fixes to the lab software. Each lab is essentially a large,
complex piece of software, and mistakes or ambiguities
continue to appear even after having run the labs sev-
eral times. Students using VMs would need to download
and apply fixes individually and without assistance. TAs
would need to ensure that students were running the lat-
est versions of all software. Ultimately, we do not want
to take on the responsibility of remotely supporting vir-
tualization software for users.

Finally, a virtual machine running on a student’s com-
puter has no protection from snooping or tampering,
since students have full control over their own machines
and the VM disk images. This facilitates cheating be-
cause it is not possible to keep secrets (such as source
code, directory locations, or login information) from stu-
dents if they have all the raw materials; they can simply
mount the disk images and look for the answers.

3 DETER

DETER4 (for cyber-DEfense Technology Experimen-
tal Research laboratory) is a medium-scale testbed with
about 300 nodes [1]. DETER is run jointly by USC
ISI and UC Berkeley and is based on the University
of Utah’s Emulab project [4]. Many testbeds allocate
machines for parallel processing or simulation. How-
ever, DETER and Emulab are dedicated to the dynamic
construction of physical computer networks through the
use of programmable routers and dedicated physical ma-
chines. Much of the material describing DETER in this
paper also applies to Emulab, although DETER is de-
signed for security experimentation specifically and in-
cludes stronger firewall policies and other security fea-
tures.

DETER’s simple configuration language makes it easy
to define “experiments” — distinct configurations of
physical machines and networking resources drawn from
the testbed’s pool. Networks can range from tiny LANs
to WANs, with adjustable characteristics such as band-
width, loss, and jitter. Users can load their own disk
images on physical computers, or choose from a library
of operating system images, including Windows, Linux,
and BSD. Experimental nodes can be further customized
with scripts that run at first boot, installing software from
NFS file systems.

DETER is the ideal platform for our labs. Students ac-
quire individual logins for the testbed, and the labs are
set up as DETER experiments within our UCLAClass
group. It is centralized and managed via a web inter-
face, there is ample storage space for project software,
and students can be assigned their own logins and pri-
vate storage. DETER has about 300 machines available

2



for use; as a result, a class of 30 students can work simul-
taneously on the largest lab (using four machines), each
with their own experimental nodes, using less than half
of DETER’s resources. Because the labs run on DETER,
students do not need to download, install, or manage any
local software beyond an SSH client and web browser.
This allows them to work on homework from virtually
any Internet-connected computer in the world.

Similarly, because the software is centrally located,
fixes or other changes to the labs can be applied once
and be rolled out to all students. The underlying plat-
form and machines are fairly stable, and DETER has its
own testbed operators dedicated to keeping the system
running. As a result, most testbed-related issues can be
resolved via email within an hour. DETER also provides
backups, which protects student work and the labs them-
selves from catastrophic loss. Finally, the labs can be
easily reused simply by instantiating new users and ex-
periments.

4 Projects and Lab Manual

Because these labs are used in an online course, we need
to provide students with high-quality, thorough informa-
tion they can access remotely. We also need to be able
to update the material easily, require permissions on the
sections so that we can “unlock” the lab manual progres-
sively, and want the ability to cross-link related informa-
tion in the manual. We chose to use the MoinMoin wiki5

as our content management system for its simplicity and
ease of use. All lab documentation was written into and
is provided through the wiki, which is configured to be
read-only for the students. The top level of the lab man-
ual contains links to DETER instructions, a document
(LabTools) containing tutorials for all software used in
the labs, external resources, and lab-specific pages. A
link to our lab manual is provided in the notes of this
paper.6

Each lab has its own manual which includes neces-
sary background information, such as a technical dis-
cussion geared towards the lab in the context of com-
puter security, links to external resources, and a link to
our “LabTools” document describing the recommended
software tools for each lab. Following the background
information is a narrative section, “The Story So Far...”
which describes and motivates the lab scenario. Each
lab-specific manual closes with the list of assigned tasks
and any DETER-specific instructions.

The first lab is an introduction to DETER and the
UNIX command line, and subsequent labs are sequenced
to build on the skills learned in earlier labs. For exam-
ple, the file system Permissions lab, which introduces the
concept of suid-root executables, is followed by the Ex-
ploits lab, which includes insecure programs with suid-

root permissions. The Permissions lab assumes very lit-
tle past experience, while the final lab, covering network
intrusion detection systems, assumes the experience that
should have been gathered over the course of the quar-
ter. Accordingly, the lab manual is revealed section-by-
section over the quarter. This serves to keep the students
from being distracted by extraneous information, and,
since the labs build on one another, allows us to refer
back to previous material, or restate answers from earlier
labs in later material.

The following sections briefly describe each lab, in-
cluding the tools used, assigned tasks, interesting out-
comes, and with the exception of the Intro Lab, a quota-
tion from the introduction to the assignment.

4.1 Intro Lab
The Intro Lab is not a full assignment in and of itself,
but serves as an introduction to DETER and basic UNIX
command line skills. This “mini-lab” encourages stu-
dents to set up their DETER accounts, experience con-
necting through the DETER firewall, and use a command
shell on an experimental node for the first time. Instead
of a narrative, there are four short assignments: swap in
a DETER experiment, use tools like find to locate a set
of files, research answers to several basic UNIX ques-
tions online, and submit an archive of the results.

4.2 Permissions
You are Wilbar Memboob, the security admin-
istrator of FrobozzCo. You are looking to hire
a new system administrator to replace the guy
you just fired. Unfortunately, even though his
resume looked great, once you sat him at a
console, it was clear he had no idea what he
was doing. ... To keep this from happening
again, you’ve created a test for new applicants.
However, before you can grade the tests, you
need to create an answer key.

The Permissions lab covers complete POSIX file sys-
tem permissions including setuid, setgid and the special
permissions. The lab also includes access-related issues
such as the sudo utility, POSIX login process, shell es-
caping, and interactions between these systems. Stateful
firewall basics are covered using iptables-based fire-
walls. Key concepts for this lab are “the principle of least
privilege” and “deny by default” design.

The software tools used for this lab are all straight-
forward, including the standard utilities such as chown,
chmod, and adduser. Students also modify
/etc/passwd, /etc/group, and /etc/shadow.
The software used for the firewall portion is more in-
teresting, including networking tools such as nmap,7

3



telnet, and netcat8 for testing the user-created fire-
walls.

Our challenge in designing this lab is to provide re-
alistic, but interesting problems that are still accessible
to students — most of whom are completely unfamiliar
with access control issues and permission models. The
challenge for students is to consider the extended ramifi-
cations and complex interactions of these systems.

4.3 Exploits

FrobozzCo is a large corporation with a great
many secrets. ... Unfortunately, it is clear
that someone has “rooted” the server; a num-
ber of root access files were copied out over
the Internet. Fortunately, no data was de-
stroyed, but the intruder had full control of
the server. You are convinced there is an ex-
ploitable buffer overflow bug in the web server
software, but your boss, John D. Flathead III,
laughed off your suspicions saying, “I wrote
the web server software – and I’d never make
that mistake!”

The Exploits lab introduces students to buffer over-
flows, pathname attacks, and SQL injections. The ex-
ploits are exemplified in three applications: the buffer
overflow is found in a webserver written in C and causes
a segmentation fault, the pathname exploit is found in a
Perl content management system and allows HTTP ac-
cess to /etc/shadow, and the SQL injection allowing
full access is found in a PHP/MySQL banking applica-
tion. Each application consists of no more than a few
hundred lines of code.

Figure 1: FCCU is vulnerable to SQL injection attacks.

The students must find and exploit the flaw in each
application. For example, in the pathname exploit code,
this entails forcing a web application (which is inappro-
priately setuid-root) to display the local shadow file. Af-
ter demonstrating the flaw, the students create a patch
to close the vulnerability (including redesigning the Perl
script to avoid setuid-root) and write a short memo de-
scribing their work. An important security concept at the
heart of this exercise is the false nature of “security by
obscurity.”

Studying common vulnerabilities is useful because we
feel that in addition to understanding how exploits work
on paper, it is important for students to experience the
end-to-end process of leveraging small vulnerabilities
into large breaches, as well as analyzing and remediating
flaws. With pathname and SQL injection vulnerabilities
in particular, our labs demonstrate that vulnerabilities are
not due to weaknesses in POSIX permissions or SQL, but
in the applications that use those systems.

Students use gcc, Perl, MySQL, PHP, patch, and
several standard UNIX utilities in the course of complet-
ing this lab. Students are encouraged to use port for-
warding (via an SSH tunnel) so they can interact with the
web applications directly from their own desktops. This
provides essentially the same usability that the student
would have if the server was on a local network.

Students continue to find new exploits for all applica-
tions and develop creative patches. Due to the workload
and overall difficulty of this lab, remote execution of the
buffer overflow to gain root access is an extra credit chal-
lenge problem. In the future, we would like to place more
emphasis on ideal remediation techniques and a deeper
understanding of software vulnerabilities.

4.4 Forensics

Episode 12: “POST Mortem” — It was a
pretty typical morning, all things considered.
One client was looking for a binary blood-
hound to find out whether his server was in-
fected with a worm. The second client had
some sensitive data stolen and wanted some
help interpreting the evidence. The third client
was a little more interesting – it was a high-
rolling fat cat who was being extorted by
black-hat weasels from some remote corner of
the Internet. Typically, the only information
available was on the computers themselves...

Computer forensics is an exciting aspect of com-
puter security – somewhere between CSI and Sherlock
Holmes. Due to the increase in the use of networked
computers and the related increase of computer theft and
crime, computer forensic science is a growing field. But

4



even without computer crime, good security engineers
must, at times, put on their “detective cap” to figure out
why a system failed. This lab provides students with a
truly open-ended environment where their task is to re-
cover forensic evidence and draw conclusions from it.

While these labs were not created for a course on com-
puter forensics, there are a number of related ideas we
wanted to address, including chain of custody, crypto-
graphic hashing for integrity, block-level disk copying,
recovery of deleted files, log analysis, and places where
data is often overlooked (e.g., swap disks and caches).
These are key issues for both the computer forensic sci-
entist and the security engineer.

The students use common tools which are all avail-
able under open source licenses, such as hexadecimal
editors (hexedit), disk imaging software (dd), cryp-
tographic engines (gpg, md5sum), rootkit detectors
(chkrootkit),9 password crackers (john),10 undele-
tion utilities (e2undel),11 and so on.

Creating the disk images for investigation was the
most time-consuming task for this lab. Since the im-
ages are meant to be legitimate forensic images that can
be freely interpreted by students, each image must have
a minimum of setup artifacts. In order to do this, we
installed a base image on a computer and actually per-
formed the “attacks” in each scenario so that the systems
would have authentic and accurate logs. After this pro-
cess, minor details were changed, such as IP addresses
and host names, using a script that left modification times
and other meta data unchanged. We discuss future work
on this lab in Section 7.

4.5 Man-In-The-Middle
Everyone thinks you’ve been hired at
FrobozzCo to replace an employee that
recently quit. In reality, you’ve been hired by
IT to perform a Red Team exercise against
the network. The top brass are scared of dis-
gruntled employees following a recent online
bank heist, so they’ve ordered a vulnerability
analysis. How much damage can a sufficiently
motivated employee do?

A “Man in the Middle” (MITM) attack refers to a par-
ticular kind of attack against encryption, where an eaves-
dropper exchanges the public keys of two communicat-
ing parties for keys of her own creation. This can oc-
cur without the knowledge of the communicating par-
ties, and in this way, the eavesdropper can intercept and
even change encrypted communication without the par-
ties’ knowledge. Of course, doing this requires the abil-
ity to eavesdrop on the communication.

While Ethernet switches are more secure than hubs,
the isolation provided by switches is weak due to the in-

secure Address Resolution Protocol (ARP). ARP is used
to associate Medium Access Control (MAC) addresses
with IP (Internet Protocol) addresses on a LAN. ARP
is necessary for Ethernet frames to be delivered to the
appropriate hosts. By subverting ARP [3], any host on
a typical switch is able to impersonate any other host,
including the network gateway. As a result of this im-
personation, the Ethernet switch will dutifully redirect
packets to the attacker. From this point, the attacker can
even forward the packets to the true gateway, covering
her own tracks.

Figure 2: Students attack this application by modifying
plaintext output and by forging nonces to insert bogus
data.

The assignment portion of this lab features MITM,
eavesdropping, ARP poisoning, and injection attacks
against network services (such as HTTP, HTTPS, and tel-
net) using the powerful attack tool, Ettercap.12 Students
also use tcpdump to capture and view network traffic,
and a Perl script called chaosreader to reassemble
network streams into easy-to-read web pages. Services
on the network include a simple “stock ticker” program
that prints the current value of some imaginary stocks
and accepts updates to the stock values. These updates
are protected by a nonce, but the transactions can be re-
played because of a weakness in the system. During the
lab, students are initially given access to the host eve,
but may compromise the victim hosts alice or bob,
using insertion and rewriting attacks. Finally, students
are offered extra credit for reverse engineering the nonce
in the stock ticker, allowing forgeries in addition to re-
play attacks.

This lab demonstrates how easy it is to perform eaves-
dropping and insertion attacks on typical modern net-
works. While this knowledge could be used for nefarious
purposes, understanding it is essential if students are to

5



understand the security implications of different network
or cryptographic protocol designs.

Figure 3: Ettercap eavesdropping on network traffic.

4.6 Network Intrusion Detection Systems
You are the system administrator at a small
consulting firm, where your server is subject to
fairly constant attacks from the Internet. Most
of these attacks are automated, but some re-
cent attacks seem like they might have a live
human on the other end. Your boss has sud-
denly become very concerned about the nature
and quality of these attacks. He asks you to
set up a network intrusion detection system, let
it run for a while, and draft a report detailing
what the NIDS illuminates.

Network intrusion detection systems (NIDS) monitor
networks for traffic that matches a set of rules which are
defined in a simple language. Adjusting, creating, or
eliminating rules is similar to writing iptables rules.
Packets which match a rule are logged in a database for
later analysis, typically performed with a web frontend
allowing filtering and exploration of the data.

The major cost of operating a NIDS is the maintenance
tasks of tuning, authoring, and deleting rules, as well as
investigating alerts. Rules which would indicate a seri-
ous problem in one environment may be meaningless in
another. In this lab, students are responsible for analyz-
ing the significance of a previously collected set of alerts,
and for recommending whether the rules generating the
alerts should be kept, eliminated, or modified, based on
a description of the local network. Students create two
new NIDS rules from scratch, and also interpret three
network traces captured with tcpdump.

The two main pieces of software used for this lab are
the Snort NIDS13 and the BASE (Basic Analysis and Se-
curity Engine) frontend.14 The database of alerts used

was created over the course of several weeks using a real
production server (with permission). After collecting the
alerts, the data was anonymized by obscuring host names
and IP addresses, changing usernames, and removing
other sensitive information.

This lab is the least dynamic of the set. While it uti-
lizes a complex and powerful web application in BASE,
the alerts do not arrive while the student works. As a
result, it feels more like an interactive pencil-and-paper
exercise. Future work on this lab will include more real-
istic and dynamic arrival of alerts.

5 Technical Discussion

5.1 Experiment Creation
Creating a DETER experiment requires describing a
network topology, choosing operating systems for the
nodes, and customizing the nodes on first boot. Each
experiment’s network topology is defined in the ns2 Net-
work Simulator language15 with DETER-specific exten-
sions, and can be easily authored using a web-based GUI
provided by DETER.

When DETER experiments are swapped in, they only
contain the data in the chosen disk image. Customiza-
tions can be made with an installation script (defined in
the topology) which runs upon first boot. DETER pro-
vides a facility for creating your own disk images, but
this seemed like overkill since each lab only required a
few different pieces of customized software. We used the
install script facility to copy all necessary software pack-
ages, such as MySQL, lab-specific code, and submission
scripts from our UCLAClass storage area, and to make
any necessary changes to the stock setup (such as adding
or removing users). The script is a parent process for
a number of smaller installer subprocesses using RPM
files, tar balls, or shell scripts. Each subprocess installs
one component, and the parent install script will not com-
plete successfully unless each subprocess exits properly.
Logins are disabled during the configuration phase by an
/etc/nologin file, which is removed upon success-
ful completion.

Because the disk images and software archives do not
change over time, the installer scripts can be very simple
and do not go out of date. This means that the lab soft-
ware itself requires almost no maintenance. While using
older software can be a security risk, this is not a major
concern because DETER nodes are firewalled from the
outside world.

5.2 Turning a Testbed Into Courseware
Ensuring that the labs on DETER are secure was a major
concern. Our course is not collaborative, so we did not

6



want students to be able to intentionally or accidentally
share their work. Avoiding this was a challenge because
DETER and Emulab were originally designed to foster
collaboration — not privacy — between group members.
This forced us to bend the user model of DETER a bit in
order to meet our needs.

A single DETER experiment can only be swapped in
or out — one experiment cannot be swapped in by mul-
tiple users at the same time. Additionally, home direc-
tories are world readable by default, and are mounted
via NFS on any experiment to which a user has access.
The problem is that students need root privileges for our
labs, which can be used to modify other users’ files via
NFS mounts. In order to solve these problems and pro-
vide private storage for each student, we currently iso-
late each student by assigning them to their own dedi-
cated subgroup containing a complete set of experiments.
Recently, however, the DETER developers have imple-
mented a “classroom project” setting that provides equiv-
alent features without dedicated subgroups and provides
more protection to TA and instructor accounts.

Unfortunately, there is still a problem that we hope
eventually to solve. The NFS security model makes it
impossible (as far as we can tell) to both keep the installa-
tion media for the labs private and give the students root
access to the experimental nodes. This is because the
root user requires this access to perform the initial instal-
lation. We can unmount the NFS volumes after the lab is
swapped in, but this is “security by obscurity” — the vol-
umes can be easily re-mounted by a knowledgable user
with root access. This is not a problem for projects which
do not rely on hidden knowledge in the lab environment.
However, if DETER becomes popular for coursework,
this vulnerability is sure to become widely known.

5.3 Student Support

Supporting an online course can be challenging. While
lectures and lab manuals can easily be downloaded at
home, there is no substitute for live, interactive support.
For simple course management tasks such as announce-
ments and a forum, we used UCLA’s CourseWeb.16 For
student interaction, the online MS at UCLA has video-
conferencing hardware at its disposal. However, due to
the nature of the labs and the schedules of the students,
we chose to use old-fashioned support solutions: email,
instant messaging and GNU screen.17

Email is the most popular support tool by far. Since
many of our students work full time, it is much easier for
them to send questions to the TA as they work through
the labs at their own pace. The TA can reply when con-
venient, sending class-wide email, updating the class fo-
rum, or making fixes to the lab software when necessary.

For supporting office hours, we use instant messaging

and GNU screen. GNU screen is a powerful terminal
multiplexer with many features. For the purposes of our
class, screen is used primarily because it allows multi-
ple users to connect to the same terminal session. During
office hours, the TA logs in to an instant messaging net-
work chosen by the students, and can swap in a special
version of the current experiment in the discussion
group if necessary. After swapping in the experiment,
the TA can log in and start a screen session to share
with any students requiring interactive assistance.

This allows the TA to chat with students, answer ques-
tions, and share a terminal with one or more students to
support them in real time — with nothing more than an
ssh client and the testbed. screen allows both users to
enter input, so the TA can choose to give direct assistance
or merely observe the student and answer questions. Ad-
ditionally, since the TA is a member of all individual stu-
dent groups, the TA can also directly offer assistance in
the students’ experiments.

6 Lessons Learned

The labs have been a great success in the six course offer-
ings since they were developed. Students enjoy work that
is relevant to their lives, and our students in particular re-
peatedly express appreciation for the fact that the labs use
real software in realistic environments. This is especially
important for computer security because of its unique in-
tersection of theory and practice. We have even received
access requests from graduate students who were not en-
rolled in the class!

In general, students said that they were able to com-
plete the labs in what we felt was a reasonable amount
of time. While students with more experience were often
able to complete the work faster or develop more creative
solutions, students with less experience still scored com-
parably. Additionally, DETER seemed fairly transparent
as a platform; there were very few DETER-specific ques-
tions during the course of the class.

One indication of the immersive quality of the labs
came from the Forensics lab. Students sometimes find
“evidence” in the Forensic images that is an artifact from
the lab creation process. For example, because the disk
images were installed, attacked, and archived within the
span of a few days, students may find evidence of the
root user installing new software. Some students notice
the incongruous fact that no timestamps on the machine
are older than a few days, even though the scenario im-
plies otherwise. However, because they believe in the
realism of the labs, students either note this as a sidebar
in their report, or more commonly, incorporate the arti-
facts into their analysis. One welcome, but unexpected,
outcome of the Forensics lab is the recognition that mul-
tiple reasonable conclusions can be drawn from the same

7



evidence — a truth with meaningful consequences under
the law. This has resulted in extremely creative analyses
and also illustrates the burden of detail inherent in creat-
ing open-ended, “realistic” labs.

More generally speaking, the open-ended and non-
linear nature of the labs has had unexpected, but mostly
positive, consequences. In many scenarios, if students
know what to look for, they can “solve” the puzzles with-
out much investigation. Yet, other students may spend
hours working and still fail to draw correct conclusions.
However, we think this is a feature, not a bug, because
we want to emphasize analysis, research, careful read-
ing of the material, and critical thinking rather than ex-
haustive search. In order to facilitate this process, we
are relatively forthcoming with hints and advice, serv-
ing as a guide to the students rather than a proctor, and
continually tweak the lab manual in order to make the
assignments and instructions more clear.

7 Future Work

There are many different subjects we could cover
through similar labs. For example, a lab on anti-spam, or
anti-malware techniques could be interesting, as would
distributed denial-of-service defense or botnets. We
could also explore Red Team-style exercises on DE-
TER in conjunction with new or old topics, using long-
running experiments as “arenas” for student attacks and
defenses. Unfortunately, our 10-week quarter does not
have room for additional material. One potential solution
is to break these labs up into smaller pieces, and assign a
different selection of homework during each offering.

We are especially interested in making the exercises
less static. Realism is one of our guiding principles,
which in turn motivates extremely detailed environ-
ments. Unfortunately, it is hard to simulate or synthesize
those details, and, in the case of the Forensics lab, it is
difficult even to fix an error without introducing a new
one. This means that although we cannot, in good con-
science, give out answer keys for fear that they will end
up online, withholding information may reduce student
learning. Our compromise has been to give thorough
feedback during grading and invite students to discuss
any questions they might have on an individual basis.

In response to the general difficulty of content cre-
ation, we have started working on tools to make the lab
creation process more flexible and dynamic. Specifi-
cally, we have a prototype system for generating foren-
sic images which utilizes Expect,18 an automation tool
for operating systems. Our tool allows us to script ac-
tions which create the forensic image on a real system.
These actions can include installing software, imperson-
ating users, generating network traffic, and the like. The
main advantages of such a tool are control (the tool can

execute much more complex and precise behaviors than
one author could) and repeatability (fixing a bug in a
forensic image is simplified to fixing a bug in the script
and re-creating the image). Work on this tool is ongoing.

8 Conclusion

The labs are a great success, meeting and exceeding our
expectations. The labs compare very favorably to “of-
fline” projects, and they are easy to use. We continue to
find that students enjoy the immersion, imaginative sce-
narios, and experience with real software systems. We
also heartily recommend DETER as a platform for edu-
cational software. It has been an excellent and powerful
tool; we could not have easily created these labs without
it. DETER’s administrators have worked hard to support
education; we and others appreciate this and will con-
tinue to rely on DETER for this purpose [2] in the future.

References
[1] BENZEL, T., BRADEN, B., FABER, T., MIRKOVIC, J., SCHWAB,

S., SOLLINS, K., AND WROCLAWSKI, J. Current Developments
in DETER Cybersecurity Testbed Technology. In CATCH 2009
(2009).

[2] DETER TESTBED. Education on DETER. http://www.isi.
edu/deter/education/. Accessed Friday, May 28, 2010.

[3] WHALEN, S., ENGLE, S., AND ROMEO, D. An Introduc-
tion To Arp Spoofing. http://www.leetupload.com/
database/Misc/Papers/arp_spoofing_slides.
pdf, 2001.

[4] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In OSDI 02 (Boston, MA, Dec.
2002), USENIX, pp. 255–270.

Notes
1http://qemu.org/
2http://www.virtualbox.org/
3http://www.vmware.com/
4http://www.deterlab.net/
5http://moinmo.in/
6http://lasr.cs.ucla.edu/seclabs/
7http://nmap.org/
8http://netcat.sourceforge.net/
9http://www.chkrootkit.org/

10http://www.openwall.com/john/
11http://e2undel.sourceforge.net/
12http://ettercap.sourceforge.net/
13http://www.snort.org/
14http://base.secureideas.net/
15http://www.isi.edu/nsnam/ns/
16http://courseweb.seas.ucla.edu/
17http://www.gnu.org/software/screen/
18http://expect.nist.gov/

8


