Chapter 6

The M easurements of Perfor mance

In the following sedions we will demonstrate the performance of the ONA
system that has been implemented. In Section 6.1we present the performance of the
heuristic-search-based planner tested separately from the whoe system. We tested it
versus an exhaustive search algorithm planning. In Section 6.2 we tested the Panda
overhead and the performance of Panda is connedion with red-time multimedia
applicaions. Theresults of the tests show a significant advantage had by the cnnedions
that used Panda. The results with red applications also demonstrate the alvantages of

central planning versus incrementa planning.
6.1 Performance of Heuristic Search-Based Planning

We tested a Java implementation d this planner on Dell Inspiron laptops with 333MHz
procesors. Connections were generated in arandam fashion. The links between the nodes were
randamly assgned bandwidths of 10 Mbps, 2 Mbps, or 100 Kbps. Moving data over a 10-Mbps
link required no adaptation. Moving it over a 2-Mbps link required Lempel-Ziv compresgon.
Moving it over a 100-Kbps link required both lossy filtering and Lempel-Ziv compressgon. Each

link was designated seaure or insecure, which required no adaptation a encryption and



deayption, respectively. Therefore, each link could require at most five alaptations: filtering,
compresgon, decompression, encryption, and decryption. We adso generated a resource

avail ability for each node, in terms of the number of adaptersthe nodeisableto run.
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Figure 6.1: Heuristic to exhaustive search time cost ratio

We generated 1000different scenarios of this kind, which we classify by the number of
nodes in the conrection and the origina number of adapters chasen to handle the @nrection
before any optimization. Binary adaptations are curnted as two separate alaptations: for
example, we consider Ziv-Lempel compresson and decompression as two adapters. Because of
the randam seledion d problems, unequal numbers of cases occurred for diff erent combinations
of the number of nodes and the number of adaptations, some caes occurred a lesser number of
times than the others. Different cases required dfferent solution times but they had the same
number of adapters in their nongptimized plans. These effects caused wide variations in the
statistical distribution of different classifications. Exhaustive seach was used to evaluate the

spedad and the efficiency of the heuristic seach. Exhaustive seach verifies al combinations of
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the seleded adapters on all nodes. However, the number of combinations is reduced so that each
adapter always covers the correspordent problematic link that it is asdgned to fix: the DO part
aways remains before the link and the UNDO part (if any) always remains after the link. This
constraint seriously reduces the search spaceof potential solutions, eliminating those that cannot
be dfective, and giving us amore realistic comparison.

Except in the 4% of al cases where no feasible plan existed, heuristic search found some
feasible plan. In ore case with four nodes, three cases with five nodes, and eight cases with six
nodes, (12 cases out of 1000), the heuristic search did not find the same optimal plan as
exhaustive seach. All these cases occurred when most conrnection nodes did nd have enough

resources to run necessary adaptations.
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Figure 6.2: Heuristic sear ch performance (in milliseconds)

Figure 6.1 showsthe ratio between the duration of exhaustive search and heuristic search.
Exhaustive search has the advantage over heuristic search for small numbers of adaptations and

nodes. For any number of nhodes using more than six adapters and for more than four nodes using

131



more than two adapters, heuristic search outperforms an exhaustive search. For cases with more
than seven adapters, the exhaustive search cannot compete with the heuristic search. Closer study
of the @ases owed that the location of a problematic link seriously affects the number of
possible adapter combinations for exhaustive search, making the anfidence interval wide.

Figure 6.2 shows the performance of heuristic search for diff erent numbers of adaptations and
nodes. For cases from Figure 6.1 where exhaustive seach outperformed heuristic search, the
heuristic search time is relatively short, around 10 milliseoonds. The worst average heuristic
seach time onthe dhart is around 60milliseamnds, which would usually be an acceptable delay,
especialy given the probable poar performance of the mnnectionif no adaptation was done.

Figure 6.3 replots ome of the data from Figure 6.2 to clarify how the performance of
heuristic search depends on the number of nodes for a given nunber of adaptations. In these
tests, the number of adapters shrinks with almost every step of merging; for example, only one
filter, encryptor, or compressor of any two survivesamerge. That iswhy the shape of the graphs
looks closeto linear, ignoring the actual complexity of the dgorithm. The latency of planning dd

not reach 200mil lisesconds for practicd cases.

6.2 Costsof Incremental Versus Central Planning

As mentioned in the previous section, an incremental plan can be used for the awnnection
if time limitations do not allow the plan's optimization. Figure 6.4 shows the planning time of

incremental planning versus the arrespording central planning.
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Figure 6.3: Heuristic sear ch performance (in milliseconds)

Incremental planning takes 3 to 5 mill iseconds, while eentral planning takes tens or hurdreds

of milliseconds. The difference in the efficiency of incremental and central plans is $own in

Figure 6.5in plan cost units calculated with the optimization function (the fewer units the better).

As expected, optimized plans are significantly better.
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Figure 6.4: Incremental versuscentral planning time cost (in milliseconds)
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Figure 6.5: Incremental vs. central planning efficiency
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6.3 Planning Process Test

6.3.1 Thetestbed

Computersand networks. The cmnredionwas tested with twisted pair
sequential conrections of up to four computers as s1own onFigure 6.6. Déll Inspiron
Omnibook 4150aptops with 333MHz processors were used for one set of tests and
Hewlett Padkard laptops with 500MHz processors used for anather set of tests; all
madinesused Linux Red Hat 7.0 with the 2.2.16 lernel. Xircom RedPort2 Ethernet
10/100PCMCIA cads were used for the network conrection ketween the machines. The
source and destination madines run a user appli cation and the Panda node wncurrently.
The priority of the user appli cation was set lower on the source machine and higher on

the destination machine to ensure the proper all ocations of resources.

fileavi
Panda Panda Panda Panda

Figure 6.6: Panda peer-to-peer connection
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Throughpu of the network links is varied among 150 Kbps, 800 Kbps, 2000
Kbps, and 5000K bps using CBQ.

Adapters. We used two kinds of adaptations: null adaptations and red
adaptations. Null adaptations do nd perform any data processng; they are used to
measure the overhead of just having an adapter in a cnrection. Filters and encryption
were used asred adaptations. Thefilters drop particular padkets with color or quality
data and computationally are very econamic; the encryption adapter performs
hearyweight processng of the data.

The problem of synchronization. The foll owing methodwas applied to measure
one-way padet delivery. The padets were stamped with the locd time on the source
machine. Uponthe ariva at the destination macine the stamped time was subtracted
from the destination locd time to oltain measured time delivery. The synchronization o
the source and cestination macdines' clocks was done with NTP. The NTP server was
locaed onthe destination nod. The source node synchronized itself to the destination
locd time before the first packet was sent to the destination. Then 20,000 pdkets were
sent the destination. After the last padket was delivered, the source machine measured
the skewing value. It was presumed that skewing grows uniformly by time. The actual
time delivery was calculated with aformulafor each data padket n:

skewingValue

Actual TimeDelivery(n) = measuredTimeDelivery(n) -
20,000

Applications. Threedifferent applications using the UDP protocol were used for

the performancetests. The latency of packet delivery and nul-adaptations were tested on
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a speda application cdled Connector that was designed in Java for this purpose.
Conredor is able to generate data packets of different sizes. The average skewing value
observed for 20,000 @dkets generated by Conrector was 370 milli seconds.

The overheal o the planning protocol and red life adaptations were tested with
the WaveVideo application [Frankhauser99], which generated a video strean using .avi
files.

As an dternative to this video stream applicaion, we used RAT (Robust Audio
Todl), an audio stream generating applicaion. It generated audio streams using .au fil es.

The quality of service was tested with the WaveVideo measurement padkage,
which compared the initial data stream with the one that was adually delivered. The
result is presented in PSNR units, which are the ratio of the initial stream to the error that

occurred during the transmisson.
6.3.2 Packet delivery and adaptation latency

Figure 6.7 presents packet delivery latency for different packet sizes. Panda
withou adaptations extends normal Internet latency threeto four times, being arelatively
slow Java gplicaion. Null adapters added to the conrection make Panda overhead even
heavier for packet delivery. The packet delivery latency aso contains the alaptation
latency. Error bars onthisfigure and all further figures show the value of standard error,
unlessotherwise indicated.

Figure 6.7 shows that adding Panda to a data strean increases its latency 50
to15Q%, with longer padkets ang less effect. Adding more Panda-enabled nodes or

more adapters modestly increases the delay for ead addition.
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Figure 6.8 presents the latency of null adaptations. All adaptations were deployed
on ore of the nodes of the amnrection. Of course, withou Panda no adapters can be
deployed, so the extra latency for that case is defined as zero. Every Panda node dways
runs at least one forward adapter, whose only task is to forward a padet to a next node
after al other adapters are exeauted. The number of forwarded adapters is equal to the
number of connedion nodks and is always present in a Panda mnnedion, bus not
courted on ou graphs. Figure 6.8 shows that the overhead of a null-adapter is 2.4
milliseaonds. A red adapter will take & least this value; adual data processng will cost

extralatency.
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Figure 6.7: Packet delivery latency
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Figure 6.8: Adaptation latency

Figure 6.9 pesents the packet loss that occurred in a data stream of 20,000
padkets for different packet size. The data stream withou Panda had nopadket loss No
padkets were lost for 2k-padket data stream was lost either. Packet lossincreases with
padket size because of extra memory all ocaion by the Panda Java @mde and associated
with it extra latency. Figure 6.10 shows that Panda throughpu grows with the packet
size. At the same time Panda padet lossgrows with the padket size, bu it never reaches
more than 0.%. The padet size of multimedia gplicaions varies anyway because
some gplicaions apply their own compressng protocols to the data padkets. Error bars

represent 95% confidenceintervals.
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Figure 6.10: Throughput of Panda associated with packet size

Figure 6.11 pesents the delivery timein milli seconds of an arbitrarily chosen
1000 @dkets. Axis X shows numbers of packets from 1 to 1000. The stream occurred

onthe cmnreded four Panda nodes withou adapters for 1k-size padkets.
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Figure 6.11: Sample of thedistribution of packet delivery latency (axisY)
on packet numbers (axis X).

Figures 6.7to 6.11are obtained running the Connedor applicaionand nul

adapters.
6.3.3 Planning procedur e latency with the connector application and null adapters

The planning procedure latency consists of planning data gathering latency, plan
cdculation latency, and dan deployment latency. Planning data gathering takes one
round trip: the source node forwards the data gathering message to the end noc and
waits for its return. Planning data gathering for four Panda nodes takes 108 +/- 2.85
milli seconds.

For central planning, the time required to deploy the plan depends on whether the
adaptations are pre-loaded on nales. Obvioudly, if adaptations are pre-loaded the
deployment latency is much shorter. Figure 6.12 pesents the deployment latency for the

case Where alapters are not preloaded. The bars represent the deployment latency of 1 to
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5 ndl adapters that were deployed oneach of the mnnedion nodas. The deployment on
Node 1 is always fast because it is the source node, the storage site of all adaptations. In

central planning, the more adaptations that must be transmitted to remote nodes, the

longer the deployment process
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Figure 6.12: Deployment latency without pre-loaded adapters

Figure 6.13 pesents deployment latency in the cae of pre-loaded adapters. The
latency of deployment is much shorter in this case becaise aapters need na be
transmitted to remote nodes. However, the deployment protocol withou adapter

transmisson still must instantiate the locdly stored adapters, and that is why the
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Figure 6.13: Deployment latency with pre-loaded adapters
deployment of more alapters takes longer per noce.
Figure 6.14 pesents the latency of the deployment protocol when no adapters are
seleded. In this case, the deployment protocol consists of querying messages snt by the
source nock to the intermediate nodes, asking them if they are realy to receve user data,

and the a&knowledgements from the intermediate nodes.
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Figure 6.14: Latency of the deployment protocol without adaptations

Figure 6.15 pesents the latency of the incremental planning process The bars for
deployment on the planning madhine refer to adaptations that must be deployed onthe
madine that cdculates the local plan. The bars for deployment on the next machine
refer to the alapters that must be deployed onthe macdine downstream from the planning
maaine. The barsfor deployment on bdh madines refer to cases where the incremental
plan requires adapters on bah o these machines. Incremental planning does nat include
any adaptation transmisson. All nodes are presumed to be storing al adaptations that
can be dosen by their local planners. The deployment of one alapter on either of
madines has same latency. The deployment of one adapter on each of two madines

takes dightly longer.
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Figure 6.15: Incremental planning and deployment latency

Figure 6.16 pesents the latency of performing both central and incremental
planning. The bars marked as "Incremental” show the latency of the initial incremental
plan. The bars marked as"Centra" show the latency of the planning procedure if no
incremental planning occurs. The bars marked as " Central plan with incremental planin
the badkground" show how incremental planning slowsthe central planning. Once the
incremental plan is established at all nodes, data padkets gart to flow. These padkets
compete with the businessof central planning, slowing that procedure down. Central
planning, withou incremental planningin the badkground, fas a small er latency because
adapters can be transported to the node that will runthem withou competing with data

padkets for the node and link resources.
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Figure 6.16: Incremental versus central planning latency

Figure 6.17 shows the number of padets that are forwarded under the
incremental plan before the central plan is cdculated and deployed. The bars marked
"noce 1, 2, 3or 4 adapters 1" demonstrate the caes where central planning requires the
deployment of one alapter on the 1st to the 4th nodes respectively. The further the
adapter must be deployed from the source node, the longer the process of deployment;
more padkets are sent under the incremental plan. The bars marked "node 4, adapters 1,
3, 5' demonstrate the cases where the central plan requires the deployment of 1, 3or 5
adapters on nade 4. The more aapters deployed, the longer the deployment process
thus, more padkets are sent under the incremental plan. The graph suggests that very short
data streams, for example NTP, may not require central planning, as all of their messages

will be delivered before the central plan is cadculated and deployed.
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Figure6.17: The number of packets sent under incremental plan before central plan
iscalculated and deployed

Sometimes the ondtions of networks change dter a @nnedion is aready
established. If the changes are dramatic enough, the plan is no longer effedive, and the
system must replan. The process of replanning runs concurrently with the data packet
stream and therefore takes longer than the initial planning. Figure 6.18 pesents the
latency of replanning. The white bars show the latency of the initia planning process
where one alapter is deployed onthe third madcine. The gray bars show the latency of
replanning, where one alapter is deployed onthe first, the second, the third, and the forth
machines. Replanning takes at least 50% longer than the initial central planning. A
replanning process where an adapter is deployed on the source machine, till takes
longer than the initial planning. This happens because the processof padet storing and
forwarding on the source machine would occur in replanning takes more node resources

than the process of padket storing only occurs in the initial centrlized panning. The
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graph also shows that the further an adaptation is transmitted from the source node, the

longer it will take to complete replanning.
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Figure 6.18: Thelatency of thereplanning process

6.3.4 Planning procedurelatency with real-life applications and adaptations

The results of the previous sdion were obtained by using the atificial Connector
applicaion and nul adapters, and tests were awndwcted onDéell Inspiron macdhines. The
following test results used the WaveVideo application and real adaptations,
ResolutionDrop and Encryption, on Dell Inspiron and Hewlett Padkard machines.

Figure 6.19 pesents the centralized planning procedure latency for both the
Conredor and the WaveVideo applicaions. Of course the resolution dop adapter was
nat meaningful for the Conrector data padets, bu it was nat an olstacle to use it for
planning procedure measurements. The WaveVideo application generates data padkets

ten times as fast as the Conrector applicaion. Thisintensity puts an extra burden onthe

148



CPU of the source node and suppresses Panda activity. Thus, the resource requirements
of the user appli cation influence the performance of Panda. Figures 6.19, 6.20and 6.21
demonstrate the planning procedure latency, plan cdculation latency, and deployment
latency, respedively. Figure 6.20 shows that the plan cdculation latency is grongly

influenced by the requirements of the user application. Figure 6.21shows that

OWaveVideo: 3.3 msec interpacket interval
@ Connector: 40 msec interpacket interval

1400 ~
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400 +
200 +

Latency (msec)

No adapters Resolution drop Resolution drop &
encryption

Figure 6.19: Planning procedure latency for the Connector and the WaveVideo
applications

the deployment latency is amost unaffeded, because most of the deployment activity

takes placeon conrection nods other than the source node.
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Figure 6.20: Plan calculation latency for the Connector and the WaveVideo applications
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Figure 6.21: Deployment latency for the Connector and the WaveVideo applications

15C



Figures 6.22 to 6.24 pesent the latencies for the planning procedure, plan
cdculation, and deployment, respectively, for the WaveVideo application for different

network bandwidth that varies with dff erent CBQ settings.
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Figure 6.22: Planning procedure latency with Dell Inspirons
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Figure 6.23: Plan calculation latency on Dell Inspirons
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Figure 6.24: Deployment latency on Dell Inspirons

The graphs dhow little dependency of latencies for planning procedures on the
network bandwidth, bu a strong dependence on the number of adaptations.

Figure 6.25 pesents the incremental planning latency for the WaveVideo
application. The incremental planning procedure is faster than the centralized ore (see

Figure 6.22) even for avery small number of adapters (2 to 3) and four-node mnnrections.
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Figure 6.25: Incremental planning latency for Dell Inspirons
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Figure 6.26: Incremental and central planning procedur es (resolution drop only)
on Dell Inspiron connection

Figure 6.26 pesents the latency of repladng the incremental plan with the central

plan. The gray barsonthisfigure ae the same & the resolution dop bars on Figure 6.25.



The throughpu has little dfect on latency because the resolution drop adapter is very
small, and can be quickly deployed regardless of the throughpu. Incremental planning
has a small er latency than centralized planning.

Figure 6.27 pesents the number of packets that were sent under the incremental
plan before the central plan was cadculated and deployed. The latency of the central
planning procedure increases the number of padets. This figure again shows that very
short sessons that transmit a small number of padkets require incremental planning only.
Earlier, in Figure 6.17,we showed the same number for the case with ndl adapters. The
data in Figure 6.26 shows that heavier adapters increase the latency of centralized

planning and thus increase the number of padkets sent under the incremental plan.
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Figure 6.27: The number of packets sent under theincremental plan before
the central plan iscalculated and deployed
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Figure 6.28: Central replanning process on Dell Inspirons

Figure 6.28 pesents the tests of replanning during a sesson. Initia central planning
represents the planning that occurred before the first packet has sent withou performing
incremental planning.  Central re-planning occurs in the midde of the sesson
concurrently with data packets. The encryption adapter is arelatively large piece of code
and its deployment is srioudly aff ected by the limited throughpu of the mnnedion; the
re-planning procedure lasts from 1.5 seconds for 5000Kbpsto 3 seconds for 150K bps.
The test results with mor e powerful machines. The next series of experiments
were run with more powerful HP Omnibooks (500 MHz of HP versus 333 MHz for the

Dell Inspirons) to determine the dfeds of processor power on danning and adaptation.

15&



25 Olnspiron (null adapters)

20 - EInspiron (WaveVideo)

£ OHP (WaveVideo)

~ 15 _

>

(&)

S 10 -

o

- 5 i

0 T T 1
Panda Panda & resolution ~ Panda & resolution
drop drop & encryption

Figure 6.29: The comparison of adaptation latencies on Dell Inspiron and Hewlett

Packard machines connections

Figure 6.29 pesents the latency of the adaptation with real adapters on bdh the
Dell and HP madhines. Inspiron (null adapters) bars represent the alaptation latency
with 0, 1and 2 ndl adapters on Inspiron, which are compared to redistic cases. This
figure shows that processng power has a mgjor effect on the st of runnng realistic
adaptations, aswould be expeded.

Figures 6.30to 6.32compares the planning procedure, plan cdculation, and the

plan deployment latencies for Dell Inspiron and Hewlett Packard madines.
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Figure 6.30: Planning procedure latency on Dell Inspirons and HPs
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Figure 6.31: Plan calculation latency on Dell Inspironsand HPs
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Figure 6.32: Deployment latency on Dell Inspironsand HPs

These figures show that planning is a CPU-intensive adivity that can be
asssted by more powerful madcines. Much of the wsts of deployment,
however, are more dependant on the network than on CPU, so increasing CPU
power provides lessbenefit in this gage.

The remaining tests were run orly on Hewlett Padkard machines. The
planning data gathering procedure took 72+/- 6 milliseconds for al situations.
Figures 6.33to 6.35present the planning procedure, plan calculation, and dan

deployment latencies.
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Figure 6.33: Planning procedure latency on HPs
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Figure 6.34: Plan calculation latency on HPs
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Figure 6.35: Deployment latency on HPs

Comparing these figures with Figures 6.21to 6.22 olbained for Dell Inpirons, we
can conclude that more powerful machines reduce the overhead of runring the planning
protocol and adaptations on Panda nodes. In bah cases the planning procedure latency
depends more on the number of adapters and lesson the network bandwidth.

Figures 6.36 and 6.37 present the incremental planning, central planning, and
replanning latencies for resolution dop and for resolution dop and encryption
adaptations, respectively. The graphs dhow that incremental planning is faster than
central planning, and central planning is faster than central replanning. The difference
between initial central planning and central replanning is larger for larger adapters
because the transmisson d the alapters depends on the traffic between the conrection
nodes, and the replanning process competes with the data padket transmisson. The bars

for 150 kbps in Figure 6.37 show that the influence of the data packet traffic on that
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difference is even more significant if the available network bandwidth is gnaler, as
would be expeded.
Figure 6.38 pesents the number of packets ent under the incremental plan before

the cantral plan was calculated and deployed onthe HPs.

O Initial incremental planning
1800 1 @ Initial central planning
1600 - O Central replanning

Latency(msec)

150 800 2000 5000
Throughput(kbps)

Figure 6.36: Incremental planning latency for resolution drop for HPs
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Figure 6.37: Planning latency for Resolution Drop and Encryption for HPs
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E Resolution drop & encryption
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Figure 6.38: The number of packets sent under theincremental plan before
the central plan was calculated and deployed

The number of padkets ent under incremental plan before the central planis
cdculated and deployed varies widely from 0 to 475. It makes the confidence intervals
wide, allowing usto draw few conclusions abou the dfeds of varying throughpus of

diff erent numbers of adapters.
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Figure 6.39: Replanning procedure latency on HPsand Inspiron

Figure 6.39 pesents the replanning procedure latency compared to the
correspordent initial central planning latency on Dell Inspirons and HPs.  The graph
shows that higher CPU power reduces the latency of the planning and replanning
procedures. Slower machines also demonstrate astronger dependancy on the available
network bandwidth. Larger adapters make this dependancy even stronger.

The transfer of the resolution dop adaptation is not affeded much by the
throughpu because it is a small adaptation. Encryptionis avery large alaptation whaose
deployment takes much longer, and is more aff ected by competing data transfer traffic,
thus varying from 1.5 seaconds with 5000K bps throughput to more than 3 seconds with
150 Kbps throughpu. Recdl that the latency of the deployment that does not compete
with data transfer traffic is presented on Figure 6.32. More powerful computers thus

reducethe latency planning protocol and adaptation.



Ancther redlistic gpplicaion, RAT, was run to compare it to the WaveVideo
application. Figure 6.40presents the latencies of the plan calculation for WaveVideo and

RAT. Both applicaionsreceved pans cdli ng for only the same encryption adapters.

ORAT HEWaveVideo

Latency (msec)

No adapters Encryption

Figure 6.40: The plan calculation latency for Rat and WaveVideo applications

The RAT application transfers audio data, which is lessintensive than video data.
Since more resources of the source node can be used for the planning procedure, RAT

recaves its plan faster than WaveVideo.
6.3.5 Quality of serviceimprovement

The Panda overheads described in the previous sction are aceptable if Panda's
adaptations improve gplicaion-meaningful quantities. Here we present evidence of
such improvements. Aswe mentioned in Section 2.4,QoS is measured in dB of PINR as

conventional units. PNR expresses the diff erence between sent and celivered signal.
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Figures 6.41and 6.42present PR luminance and Cb values respedively for the

WaveVideo applicaion (discussed earlier) on Dell Inspiron machines with alink limited

to 150K bps.
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Figure6.41: PSNR (luminance) on Dell Inspironsfor 150 Kbpslinks

Withou Panda, the airve falls once the channd is saturated; Panda's curve

improves after its planning protocol is completed, providing better PSNR after around 20

frames. Panda adieves this improvement by droppng unimportant padets, thus

allowing more important padets to arrive on time. The PINR performance of Panda

with resolution dop and encryption adaptation in some points can be even better than

Panda with resolution dop orly. One posdble reason could be that Panda's extra

buff ering slows the data stream but reduces the undesired padket loss
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Figure 6.42: PSNR (Cb) on Dell Inspiron connection for 150 Kbps by video frames

Figures 6.43 and 6.44present PSNR luminance and Cb values, respedively, on
Dell Inspiron maciines with 5000 Kbps links. In this case, Panda service is not
necessary because the network is powerful enough to deliver padets on time. These
figures demonstrate the importance of a network-aware planning process If the
resolution dop adapter were blindy applied o nat applied withou considering the

network condtions, poaer PSNR would result for some cases.
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Figure 6.43: PSNR (luminance) on Dell Inspironsfor 5000 kbps by video frames
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Figure 6.44: PSNR (Cb) on Dell Inspironsfor 5000 kbps by video frames

More powerful machines can processmore data packets and reduce

padket lossin poa-condtion retworks, and thus increase PINR. Figures 6.45
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and 6.46 pesent PSNR values on Hewlett Padkard macdhines. These figures

show that Panda provides greaer improvement with the more powerful

madhines.
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Figure 6.45: PSNR (luminance) on HPsfor 150 kbps by video frames
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Figure 6.46: PSNR (Cb) on HPsfor 150 kbps by video frames
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Figures 6.47 and 6.48present PR luminance and Cb respedively on Hewlett
Padkard machines with 5000kbps. Even with this more capable network, in afew cases

Panda provides better PINR.
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Figure 6.47: PSNR (luminance) on HPsfor 5000 kbpslinks by video frames
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Figure 6.48: PSNR (Cb) on HPsfor 5000 kbpslinks by video frames



In Figures 6.41to 6.48,weinclude datafor applying encryption along with packet
droppng using Panda. For this data, Pandais providing a benefit beyond PSNR
improvement by keeping the video seaet. Withou also droppng frames, however, much
greder degradationin PSNR would acaompany the improved seaurity, as saown in
Figure 6.49 onthe Panda& Encryption kar. This data demonstrates the importance of
considering al network condtions and pasdble remedies asawhae. It can be necessary
to apply data compressonjust to compensate the dfeds of the Panda and its security
remedies. Figure 6.49 pesents PS\R valuesin various network condtions. Thisfigure

clealy shows that Panda with adaptations provides benefits for the networks with limited

bandwidth.
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Figure 6.49: PSNR (luminance) on HPs
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PSR measurements can also be used for quantifying the quality of the calculated
plans for video data streams. Consider the following example. Figure 6.50a shows an
example of a @mnrection. One link in this conredion hes poa bandwidth, which is
insufficient to carry all the data. Ancther link is defined as inseaure. If the link adjacent
to the source requires encryption and the next link requires filt ering, then the incremental
plan will contain an encryptor on the source node and a decryptor and a filter on the next
noce (Figure 6.501. It isclear that this plan is lessoptimal than the optimized plan that
will put the filter and encryptor on the source node and a decryptor on the next node
(Figure 6.50c). Inthe latter case, encryption and decryption will be gplied to fewer data
padkets. Figure 6.51 demonstrates better PANR for a filtered and then encrypted and
deaypted data stream (the dark gray line) than with an encrypted, deaypted, and then
filtered data stream (the light gray line). The black line shows the PSNR withou using
Panda. This example shows that a naive planner that all ocates remedies next to links
where problems occur can produce plans that are nat only theoreticdly subogimal, but

that give poarer appli cation-meaningful performance.
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Figure 6.50: The advantage of central planning over incremental planning
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Figure 6.51: PSNR (luminance) for incremental and central plans
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6.3.6 Discussion of performance

The tests dhow that the overhead of using Panda to adapt data streans can be
compensated with a higher quality of service The overheals are reasonable, particularly
for relatively long-lived data streams. The latency added by the planning protocol isin
the magnitude of 1 second. Panda also slows down the latency of data packets 4 to 10
times. The QoS however, can beimproved upto 100%.

More mmputationally expensive user appli cations can increase the latency of plan
cdculation kecause gplicaion and danning processng compete on the source node.
Plan cdculationfor a 10-times more intensive user appli cation takes 4-times longer. This
implies that the plan cdculation shoud take place on the node that has more
computational resources.

More powerful computers reduce the overhead of Panda and increase the
delivered QoS. 1.6times more powerful computers reduce 1.6-times the latency of the
planning procedure and increase QoS by 30%.

Incremental planning can produwce and deploy plans 50% faster than the
correspondng central plan, bu QoS for the incremental plan can be 45% worse in some
cases, as own on Figure 6.51. The number of packets that are sent under an
incremental plan before acentral plan is calculated and deployed varies from zero to
some hundeds depending on the variance of the latency of the central planning
procedure. Therefore, brief sesgons houd use incrementa planning only. The length of

the sesgon shoud be eplicitly indicated, for examplein user preferences.



Replanning can take anumber of times longer than initial planning because it runs

concurrently with datatraffic.
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