
175

Chapter 7

Related Work

In this section we will present a number of papers that provide a view of current

state of research on open network architectures and active networks, AI planning

approaches, and ONA planner implementations.

7.1 ONA Implementations for ONA-Aware Applications

Some ONA technologies provide service to user applications that are aware of ONA

capabilities. These systems require applications to do their own planning. Active networks

[Tennenhouse96] allow users to inject customized programs into the nodes of the

network. [Wetherall99] presents ANTS, a Java-based toolkit for constructing active

networks. The transfer of adaptation code and the transfer of data are coupled in ANTS

as in-band functions. ANTS limits the distribution of code to where it is needed, while

adapting to node and connectivity failures. It improves startup performance and

facilit ates short-li ved protocols by overlapping code distribution with execution. It

allows customized processing to be expressed at a better granularity than the modification

of every node in the network with all possible protocols. The adaptation code is cached

in a node for all subsequent data packets to the end of the data transfer. ANTS presumes

176

that applications are written specifically to use it. Legacy application packets will be

treated as normal IP packets without active network service.

Active networks have improved in recent years. Secure active networks

[Murphy01] were developed incorporating a number of protocols for authentication,

certificate and key distribution, and security policy. Thus, SANTS (Secure ANTS) uses

X.509v3 for certificates, the DNSSEC protocol for certificate and key distribution,

Keynote for security policy, and Java security extensions for sandboxing and security

policy enforcement. However, the cost of security measures and their effect on the

eff iciency of packet transfer remains a major concern.

Active networks were also developed to address the resource management

problem. The active resource protocol, an RSVP-like protocol, was developed at USC

ISI [Braden01]. The active virtual network management protocol (AVNMP) is presented

in [Bush99]. An optimistic event discrete simulation method, coupled with AN, allows

optimistic prediction of the resources that will be used. The system is able to adjust the

predictions that were inaccurate.

SwitchWare [Hicks99] is another example of an active network. The SwitchWare

active network architecture uses three layers: active packets which contain mobile

programs that replace traditional packets, active extensions which provide services on

network elements and can be dynamically loaded, and a secure active network active

router infrastructure which forms a high-integrity base upon which the security of the

other layers depends. This security depends on integrity checking, cryptography, and

verification techniques from programming languages. The authors of the architecture

177

also designed a special language called PLAN for protocol design. Again, the basic

system assumes applications explicitly invoke its services.

[Merigu99] presents an active network comprised of the CANEs execution

environment and Bowman NodeOS. Bowman is constructed by layering active network

services on an existing operating system. The host operating system provides low-level

mechanisms; Bowman provides a channel communication abstraction, an a-flow

computation abstraction and a state-store memory abstraction, along with an extension

mechanism to enrich the functionali ty. The CANEs execution environment provides a

composition framework for active services based on customizing a generic underlying

program by injecting code to run in specific points called slots. Again, applications must

explicitly invoke CANEs services.

[Noble97] presents Odyssey, an application-aware adaptation as a collaborative

partnership between operating system and applications. Odessey incorporates type-

awareness for a data stream via specialized code components called wardens. To fully

support a new data type, an appropriate warden has to be written and incorporated into

Odyssey at each client. The wardens are subordinate to a type-independent component

called the viceroy, which is responsible for central resource management.

[Joseph96] presents the Rover toolkit, which combines relocatable dynamic

objects and queued remote procedure calls to provide services for mobile applications. A

relocatable dynamic object is an object with a well -defined interface that can be

dynamically loaded into a client computer from a server computer to reduce client/server

communication requirements. A queued remote procedure call i s a communication

178

system that permits applications to continue to make non-blocking remote procedure call

requests even when a host is disconnected, with requests and responses being exchanged

upon network reconnection.

7.2 ONA Implementation for ONA-Unaware Applications

Other open architecture systems seek to also provide their benefits to programs

and data streams that are unaware of the new possibiliti es. These application-unaware

systems sometimes require explicit user or system administrator configuration, such as

designating a proxy point, or predeploying various forms of adaptation modules.

The execution environments of ANTS, SwitchWare, and CANEs, the viceroy of

Odyssey, and the applications that are designed using the Rover kit do not contain a

planning tool, as an integrated part, that selects and orders their services. Users must

perform their own planning, typically at application design time.

Other open architecture systems seek to also provide their benefits to programs

and data streams that are unaware of the new possibiliti es. These application-unaware

systems sometimes require explicit user or system administrator configuration, such as

designating a proxy point, or pre-deploying various forms of adaptation modules.

However, this approach limits their utili ty, since they provide benefit only when some

person is intelli gent and knowledgeable enough to foresee possible benefits and take

appropriate action. Another approach is to automatically apply adaptations to data

streams without explicit user intervention. At a limited level, this approach is already

179

taken by protocols such as TCP, that do not demand that human users or applications

assist in adjusting to congestion on the line.

Protocol boosters [Mallet97] are software or hardware modules that transparently

improve protocol performance. The booster can reside anywhere in the network or end

systems, and may operate independently, or in cooperation with other protocol boosters.

Implementation of boosters requires the dynamic insertion of protocol elements into a

protocol graph. In practice, protocol graphs are implemented as executable modules that

cooperate via messages or shared state. Booster support requires inserting and removing

the booster’s function from the execution path followed for a group of packets handled by

the protocol. As applications do not need to invoke protocol boosters explicitly,

applications can be unaware of system services.

The Berkeley proxy system [Fox97, Fox98] offers on-demand distill ation that

both increases quali ty of service for a client and reduces end-to-end latency perceived by

the client. The system consists of three main components. First, the proxy is a controller

process located logically between the client and the server. In a heterogeneous network

environment, the proxy should be placed near the boundary between strong and weak

connectivity, e.g., at the base station of the wireless mobile network. The proxy’s role is

to retrieve content from Internet servers on the client’s behalf, determine the high-level

types of various components (e.g., images, text runs), and determine which distill ation

engines must be employed. Second, datatype-specific distill ers are long-lived processes

that are controlled by proxies and perform distill ation and refinement on behalf of one or

more clients. Third, the network connection monitor determines and handles the

180

characteristics of the client’s network connection, which are the superposition of user

preferences, network profile, and automatically-tracked values of effective bandwidth,

roundtrip latency, and probabili ty of packet error. Applications do not need to invoke

proxy services to benefit from them.

[Liuljeberg96] presents a set of enhanced services supporting the WWW,

implemented as the Mowgli Agent, Mowgli Proxy, and Mowgli Data Channel Service.

The most important features of Mowgli i nclude more eff icient protocols over the wireless

medium, intelli gent reduction of transmitted data, background transfers reducing the

burstiness of traff ic, and disconnected-mode support in the form of versatile user control

over caching and cellular call setup. The system provides three primary ways to reduce

the transfer volume over the wireless link: data compression, caching, and intelli gent

filtering. Mowgli serves only WWW connections, which reduces the variety of services

that are necessary to support communications. A relatively small set of pre-computed

plans will easily cover all necessary cases.

Conductor [Yarvis99A, Yarvis99B] demonstrates an approach toward selecting

an appropriate set of adaptive agents and a plan for their deployment. Conductor allows

arbitrary adaptations to be performed along the data path without reducing the reliabili ty

of the overall system. It includes a framework and a set of protocols for deploying

adapter modules into a network. The system is fully transparent to applications, allowing

easy addition of new applications and new network technologies. Conductor employs a

unique reliabili ty mechanism that allows a data steam to be arbitrarily adapted at multiple

points, without compromising reliabili ty [Yarvis00].

181

7.2 AI Planning

Planner design for ONA remains a barely explored area. However, planning is a

well -known area in artificial intelli gence and operational research.

[Dean94] and [Russel95] discuss different search strategies. The simplest way to

build a planner is to cast the planning problem as a search through the space of world

states. Each node on the graph of possible states denotes some state of the world, and

arcs connect worlds that can be reached by execution of a single action. As an

improvement, the search through plan space was presented. In the graph that describes

the plan space, nodes represent partially ordered plans and edges denote plan refinement

operations. Partial order planning, as a refinement search within a solution plan space, is

presented in [Weld94], [Kamphampati94], and [Ihrig96].

While classical planning has driven the majority of research in planning, more

recently considerable attention has also been paid to planning in environments that are

stochastic, dynamic and partially observable. To handle partially observable

environments, information gathering is made part of the planning activity, and the

classical planning techniques are extended to allow interleaving of planning and

scheduling. Similarly, stochastic environments are modeled through Markov decision

processes (MDP), and planning in such environments involves constructing policies for

the corresponding MDPs. [Kaebling95, 98] and [Hauskrecht00] present techniques from

operations research to bear on the problem of choosing optimal actions in partially

observable stochastic domains. They introduce the theory of Markov decision processes

(MDP) and partially observable Markov decision process (POMDP).

182

[Ling97] and [Bretthauer95] present a planning approach based on constrained

resource planning (CRP), which is a powerful tool for solving planning and scheduling

problems using a resource management focus. For example, in [Bretthauer95] a

manufacturing system is modeled as an open network of queues and an optimization

framework for capacity planning over a multi -period planning horizon is presented. The

decision variables are the service rates (capacity) at each workstation in each time period.

Capacity can be controlled at a work stations via the number of machines, modernizing or

updating equipment, additional maintenance, number of workers, number of shifts, use of

the overtime, etc. The model involves the minimization of capacity expansion costs or

the sum of product lead times to budget constraints on capacity costs.

In [Gero98], [Jo98], and [East99], the application of genetic-engineering-based

extensions to genetic algorithms the layout planning problem is presented. Genetic

algorithms (GAs) are search methods inspired by natural genetics. The basic idea is

founded on natural adaptive systems, where organisms evolve through generations to

adapt themselves to a given environment. Recent work on genetic algorithms has

demonstrated their success in solving optimization problems, showing their simple but

powerful search capabilit y. Based on the advantage of GAs, genetic evolutionary

concepts have been applied to the space layout planning and have shown promising

results. GA approach was further developed in [Zhou97]. Evolutionary computation

(EC), developed on the basis of GA, adopts natural coding such as float point or

permutation naturally to represent real-world problems and evolves them toward the

183

optimal solution combined with the genetic operations. This approach was widely and

successfully applied in a variety of research areas.

A somewhat different vision of the problem is presented in [Kelly88]. This paper

considers the question of how calls should be routed or capacity allocated in a circuit-

switched network so as to optimize the performance of the network using a simpli fied

analytical model of a circuit-switched network. The page shows the existence of implicit

shadow prices associated with each route and with each link of the network, and that the

equations defining these prices have a local or decentralized character. It ill ustrates how

these results can be used as the basis for a decentralized adaptive routing scheme,

responsive to changes in the demands placed on the network.

Although, we chose a search approach to the ONA planning problem, the other

approaches mentioned above can also be used. Further research is necessary to find more

about their applicabili ty to ONA planning.

7.3 Planning for ONA

Recently, a number of ONA have appeared that conduct some sort of automated planning

in two fields: customized routing and distribution of user data adaptations.

The system in [Choi00] chooses a route through the network that would improve the

usage of link and node resources. The model consists of a network where each link and each

node are associated with some cost and an intermediate computation that is to be performed

somewhere in the network, given that not all nodes are able to perform this computation. The

planning problem – to find the path with the smallest cost that contains at least one site where the

computation can occur – has the same complexity as the graph shortest-path problem.

184

Conductor [Yarvis99A, Yarvis00] provides a central planning procedure that is run

at the destination point of the connection using planning information on a fixed set of

parameters for each link and node, user requirements specified in terms of link

parameters and data characteristics, and the meta-descriptor and location of all available

adapter modules. Although Conductor is able to plug in a variety of plan formulation

algorithms, it currently employs a relatively cheap and simple planning algorithm that

covers just simple cases, mostly because of an insuff icient supply of well -developed

planners.

One approach to automated planning was presented in CANS [Fu01]. The

authors presented a method based on dynamic deployment of transcoding components

(adapters), which takes as input only high-level specifications of component behavior and

network routing characteristics. To our knowledge, CANS is the first attempt to build an

automated planner for ONA. The complexity of the algorithm is a very important issue

because of time limits on connection establishment. The CANS algorithm is based on a

search in a stream-type graph with some simpli fication strategy allowing reduction of the

graph. The complexity of the presented algorithm is claimed to be O(p3n3), where p is

the number of adapters, and n is the number of nodes. As we pointed out in Chapter 3,

the complexity of our approach is O(pn2).

