Panda: Providing the Benefits of Active Network to
Legacy Applications

Kevin Eustice, Vincent Ferrerio, Richard Guy, V.
Ramakrishna, Alexey Rudenko, and Peter Reiher

Abstract

1. Introduction
The continuing improvements in aacessbili ty, speed, and coverage of various kinds

of computer networks has lead to users relying heavily on conrectivity for normal
business However, the widely varying charaderistics of networks often cause problems
for their use, since gplicaionstypicdly assume some minimal quality of servicefrom
the network. If the network in its current state caana provide that quality, many
applicaionswork poaly or not at all.

In many cases, more intelli gent handing of datain the network could ameli orate
these problems and all ow applicaions to work well even uncer difficult network
condtions. Active networks offer this promise by allowing substantial programmabili ty
of the network. However, most existing adive network systems work onthe assumption
that new appli cations are written that explicitly instruct the network on hawv to hande
their data streams. This approach dffers no lenefits to appli cations that were written
before adive networks were created, na to later appli caions that were not written with
the posshiliti es offered by active networks in mind. Even appli cations that were written
for adive networks are limited in their use of them to the credivity and foresight of the
applicaion designer, who must become not only an expert in hisown applicaion areg

but in networking, to make dfedive use of the active network.

Pandais a middeware system that provides the benefits of active networksto
unaware goplicaions. Pandatraps data streans from those gpli caions, converts them to
adive network padkets, determines the network condtions, makes a plan of which
adaptations to apply to the padkets to med prevaili ng condtions, and deploys the ade
necessary to ensure proper handing of the packets. Pandais transparent to the
applicaionsit services, though o course any permanent aterations it makes in the data
strean will bevisible & the destination.

This paper describes the basic achitedure and current implementation d the Panda
system. The paper also describes demonstrations of the dficacy of Panda and presents
performance data on the system. It discusses the lesns learned duing the Panda projed
abou transparent adaptation o data streams, composition d multi ple alapters, and

automated planning for adive networks.

2. Panda Architecture
To ease implementation, Pandais built ontop d an existing Active Networks

exeaution environment (EE). This EE provides Panda with basic active networking
services, such as exeauting code & anode on behalf of a packet, deploying adaptation
code to the required nocdes in the network, etc. Pandaisimplemented ontop d the
ANTS exeaution environment [Wetherall 98]. ANTS isaJavatoadlkit that provides a
protocol-based programming model for customizing padket forwarding through a
network. While ANTS did na perfectly match the Panda model of adive networks, it
required orly minor aterations to suppat Panda.

Panda arrently supports UDP applicaions. The underlying ANTS system is

cgpsule-based and makes no guarantees regarding the delivery of cgpsules or the order

that capsules will bereceived at the destination, much like UDP. Also, multimedia
applicaions, which tend to use UDP, are good candidates to benefit from a distributed
adaptation system.

Currently, Panda suppats unicast appli cations only, although it has been used for

simple multi cast-li ke operations li ke forwarding incoming data to two dff erent outgoing

branches.

The Panda architedure has four modues, each

of which addresses amajor task in the middleware

Adaptors|ANTS

/ = system (Figure 1). The Panda Interception
Node OS > Comporent, or PIC, isresporsible for obtaining

datafrom clients. The Panda Adaptation

Figure 1. ThePanda Architecture Comporent, or PAC, deploys and runs adapters for
multiple dient applications. The Planner determines a set of adapters that solve the
network limitations to med the users requirements and preferences. The Panda
Observation Comporent, or POC, deds with gathering and reporting information
required for al other Panda acomporents, including planning.

Panda does not addressall relevant issues for an adive network middeware
comporent, sincethe priority was to demonstrate the feasibili ty of theidea First, Panda
usesonly ANTS medhanism for code transport, which isnot ided for its purposes.
Semnd, Panda does not addressany seaurity issuiesinvolved in providing a distributed
adaptation service, though associated research [Li02] has addressed some important

seaurity isaues. Third, since Pandaworks with UDP streams, it does not provide any sort

of reliability, though again associated research [Y arvisO0] addresses these issues.

Finally, Panda does nathing with routing, though aternate routing palicies could be
beneficial.

The Panda Interception Comporent, or PIC, must intercept all data streans that Panda
may wish to handle. Depending on the faciliti es provided by the host operating system,
thisinterception can be acomplished in dfferent ways. The aurrent implementation
uses a Linux loadable kernel modue to intercept socket cdls. The firewalling
cgpabiliti es built in the Linux OS could aso al ow the necessary rediredion and
masquerading of connedions. Linux iptables could handlethis problem. Systemslike
the x-kernel [Hutchinson91] and Scout [Mosberger96] have built-in cgpabiliti es to
control handling of network conredions. The PIC must also have some mecdhanism to
instruct it abou which data streams to intercept.

The PAC isthe re of the Panda system. The PAC install s the necessary adapters
for adata stream, delivers capsules to the proper adapters, and generally controls the flow
of adata stream through Panda nodes. Because these resporsibiliti es heavily overlap the
typicd behavior of an exeaution environment, this portion d Pandaistightly couded to
the underlying EE, ANTS in the aurrent implementation.

Panda adapters are modues that accept a data packet and can perform arbitrary
modifications on that padet, including droppng it or conwverting it into more than one
padket. Panda may deploy more than one adapter for a single data stream on a particular
node, so the system must all ow for the output of one alapter to serve astheinpu for the
next. Sincethe padket can be dropped, Panda must also all ow for situations where not all

adapters deployed onanode ae adually invoked to hande aparticular padet.

During exeaution, an adapter may store data & severa different locaionsin the Panda
environment. The ANTS node cache and the POC provide interfaces to acessmany
distinct dataitems. The Panda system also provides an additional interfaceto
dynamically store data within the cgsule, knowvn as the cgsule cache. The content of
the cgsule cadhe is maintained as the cgsule traverses the network andis avail able to
any adapter that runs on this cgpsule instance

The Panda Observation Comporent, or POC can be viewed as the central servicefor
messaging between all Panda comporents, analogous to a CORBA ORB. A typica
Panda node has a POC running locally. Two types of components conrect to the POC:
sensors and clients. Sensors generate information. Clients obtain the data generated by
the sensor viathe POC. In some cases a program may be both a dient and a sensor to the
POC; for example, aprogram that provides hysteresis-type functions on cetato a dient
could oltain the original data from another POC sensor.

The Planner is the most important client to the POC in the Panda system. The
Planner uses to POC to determine the aurrent network condtions and aher information
needed to determine asuitable plan for an application' s data stream. The Planner also
needs user preferences it can tail or the plan to suit a particular user’s neads. User
preferences can be implemented as a POC sensor that interacts with the user, and this
configuration reduces the complexity of the Planner as it only needsto be aPOC client to
obtain this additional information regarding the user.

Pandais cgpable of suppating multiple different planners. Initially, Pandaused a
very simple template-based planner. This smple planner has been replaced by afar more

powerful planner based onheurisic search [insert referenceto Pandaplanning]. In brief,

this planner uses information abou the data stream, network and nale condtions, and
adaptor avail abili ty to search the spaceof all possble plans for the best plan. Heuristics
based onconstraints of adaptation and olservations of how adaptation shoud be
deployed al ow the planner to crede high quality plansin much lesstime than an
exhaustive seach would require. Planning runs on the node that initi ates the data stream.
Panda, under normal condtions, will work in atransparent fashion using automated
planning; the goplication programmer or auser need na know anything abou it. This
may not be desirablein all situations. An applicaion may be avare of the active network;
it may have better knowledge of network and system condtions. Therefore it makes
sense to alow an applicationto have the option d taking part in the planning processfor

adapter deployment.

Whil e Pandais designed to operate withou user or appli caion asgstance, such
assstance ould alow better adaptation d data streams, when it is avail able. Panda thus
gives the gplicaion programmer a standard socket API to control Panda operations, for
sockets controll ed by Panda. Low-level functions like padet interception and socket
proxying are done by Panda; the gppli cations get a higher-level view of the network. The
API alowsthe gplications to control the planning process The gplication may disable
Panda from performing its planning, or it could rejed the plan in favor of its own. Panda

provides finer mechanisms for influencing planning, as well.

Panda dso provides a user interface so that users can set preferences for how Panda
will hande their data streams. Users have the option d seleding which streams and cita
types to adapt and with what priority. Voice transmisson may have higher priority than

bulk datatransfer, for example. Users can chocse data fidelity levels, such as minimum

tolerated image resolution. Other options include seaurity level desired and
communicaion delay constraints. All these preferences are used as inpu by Panda when

it performs its automated planning.

There ae other interfacefeatures that are not directly related to Panda. The
applicaionwill be provided APIsto communicate with the system in order to oltain the
latest information abou the system and retwork condtions. Such information, keing
criticd to performance, can be ommunicaed asynchronously in the form of eventsto the

applicaion to trigger replanning.

3. Panda Implementation

3.1. Basic I mplementation Details
The arrent Panda system has implantations of the PIC, PAC, and Planning

comporents, in additionto various adapters. The POC is under development. Pandais
written in Java, with the exception d the PIC, which contains a Linux |oadable kernel
modue and a NI interface to control its operation. The PIC and PAC contain
approximately nine thousand lines of code, na including code for adapters. [Alexey to
provide Planner statistics]

Pandaisbuilt ontop o amodified version d the ANTS 1.2 dstribution. The
most significant changeto ANTS wasto suppat larger cgosules — larger in bah size of
code and size of the data sent over the network. Additionally, Panda required changes to
the ANTS dynamic code-loading system to all ow capsule mde to be loaded from any
node and runfrom any capsule. The latter changes brek the fundamental principles of

how the ANTS system works, bu these changes are not necessary to run Panda.

Panda runs onthe Linux operating system with kernel from the 2.0 or 2.2 series.
It requiresaJVM version 1.1 @ higher. It hasaso run onJanacs, using a aistomized
version d the Kaffe VM. The kernel modue of the PIC nealed to be reimplemented to
work in the Janas environment, bu the Javainterface to the PIC remained the same, only

requiring Java code changesto suppat two dfferent interception implementations.

3.2. PIC Implementation
The arrent Panda PIC isan LKM stacked ontop d the native networking functions

to provide alditional control over the proxy and masquerading fadliti es built i nto Linux.
Using a kernel modue for interception all ows Panda to intercept any appli cation's data
stream running on the node, regardlessof how the applicaionislinked or what libraries it
uses. Pandarecaves an application’ s data & the system call | evel before any network-
level transformations have occurred, like segmentation a the aldition o checksums.
Unfortunately, this approach is subjed to any user-level buffering that may occur when
using standard 1/0O libraries. Panda dso has no acassto any information that is present
in auser-level networkinginterface, if oneis used.

In the cae of UDP communicaions, the midd eware opens a new UDP socket for
interception and performs a LKM sockopt() informing the LKM that this socket wishesto
intercept certain UDP packets. The LKM diverts any outgoing datagram that matches the
intercept description from the original destination to the interception UDP socket opened
by the middleware service by changing the destination addressof the padet before it
reades the normal kernel networking code. The original destination addressis dored in

the moduein a per-socket data structure. After receiving a diverted datagram onthe

interception socket, the middeware service isuues an LKM sockopt() to oktain the
padet’s origina destination address At this point, the middeware is now able to send
the payload ower the adive network.

At the destination Panda sends a datagram to the red destination application, bu uses
the LKM to masquerade asthe original source. Asin padet interception, the middeware
makes use of a LKM sockopt() to control the masquerade addressfor the packet. The
midd eware sends the padket over a socket, and the LKM in turn makes use of fadliti es
in the standard Linux kernel networking code to perform masquerading on the packet.

UDP communicaionis conredionless so it isunnecessary for an applicaionto send
a dose signal over the network to another computer. Withou a dose signal, the Panda
system cannat reli ably determine when to free any resources associated with a data flow.
To solve this problem, the LKM watches for UDP socket closes and sends a dose signal
to any interception socket that has intercepted data from the dosing socket.

Interceptionisinitially performed onUDP padkets or TCP conredions destined for
well-known pat numbers. Since most appli cations make use of well-known pat
numbers to reach standard services on a server, this has not proved to be alimitation.
Whil e this approach is certainly lessflexible than interception based onsignatures that
may be foundin the data stream itself, it incurs lessoverhead and latency to the
applicaions that canna receve benefit by the middleware service.

Interception can also occur on aher padkets or connedions that are related to the
applicaion bu not onawell known pat number. For instance in a TFTP fil e transfer,
only theinitia file request is snt to awell-known pat number; the data transfer and

adknowledgement padkets are sent to operating system-assgned pat numbers. In these

cases, the new port number to intercept can be determined from the source addressor

from information in the payload.

3.3. PAC Implementation
. The PAC isimplemented as an ANTS appli cation that hand es datafrom multiple

user appli cations and converts the data into cgpsules that are sent over the adive network.
At the destination, the PAC removes the data from the capsule and deliversit to the
recaving application. The design of ANTS does nat require Panda data streams to pass

through the PAC at intermediate nodes.

3.4. Panda Adapter | mplementation
Adapters in the Panda system are placed in aspeda method d an ANTS capsule,

with ore aapter per capsule type. This placement provides a number of benefits and
also all ows reuse of much existing capsule wde with aminimum of changes. One of
these benefitsis that the loading of cgpsule adeto anodeishanded by the ANTS
system. Additionally, Panda benefits from any cgpsul e-code security mecdhanisms that
are built into ANTS when loading capsules at anode.

In Panda, adapters have complete cntrol over the capsule, including routing and
transformation. Pandais designed to provide & much flexibili ty in the adaptersit can use
aspaossble. Thisdedsion also reduces the size and complexity of the Panda code
resident in the casule by delegating routing and forwarding to an adapter.

Panda aeates aplan of which adaptersto deploy to al ow the data cgsulesto reach
their destination and receve the spedal treatment required by current network condtions.
When a Panda casule begins evaluation at anodk, it does not know what adapters need

to berun. The plan accessmethod determines which adapters a capsule shoud run. To

suppat different styles of planning, there ae 3 plan accessmethods built i nto Panda.
First, the plan could be embedded into the capsule. Second,the plan could bein the
ANTS noce ache. (This methodis used for Panda s heuristic-based panner.) Findly,
the casule can visit the planner onthe aurrent node to determine the set of adaptersto
runthere. A capsule may try any combination d these plan accessmethods, depending
on how the cgsule was initialized. Shoud all of these methods fail to provide aset of
adaptersto run, asin the cae where acgpsule is forwarded along an unexpeded link, a
simple shortest-path forwarding routine built i nto the data cgsuleisrun.

Once aset of adaptersisfoundat anode, control of exeautionis transferred to the
first adapter, which has complete antrol over the capsule. It may chocse to transform
the payload o headers (including the planning information), forward the capsule, or run
the next adapter. Thelist of adaptersto runiskept in memory, and the airrently
exeauting adapter can either cdl the next adapter in the list or terminate exeaution d the
cgpsule after it has performed its functions. Most adapters will simply call the next
adapter onthe list urtil the end o thelist is reached, where casule exeaution will
terminate. Thisincludes forwarding/routing adapters, which shoud be normally placed

at the end o thelist of adaptersto run.

3.5. POC I mplementation
The POC must accept sensor information from various sensors, including ones that do

not reside onthe locd node. To allow for diff erent types of POC sensorsto be built, the
POC employs a mommon moduar interface to add and query sensors. This moduar
interface maps neatly into the JAR and Interfacefeaures of the Java system. This system

can aso integrate with existing monitoring systems, as the POC sensor modue can

simply ad as a bridge between the POC and the comporent that performs the actual
monitoring.

Clients to the POC are typicdly other Panda cmporents. POC clients can determine
the avail able sensors, add and remove sensors, and oldain information from a sensor
attadhed to the POC. Adapters can ad as either sensors or clients of the POC, athough
becaise alapters are implemented as capsules, they canna communicate with the POC
withou speaal provisions. For operations where the dataiis not time-sensitive, the dient
can get POC information and store information as a POC sensor in the ANTS node cadhe.
Periodicdly, the PAC will examine the mntents of the node cache and ad as a proxy to
the POC for the alapters. Thismethod d communication with the POC lesens the
amourt of time the adapter spends performingitsrole a asensor or client. The alapter
also hasthe aili ty to communicate with the POC through the use of an ANTS extension.
After finding the POC extension onanode, an adapter ads as any other client or sensor
to the POC.

POC clients usually run onthe same node & the POC. However, many clients, such
as the Planner, need accessto information that resides on aher nodes. Thus, the POC
implements a gateway modue to query information that resides on aremote POC. With
the modue, a dient asksitslocd POC for information residing on aremote POC, and the
gateway modue obtains the information from the remote POC transparently to the dient
onthelocd madhine. The gateway modue can be implemented as a standard client and

server to thelocal POC that runsonal nodes.

3.6. Panda Planner I mplementation

The Panda planner runs a simple protocol to gather al i nfformation recessary to buld
its plan. However, dang so and performing the heuristic search can take some time.
Therefore, Panda dso credes atemporary plan quickly, to allow datato start flowing
before the normal planning procedure cmpletes. Thistemporary plan is built onaper-
noce basis, with eaty nade using purely local information from itself and the next Panda
noce to determine which adaptersto deploy onthose nodes. These temporary plans can
be very far from optimal, bu they al ow some data to flow whil e the full planning

procedure occurs.

3.7. Sample Panda Applications
An ealy application d Panda asssted in transmitting a video from a server to two

destinations with dffering link throughpus. Withou Panda, the server would have to
send a austomized version d the video stream to each client to provide them with the
maximum video fidelity attainable over their respedive cnrections. With Panda, we
used two adaptersto achieve abetter effed. The first adapter dugicaed asingle, original
quality, unicast video stream from the server and forwarded them over high quality links
to two intermediate nodes. The second adapter was run at these intermediate nodes and
filtered the video stream to med the throughpu restrictions to the dients, who thus
recaved a higher quality of service whil e reducing the throughpu and computation load
onthe server.

A more mmplex application d Pandainvolved multiple comporents from UC
Berkeley, the University of Utah, I1SI, and Columbia. Inthis senario, aBerkeley Ninja
server was ending the video stream accompanying a presentation to a dient connected

through an owerloaded link. The video stream contained multi ple versions of the video,

eat encoded at adifferent quaity. Pandaintercepted the video stream and performed
two adions. First, it setup aVirtual AreaNetwork from the source to the destination
node, using software from Columbia. The VAN used RSV P to guaranteethe throughpu
over the mngested links. At an intermediate node running Panda and Janos, an adapter
only forwarded the highest quality of version d the video stream that the dient could

receve.

Another demonstration d Panda dso invalved interoperationwith UC Berkeley’s
Ninja, Columbia s Virtual Active Networks and Nestor, and the University of Utah's
Janos system. The scenario for the demonstration was a videoconference, with two
diff erent video/audio sessons being streamed to athird perticipant, in an extended Y -
configuration, through a heterogeneous network with avariety of problems. Network
problems included a packet storm onthe wired segment, as well as extensive wireless
competition. In arder to delivery acceptable video and audio, network condtions had to
be analyzed, and the media gpropriately adapted. Adaptationin this case was ®ledive
layer-based distill ation d the video, encoded in the WaveVideo wavelet codec
[Fankhauser99], based onprioritization d the streams. Prioriti zation was determined by
abandwidth analysis of the audio traffic, hypothesizing that more audio traffic would
indicate aspeaker. Due to the tremendous number of padkets from the videoconferencing
sessons, final wirelesslink was incapable of delivering acceptable video for both
senders. Thus, Panda was required to selectively drop packets from the lessdesirable
sesson, while maximizing the quality of the “focused” sesson. The end result was a
usable video stream from one of the caneras, which switched back and forth asthe

spedker focus changed.

4. Panda Performance

4.1. System Overheads
Panda puts substantial code (itself, ANTS, and adapter code) in the path of

padkets it intercepts. The overhealds associated with this code determine the domains for
which use of Pandawill be beneficial.

Error bars on al figures dhow the value of standard error, urless otherwise
indicated.

One fundamental overheal isthe alditional |atency of delivering apadket. The

foll owing method was appli ed to measure one-way packet latency. The padkets were
stamped with the locd time on the source madciine. Uponthe arival at the destination
madchine the stamped time was aubtraded from the destination locd time to oktain
measured time delivery. The synchronization d the source and destination machines
clocks was dore with NTP. The NTP server was located onthe destination noce. The
source nodke synchronized itself to the destination locd time before the first padket was
sent to the destination. Then 20,000 pdkets were sent to the destination. After the last
padket was delivered, the source macdhine measured the skewing value. It was presumed
that skewing grows uniformly by time. The actual time delivery was cdculated with

formulafor eat data packet n:

skewingVale

Actua TimeDelivery(n) = measuredTimeDelivery(n) -
20,000

The mnrection was tested with twisted pair sequential connections of up to four
computers as shown onFigure 2. Dell Inspiron laptops with 333MHz processors were
used for one set of tests and Hewlett Padkard Omnibook 4150laptops with 500 MHz

procesors for another set of tests; all madines used Linux Red Hat 7.0 with the 2.2.16

kernel. Xircom RedPort2 Ethernet 10/100 PCMCIA cads were used for the network
conredion hketween the machines. The source and destination madines ran a user
applicaion and the Panda amde concurrently. The priority of the user application was st
lower on the source machine and higher on the destination madine to ensure proper

alocaions of resources.

fil e.avi
Panda Panda Panda Panda

Figure 2: Panda peer-to-peer connection

Figure 2. Experimental setup
Throughpu of the network links is varied among 150 Kbps, 800 Kbps, 2000

Kbps, and 5000Kbps using CBQ.

Ono Panda

O2 nodes, Oadapters
E3 nodes, 0 adapters
4 nodes, 0 adapters
A4 nodes, 1 adapter

4 nodes, 2 adapters
E4 nodes, 3 adapters
N4 nodes, 4 adapters
B4 nodes, 5 adapters

Latency (msec)

PN WSO
eNeoNolNoNolNolNe
| L L L L L |

Packet size (kilobytes)

Figure 3. Packet delivery latency
Figure 3 presents packet delivery latency for different packet sizes. The packet

delivery latency also contains the alaptation latency. Figure 3 shows that adding Panda
to a data stream increases its latency 50-150%, with longer packets seing less effed.
Adding more Panda-enabled nades or more alapters modestly increases the delay for

ead addition.

Figure4. Null Adapter Latency

Figure 4 presents the latency of null adapters. All adapters were deployed on ore of
the nodes of the connedion. Withou Panda no adapters can be deployed, so the extra
latency for that case is defined to be zero. Every Panda node dways runs at least one
forward adapter, whose only task is to forward a packet to the next node dter all other

adapters are exeauted. A number of forward adapters equal to the number of conrection

. ; "

Adaptation (msec)
=
o

nodes is always present in a Panda mnnedion bu it is not courted onthese graphs.
Figure 5 presents the latency of the alaptation with real adapters. This figure
and Figure 6 were obtained by running a WaveVideo applicaion onthe Panda setup
shown in Figure 2, using adapters that filtered the video and/or performed encryption
and deayption. Since red adaptations are often CPU bound, more powerful machines

incurred lesslatency, as shown in Figure 5.

25 4 OlInspiron (null-adapters)

20 - EInspiron (WaveVideo)

£ OHP (WaveVideo)

~ 15 _

>

(&)

S 10 -

©

- 5 B

0 T T 1
Panda Panda & Resolution Panda & Resolution
Drop Drop & Encryption

Figure 5. Latency of Running Real Adapters
Figure 6 shows how Panda throughpu grows with packet size. The packet size of

multimedia goplications varies because some gplicaions apply their own compressng

protocols to the data packets. Error bars represent 95% confidence intervals.

1800 -
1600 -
1400 +
1200 -
1000 +
800 +
600 -
400 +

200 + I—l
0
1k 2k 4k 8k
Packet size (kilobytes)

HH

Throughput (kbps)

Figure 6. Panda Throughput
The planning procedure consists of planning data gathering, plan cdculation, and

plan deployment. Planning data gathering takes one roundtrip; the source node forwards

the data gathering message to the end noad and waits for its return. Planning chta
gathering throughout four Panda nodes takes 108 +/- 2.85milli seands.

Figure 7 shows the latency of the plan calculationfor the conredion that may
require no adapters, or just a Resolution Drop adapter, or both Resolution Drop and
Encryptor/Decryptor adapters. The graph shows that plan cd culation latency does not

depend onthe avail able throughpu.

Ono adapters
E Resolution Drop

900 1 OResolution Drop & Encryption

800 -
700 +
600 -
500 -
400 -
300 -
200 +
100 +

Latency (msec)

150 800 2000 5000
Throughput (kbps)

Figure 7. Plan Calculation Overhead
Figure 8 shows how the latency of deploying the adapters sl ected by the planner

depends on adapter size and the avail able link bandwidth. Resolution Dropisavery
small adapter that contains afew lines of code. Encryptionis a heavyweight adapter that
processs every charader of user data. The larger the adapter, the longer it takesto
deploy it. The deployment latency does not depend bandwidth uressit islessthan

150kbys.

Ono adapters
E Resolution Drop

400 - O Resolution Drop & Encryption
350 -
300 -
250 ~
200 +
150 -
100 +

50 +

Latency (msec))

150 800 2000 5000
Throughput (kbps)

Figure 8. Plan Deployment L atency

4.2. Panda Benefits
Pandaisworth using only if the benefits it off ers outweigh its overheads. For some

benefits, such as encryption, quantifying the benefit is hard, particularly for purposes of
comparison to latency overheads. Here we present benefit metrics that are more
guantifiable and take the latency overheads into accourt. In particular, we present
improvements in the Pegk Signal to Noise Ratio (PS\R) for the WaveVideo application
discussed ealier. Figure 9 presents PSNR luminance on Déell Inspiron machines with a
link bandwidth limited to 150K bps.

Withou Panda, the PSNR curve dedines when the channel is sturated and more or
lessrandam video padkets are dropped. Panda, using the Resolution Drop adapter,
intelli gently adjusts to the limited bandwidth by dropping packets representing lower
resolution video comporents. Asaresult, orcePanda has completed its planning phase
and deployed its adapters, its PSNR curve improves and exceeds the non-Panda aurve.

The PINR performance of the Panda with Resolution Drop and Encryption adaptationin

some aeas can be even better than the Panda with Resolution Drop only, due to fortunate

buff ering eff ects caused by the extra delay of encryption.

e nternet

50 - ====Panda & Resolution Drop

45 -

20 \"\' A Panda & Resolution Drop & Encryption
35 -
30 - A g

25 ~
20 -
15
10
5,
O A T T I T I T

«— 00 I N O O M O N~ ¥ «H 0 I N O O
HNNO’)Q‘LOLD@I\I\CDCDCDS

PSNR

Figure 9. PSNR for WaveVideo Application

5. Related Work
Pandaistheintelledua descendant of Conductor [Yarvis99]. Conduwctor isa TCP-

based open architecture framework providing a distributed, coordinated adaptation
fadlity. Similar to Panda, Condictor suppats appli cation transparent interception and
distributed, coordinated adaptation d the network stream. Unlike Panda, Conductor
offers an extensive seaurity model, as well as areliability model designed for adaptation
cdled semantic segmentation. As Conductor isa TCP-based framework, the alaptation
library for Conductor is substantially diff erent than Panda’'s, focusing on HTTP, POP,

and aher stream based adaptations.

The Protocol Boaosters[Feldmeier98] adaptation framework provides a genera
approad to network-level adaptation. The framework all ows either asingle alaptation

modue or apair of modues to be transparently deployed, adding new feaures to existing

protocols, such as forward error corredion a fast retransmisson. Boosterstypicdly
provide losdessadaptation, sincethe system provides no suppat for ensuring reliable
delivery if packets intended for delivery are generated, dropped, o permanently altered
by aboacster. Boosters are compaosable, bu the system does not provide suppat for
seleding a set of boaosters that will perform well together. Panda substantially differs
from Protocol Booster with its planning capabiliti es, aswell asits suppat for lossy

adaptation.

Transformer Tunnels[Sudame98] use IP tunneling to alter the behavior of a protocol
over atroudesome link. Once created, atransformation functionis applied to all data
flowing through ead tunnel. Generally, Transformer Tunnelsare used to provide
protocol-independent adaptations, such as consolidation d padkets, scheduling of
transmissons to preserve battery power, encryption, losdesscompresson, and bufering.
Transformer Tunnelsare transparent to appli cations and may be interoperable with
applicaion-level adaptation provided by proxies. However, nomechanism is provided to
compose transformation functions or to coordinate transformations with externally
provided adaptations. Panda’s adaptor model all ows this composabili ty; additionally the

Panda Planner coordinates various adaptations acrossmulti ple links.

Proxies are often used to handle single troudesome links, particularly links close to
client nodes. One of the most advanced proxy solutions is the Berkeley proxy [Fox97].
This system uses cluster-computing techndogy to provide ashared proxy servicefor a
wide variety of PDAS. The proxy can provide avariety of appli cation-level adaptations,
including transformation (changing the data from one format to another), aggregation

(combining severa pieces of datainto ore), cading, and customization (typicdly

converting adata format for use by a particular PDA). The Berkeley researchers have
investigated methods of composing adaptations on a single machine [Gribble99]. They
have dso examined the use of a dustered proxy serviceto provide highly reliable and
scdable services to alarge number of customers. In particular, their proxy techndogy has
been deployed for large-scale, red-world use, suppating palm-computer based web
browsing in ametropditan-areawirelessnetwork [Fox98]. The Berkeley Proxy and
other proxy solutionstypicdly work at a single locaion in the network, while Pandais

designed for distributed adaptation at multi ple locations.

[Addinfo onrecent projects reported in last Openarch that are relevant to Panda.]

6. Conclusions

The Panda project has demonstrated that adive network techndogy can be gplied
usefully even to applications that were not written with adive networks in mind and that
are not altered to work with active networks. This demonstration substantially increases
the potential audience for the improvements offered by adive networks. Not only are
legacy applications potential users of active networks, but future programmers can
concentrate on the needs of their applicaions, rather than the mplexities of
programming an active network. Where suitable, they can provide hints and dredion to
Panda or a similar system, bu they can still exped that the adive network will perform
beneficial adions ontheir data streams even withou such advice

Panda adieves reasonable performance despite being unogimized and running on an
ealy verson d ANTS, which is known to have poa performance Even with these

disadvantages, redistic goplicaions recave user- and applicationvisible benefits from

Panda. In a more optimized form, Panda could provide greder benefits to a wider range
of applications.

Panda s architedure is well suited for partial deployment of active networks. Panda
must run onthe source and destination noce (thoughfurther development could remove
even those restrictions), bu otherwise does nat require intermediate nodes to participate
in the adive network. Of course, nonparticipating nodes canna perform useful
adaptations, bu this approach allows sledive deployment of Panda & nodes that are
close to troubdesome links, or that often are overloaded, or that have other characteristics
suggesting that they are agoodspat for adaptation. The more such nodes deployed, the
more options avail able to Panda.

Panda has also demonstrated that automated planning of adive network adaptationsis
posshble and efficient. Panda's automated facility plans sufficiently quickly to provide a
plan ealy in most data streams, and the plans provided are often as good as thase found
by exhaustively testing all passhiliti es. Withou a reasonable planning facili ty, the Panda
approadh could na be used in the red world, so this demonstration is key to its future
success Further, this result suggests that automated planning based on heuristic search
or other Al techniques might have awider applicability in solving many distributed
systems problems.

A fina leson from the Panda projed is that early choices can have long-lasting
implicdions. The dedsion to buld on an existing exeaution environment (rather than
creding a new one) and the dhoice of ANTS for that EE had profoundimplicétions for
the projed. Much o the Panda implementation effort was gent making simple concepts

fit into a framework that wasn't designed to suppat them. The doice had ather

implicdions, such as mandating an early commitment to performing the work in Java.
This choicewas not a mistake, since the resulting system demonstrated al the hypotheses
of the original projed, bu it did have wide ranging eff ects on the work, many of which
were not foreseen when the deasion was made.

In summary, Panda demonstrates that appli cation-unaware use of adive networks is
possble and can provide substantial benefits to applicaions. The automatic planning
cgpability implicit in the ideacan be redized with sufficiently low overhead and very
high quality in the resulting plans.

References

[Fankhauser99] G. Fankhauser, M. Dasen, N. Weiler, B. Plattner, B. Still er. “WaveVideo — An Integrated
Approach to Adaptive Wireless Video.” Mohile Networks And Applications (Spedal Isaie on Adaptive
Mobil e Networking andComputing), 4(4):255-271, Decanber 1999

[Feldmeier9g] D. Feldmeier, A. McAuley, J. Smith, D. Bakin, W. Marcus, T. Raleigh. “Protocol Boosters.”
IEEE Journal on Seded Areas in Comnunications (Spedal Issue on Protocol Architedures for 21st
Century Applications), 16(3):437-444, April 1998.

[Fox97] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, P. Gauthier. “Extensible Cluster-Based Scdeable
Network Services.” Procealings of the 16m ACM Symposium on Operating S/stem Principles (SOSP*97),
Saint-Malo, France, October 1997,

[Fox98] A. Fox, |. Goldberg, S. Gribble, D. Leg A. Polito, E. Brewer. “Experience With Top Gun
Wingman: A Proxy-Based Graphicd Web Browser for the USR PalmPilot.” Proceadings of the IFIP
Internationd Conferenceon Distributed Systems Platforms and Open Distributed Processng (Middleware
'98), Lake Didtrict, UK, September 1998

[Gribble99] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. “The MultiSpace an Evolutionary
Platform for Infrastructural Services.” Procealings of the 1999 USENIX Annud Tedhnical Conference
Monterey, California, June 1999

[Hutchinson91] N. Hutchinson and L. Peterson, “The x-kernel: An Architedure for Implementing Network
Protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1, January 1991

[LiO2] J.Li, M. Yarvis, and P. Reiher, “Securing Distributed Adaptation,” Computer Networks, Spedal
Issue on Programmable Networks, vol. 38, no. 3, 2002

[Mosberger96] D. Mosberger and Larry Peterson, “Making Paths Explicit in the Scout Operating System,”
Procedlings of the Sympasium on Operating Systems Design andlmplementation, October, 1996.

[Sudame9g] P. Sudame, B. Badrinath. “ Transformer Tunrels: A Framework for Providing Route-Spedfic
Adaptaitons.” Proceadings of the USENIX Annud Tedhnical Conference, New Orleans, Louisiana, June
1998

[Wetheral98] D. Wetheral, J. Guttag, and D. Tennenhouse, “ANTS:. A Todkit for Building and
Dynamically Deploying Network Protocols,” Openarch 98, 1998

[Yarvis99] M. Yarvis, P. Reiher, G. Popek. “Conductor: A Framework for Distributed Adaptation.”
Procealings of the Seventh Workshop onHot Topics in Operating S/stems (HotOS VII), Rio Rico, Arizona,
March 1999

[YarvisO0] M. Yarvis, P. Reiher, and G. Popek, “A Reliability Model for Distributed Adaptation,”
OpenArch 2000, March 2000.

