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Abstract

Active Networks (ANs) are a relatively new technology for computer systems that

allows dynamic deployment of services.  The Internet is an obvious area that would

benefit from fast deployment of protocols that would appropriately modify or reroute user

data streams.  ANs are meant to use fast-growing computational resources of modern

computer systems as a relief for the resources of network communication channels with

their often-limited capacity.  The balance between communication channel and execution

resources depends on user application requirements and network conditions at the

moment of the communications.  Complex network conditions in the conjunction with

temporal constraints make automatic definition of necessary measures to improve the

communications highly desirable.  Automatic planning of AN services should be an

important function of ANs.

We propose here the approach to the design of the planner for ANs.  The

approach is focused on the overwhelming number of problems of adaptation planning

such as feasibili ty and eff iciency of a plan, extensibili ty and composabili ty of

adaptations, and temporal limit s.  The planner automatically calculates properly ordered

sequences of adaptations that modify user data.  The purpose of these modifications is to

increase throughput, reliabili ty, and safety of communication channels.

1. Introduction

Traditional data networks passively transport bits from one end system to another.

The network is insensitive to the bits it carries and they are transferred between end

systems without modification.  The role of computation within such a network is

extremely limited, just header processing in packet-switched networks and signaling in

connection-oriented networks.  However, more extensive use of computations, provided

by agents located in the network, can bring extra advantages to communications.  The

calculations must use computational resources eff iciently and treat transferred data
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properly.  The amount of resources necessary for connection can be expressed with

function F(links), where links is a number of links:
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throughput, latency, reliabili ty, security, etc.; Nodesj is adaptation execution resources of

node j, for example CPU cycles, memory, HD, etc.; and α and β are some coeff icients.

The goal is to redistribute link and node resources so that the following conditions were

satisfied:

Linki < Linkthreshold,i, i=1,links;

Nodej < Nodethreshold,j, j=1, links+1;

ResponseTime < ResponseTimethreshold, where ResponseTime is a time of data

transfer, QoS is a required quali ty of service, and threshold is a threshold value for each

kind of resource that is predefined by user application and network.

The choice of the computations should take into account both user application and

network requirements to compose a properly ordered set of adaptations for rerouting or

modification of a user data stream.  AN technology allows networks to dynamically

deploy adaptations.  ANs are samples of Open Architectures (OA), a broader field that

allows improvement of the service through local adjustment of adaptations.  Below we

show a number of cases when the network would benefit from this technology.

Network technology and applications are changing rapidly, and existing protocols

may not operate well i n new circumstances.  There are a number of examples (transit

from IPv4 to IPv6, the rise of real-time and multicast communications using UDP, the

rise of applications that frequently open and close TCP connections) that suffer from the

inabili ty of traditional networks to deploy and proli ferate new protocols rapidly.  AN

technology would allow fast and relatively painlessly addition of new protocols.

Each link in a network may present a different level of bandwidth, latency, jitter,

reliabili ty, and security.  This level depends on the current communication conditions of

the network.  The data transmission would be improved if it would be possible to adapt

the data stream of a particular application to the network conditions.  For example, data

can be compressed to meet the requirements of reduced throughput of a poor-quali ty link,

or data can be encrypted if security of a link is compromised.  ANs should compose data-
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modifying protocols that adjust the data stream to network conditions, keeping its

integrity and security on the appropriate level.

Modern networks are characterized by the high level of heterogeneity.

Conventional wired networks coexist with wireless networks, satellit e networks, etc.  In

the future the level of network heterogeneity might even increase.  A connection that

traverses heterogeneous networks implies the coexistence of the number of

communication protocols within the same connection.  ANs allow composing a highly

customized protocol that would serve the current connection best.

Some user applications have extra requirements for data streams.  For example,

palmtops have limited abili ty to receive and process images of certain formats.  These

applications may require special treatment of data stream on intermediate nodes, i.e.

conversion the data from the original format to the one that is the appropriate for the

palmtop. ANs allow the automatic deployment of special format-converting protocols

serving the particular needs of that palmtop.

Automatic deployment of data-modifying protocols is the only way to serve the

needs of legacy applications, i.e. applications that were designed without awareness of

AN services.  Legacy applications, which are still im portant for the existing market,

cannot not use the benefits of ANs without special support.  They are unable to recognize

local communication conditions and therefore cannot keep their services on the

appropriate level.  Nor can they instruct the ANs on how to adjust to conditions.  AN

technology can automatically adjust the circumstances around these application to keep

the performance above the certain threshold or degrade it gracefully.  To achieve this

purpose ANs should recognize their needs, decide how to satisfy them, and deploy the

correspondent adaptations.  Therefore, ANs should have access to the information about

network conditions, which legacy applications usually do not have.  The result of

planning by ANs is a sequence of adaptations that should be applied to a data stream.

The sequence of adaptations must preserve the integrity and security of data.  That is

achieved by the proper selection of adaptations and their ordering.

Planning is important tool of ANs that guarantees the consistency of adaptations

and augments their eff iciency.  Eff iciency becomes an issue because the execution of

adaptations requires computing resources of intermediate nodes, which can be limited,
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and increases the latency of data delivery.  Unnecessary repetition of a particular

adaptation as well as improper location of adaptations is highly undesirable.  For

example, assume that we have a connection that consists of more than 2 links.  Assume

that two links of the connection are poor and require data compression. It would be a

poor idea to compress the data twice, once on each of the poor links.  The data should be

compressed once, before the first poor link and decompressed once, after the second poor

link.  This will save execution resources of intermediate nodes and save the time on one

compression.  Automated planning is intended to solve this problem.

The rest of document is organized as following: Section 2 contains related work.

Section 3 contains the description of problems of automated planning.  Section 4 contains

the description of our approach to the design of automated planning including

measurements and benchmarks.  Section 5 contains the schedule of our future work on

the implementation of the planner.  Section 6 concludes the document.

2. Related work

In this section we will present a number of papers that indicate the current state of

the research on Open Architectures (OA), ANs, and planning.

Active networks [Tennenhouse96] allow their users to inject customized

programs into the nodes of the network.  [Wetherall99] presents ANTS, a Java-based

toolkit for constructing active networks.  The transfer of adaptation code and the transfer

of data are coupled in ANTS as an in-band function.  ANTS limits the distribution of

code to where it is needed, while adapting to node and connectivity failures.  It improves

startup performance and facilit ates short-li ved protocols by overlapping code distribution

with execution.  It allows customized processing to be expressed at a better granularity.

The adaptation code will wait in a node cache for all subsequent data packets.  ANTS

presumes that applications are written specifically to use it.  Legacy application packets

will be treated as normal IP packets without active network service.

[Hicks99] is another example of an active network, SwitchWare.  The

SwitchWare active network architecture uses three layers: active packets, which contain

mobile programs that replace traditional packets; active extensions, which provide

services on network elements, and which can be dynamically loaded; and a secure active
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network active router infrastructure, which forms a high integrity base upon which the

security of the other layers depends.  This security depends on integrity checking,

cryptography, and verification techniques from programming languages.  The authors of

the architecture also designed a special language named PLAN for protocol design.

Again, the basic system assumes applications explicitly invoke its services.

[Merigu99] presents an active network comprised of the CANEs execution

environment and Bowman NodeOS.  Bowman is constructed by layering active network

services on an existing operating system.  The host operating system provides low level

mechanisms; Bowman provides a channel communication abstraction, an a-flow

computation abstraction and a state-store memory abstraction, along with an extension

mechanism to enrich the functionali ty.  The CANE execution environment provides a

composition framework for active services based on customizing a generic underlying

program by injecting code to run in specific points called slots.  Again, applications must

explicitly invoke CANEs services.

[Noble97] presents Odyssey, application-aware adaptation as a collaborative

partnership between operating system and applications.  Odessey incorporates type-

awareness for a data stream via specialized code components called wardens.  To fully

support a new data type, an appropriate warden has to be written and incorporated into

Odyssey at each client.  The wardens are subordinate to a type-independent component

called the viceroy, which is responsible for a centralized resource management.

[Joseph96] presents the Rover toolkit, which combines relocatable dynamic

objects and queued remote procedure calls to provide services for mobile applications.  A

relocatable dynamic object is an object with a well -defined interface that can be

dynamically loaded into a client computer from a server computer to reduce client/server

communication requirements.  Queued remote procedure call i s a communication system

that permits applications to continue to make non-blocking remote procedure call

requests even when a host is disconnected, with requests and responses being exchanged

upon network reconnection.

The execution environments of ANTS, SwitchWare, and CANEs, the viceroy of

Odyssey, and the applications that are designed using Rover kit do not contain a planner
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as a tool that selects and orders their services as an integral part.  Users must perform

their own planning, typically at application design time.

Other open architecture systems seek to provide their benefits to programs and

data streams that are unaware of the new possibiliti es. These application-unaware

systems sometimes require explicit user or system administrator configuration, such as

designating a proxy point, or pre-deploying various forms of adaptation modules.

However, this approach limits their utili ty, since they provide benefit only when some

person is intelli gent and knowledgeable enough to foresee possible benefits and take

appropriate action. Another approach is to automatically apply adaptations to data

streams without explicit user intervention.  At a limited level, this approach is already

taken by protocols such as TCP, which does not demand that human users or applications

assist it in adjusting to congestion on the line.

Protocol boosters [Mallet97] are software or hardware modules that transparently

improve protocol performance.  The booster can reside anywhere in the network or end

systems, and may operate independently, or in cooperation with other protocol boosters.

Implementation of boosters requires dynamic insertion of protocol elements into a

protocol graph.  In practice, protocol graphs are implemented as executable modules that

cooperate via messages or shared state.  Booster support requires inserting and removing

the booster’s function from the execution path followed for a group of packets handled by

the protocol.  As applications do not need to invoke protocol boosters explicitly,

applications can be unaware of system services.

The Berkeley proxy system [Fox97] offers on-demand distill ation that both

increases quali ty of service for a client and reduces end-to-end latency perceived by the

client.  The system consists of three main components.  First, the proxy is a controller

process located logically between the client and the server.  In a heterogeneous network

environment, the proxy should be placed near the boundary between strong and weak

connectivity, e.g., at the base station of the wireless mobile network.  The proxy’s role is

to retrieve content from Internet servers on the client’s behalf, determine the high-level

types of the various components (e.g., images, text runs), and determine which

distill ation engines must be employed.  Second, datatype-specific distill ers are long-lived

processes that are controlled by proxies and perform distill ation and refinement on behalf
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of one or more clients.  Third, the network connection monitor, which determines and

handles the characteristics of the client’s network connection.  Three methods can be

used for this purpose: user preferences, network profile, and automatically-tracked values

of effective bandwidth, roundtrip latency, and probabili ty of packet error.  The ;latter

method, as the most complicated, was not implemented yet.  Applications do not need

invoke proxy services to benefit from them.

[Liuljeberg96] presents a set of enhanced services supporting the WWW,

implemented as the Mowgli Agent, Mowgli Proxy, and Mowgli Data Channel Service.

The most important features of Mowgli i nclude more eff icient protocols over the wireless

medium, intelli gent reduction of transmitted data, background transfers reducing the

burstiness of traff ic, and disconnected-mode support in the form of versatile user control

over caching and cellular call setup.  Mowgli provides three primary ways to reduce the

transfer volume over the wireless link: data compression, caching, and intelli gent

filtering.  Mowgli serves only WWW connections, which reduces the variety of services

that are necessary to support the communication.  A relatively small set of pre-computed

plans will easily cover all necessary cases.

Conductor [Yarvis99A] and [Yarvis99B] demonstrates an approach toward

selecting an appropriate set of adaptive agents and a plan for their deployment.

Conductor allows arbitrary adaptations to be performed along the data path without

reducing the reliabili ty of the overall system.  It includes a framework and a set of

protocols for deploying adapter modules into a network.  Conductor is fully transparent to

applications, allowing easy addition of new applications and new network technologies.

Conductor employs a unique reliabili ty mechanism that allows a data steam to be

arbitrarily adapted at multiple points, without compromising reliabili ty [Yarvis00].

Conductor provides a centralized planning procedure that is run at the destination point of

the connection using planning information on a fixed set of parameters for each link and

node, user requirements specified in terms of link parameters and data characteristics, and

the meta-descriptor and location of all available adapter modules.  Although Conductor is

able to plug in a variety of plan formulation algorithms, it currently employs a relatively

cheap and simple planning algorithm that covers just simple cases, mostly because of an

insuff icient supply of well -developed planners.
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Planner design for OA remains a barely explored area.  Meanwhile, planning is a

well known area in Artificial Intelli gence and Operational Research.

[Dean94], [Nilsson98], and [Russel95] discuss different search strategies.  The

simplest way to build a planner is to cast the planning problem as search through the

space of world states.  Each node on the graph of possible states denotes some state of the

world, and arcs connect worlds that can be reached by executing a single action.  Partial

order planning is the improvement of this search approach.  In partial order planning, in

the graph that describes the plan space, nodes represent partially ordered plans and edges

denote plan refinement operations.  Partial order planning as a refinement search within a

solution plan space is presented in [Weld94], [Kamphampati94A,B], and [Ihrig96].

While classical planning has driven the majority of research in planning, more

recently considerable attention has also been paid to planning in environments that are

stochastic, dynamic and partially observable.  To handle partially observable

environments, information gathering is made part of the planning activity, and the

classical planning techniques are extended to allow interleaving of planning and

scheduling.  Similarly, stochastic environments are modeled through Markov Decision

Processes (MDP), and planning in such environments involves of constructing policies

for the corresponding MDPs.  [Kaebling95] and [Hauskrecht00] present techniques from

operations research to bear on the problem of choosing optimal actions in partially

observable stochastic domains.  They introduce the theory of Markov decision processes

(MDP) and partially observable MDPs (POMDP).

[Ling97] and [Bretthauer95] present a planning approach based on Constrained

Resource Planning (CRP), which is a powerful tool for solving planning and scheduling

problems using resource management focus.  For example, in [Bretthauer95] a

manufacturing system is modeled as an open network of queues and an optimization

framework for capacity planning over a multi -period planning horizon is presented.  The

decision variables are the service rates (capacity) at each workstation in each time period.

Capacity can be controlled at a work stations via the number of machines, modernizing or

updating equipment, additional maintenance, the number of workers, the number of

shifts, the use of the overtime, etc.  The model involves the minimization of capacity

expansion costs or the sum of product lead times to budget constraints on capacity costs.
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[Gero98], [Jo98], and [East99] describe the application of genetic engineering

based extensions to genetic algorithms for the layout planning problem.  Genetic

algorithms (GAs) are search methods inspired by natural genetics.  The basic idea is

founded on natural adaptive systems, where organisms evolve through generations to

adapt themselves to given environment.  Recent work on genetic algorithms has

demonstrated their success in solving optimization problems, showing their simple but

powerful search capabilit y.  Based on the advantage of GAs, genetic evolutionary

concepts have been applied to the space layout planning and have shown promising

results.  GA approach was further developed in [Zhou97].  Evolutionary Computation

(EC), developed on the base of GA, adopts natural coding such as float point or

permutation naturally to represent the real- world problems and evolves them towards the

optimal solution combined with the genetic operations.  This approach was widely and

successfully applied in a variety of research areas.

A somewhat different vision of the problem is presented in [Kelly88].  This paper

considers the question how calls should be routed or capacity allocated in a circuit-

switched network so as to optimize the performance of the network, using a simpli fied

analytical model of a circuit-switched network.  It is shown that there exist implicit

shadow prices associated with each route and with each link of the network, and that the

equations defining these prices have a local or decentralized character.  The paper

ill ustrates how these results can be used as the basis for a decentralized adaptive routing

scheme, responsive to changes in the demands placed on the network.

We chose a partially ordered plan approach for our research, because it can be

easily implemented and better fits the constraints and limits of planning for Active

Network connections.

3. Problems in Planning

Planning consists of an action selection phase where actions are selected and

ordered to reach the desired goals and a resource allocation phase where enough

resources are assigned to ensure the successful execution of the chosen actions.  An OA

plan is a set of instructions to the nodes participating in a connection of what adaptation

to use and in which order with respect to available node resources.  The calculation of a
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plan depends on many factors and is computationally complex.  We will consider the

most criti cal problems below.

3.1 Temporal factor

Real-time applications require very fast connection establishment, so the planning

procedure must run with very strict temporal constraints.  The plan must be created

relatively quickly, since the data stream cannot be delayed indefinitely in search of the

perfect plan.  Depending on the specifics of the data stream, between microseconds and

very small numbers of seconds are available to plan the remedial strategy.  If the code

implementing remedial actions is not ubiquitous, deployment costs must also be

considered in planning.

The shorter connection li fe is, the faster the planning process must be.  The

temporal limit s put additional constraint on existing planning approaches to satisfy on-

line planning.  A plan space of possible solutions for a particular connection can be very

big, but the duration of the search within that space should fit the boundaries of

communication-establishment time limits.  The search should rely on some heuristics that

are able to optimize for the most common cases.  Using these heuristics simpli fies the

search, but at the same time it can cause the loss of good plans, which leads to poorer

plans than with an exhaustive search.  On-line heuristic planning presumes a possibilit y

that a solution might not be found, in which case the connection cannot satisfy the

requirements of quality of service or fails.  This probabilit y of a failure must be below the

threshold of acceptable risk.

This temporal constraint plays the role of a global limit to the plan calculation

process.  If no feasible plan was calculated within temporal limit it means that planning

process failed, otherwise the best found feasible plan must be returned even if much

better plans might not have been evaluated yet.  In case of a very strict temporal

constraint the whole planning process can be stopped and an incompletely calculated plan

returned as the only possible global plan.  For a suff iciently long communication session,

a cheap and inefficient preliminary plan can be calculated and deployed and the data

transfer started.  The search for a better global plan can continue in background, and an

optimized global plan can be deployed later.
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3.2 The consistency of adaptations

The system must suff iciently understand the format of the data stream that it

intends to improve to take proper actions.  In some cases, not only the format of the data

stream must be considered, but also application end-points, hardware devices at those

endpoints, and even wishes and needs of users.  Certain adaptations are format aware,

e.g. distill ers, adaptations that modify the actual content of user data.  For example, a

colored image in format IMG must be transferred from node A to node B through an

extremely poor link.  Unfortunately, our distill er can understand only JPEG format.  Then

the planner should apply IMG-JPEG converter first, then apply the distill er, and convert

the data to the original format using JPEG-IMG converter.  The planner should be able to

make all the analysis of data format consistency and format conversion whenever

necessary.

3.3 The ordering of adapters

The system must be able to apply multiple remedial actions to the same data

stream.  The stream may encounter multiple problems at various points along the

transmission path, and generally different actions will be required to solve those

problems.  Applying multiple actions implies that the system must be able to determine if

a set of actions are compatible.  The canonical example of incompatibilit y is to meet

problems of security and inadequate bandwidth by first encrypting the data stream, then

ineffectually compressing the encrypted version of the stream.  The difference between

this case and the case of the data format consistency is in this latter case there is no

conflict of data formats.  Compression can be correctly applied to encrypted data, it

simply fails to achieve its goals.  The only problem is ineffectiveness in using the

adaptations in one order and effectiveness in using them in opposite order.  It presumes a

certain extension of the notion “ format” that expresses the “compressibilit y” of data.  As

compressibilit y of data decreases significantly after encryption, which makes the later

compression useless, the planner should make the decision to put the compressing

adaptation before encryption.  The compressing adaptation also reduces the

compressibilit y of data, but the encryptor is indifferent to this aspect of data format,

unlike the compressing adaptation, and will perform efficiently.  The development of

these aspects of data format is very important for planning.  As these parameters may
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change and increase in quantity frequently, the planner should be independent of them as

much as possible.

3.4 The efficiency of the plan

It is important to save execution power of network nodes and links.  Adaptations

should be applied in the most eff icient way, i.e. without repetitions, minimizing the use of

node and link resources.  For example, we have a connection that consists of three nodes

A, B, and C, connected with two links AB and BC.  Assume that link AB requires two-

fold compression of data, and link BC requires 4-fold compression of data (see Fig. 1).

The optimal plan should apply compression only once, at node A with 4-fold

compression, which will satisfy the requirements for all li nks.

Another way to increase the eff iciency of adaptations would be extending the

effects of an adaptation that reduces the amount of resources needed for the connection.

For example, a peer-to-peer connection consists of a number of nodes and links that

connect them.  One of the intermediate links requires compression of the data.  The

whole network will benefit i f the compression will be run on the source and

decompression on the destination of this connection, because of the totally reduced

amount of data transferred.  The problem is that the system must be able to determine if

the open architecture is willi ng and able to run all adaptations that the system proposes at

the locations it chooses.  Some adaptations might not run properly on particular nodes.

Some nodes might be unwilli ng to run particular kinds of adaptations.  Perhaps some

A B C 

2-fold 
compression  

4-fold 
compression 

Fig. 1:  2-fold and 4-fold data compression 
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nodes limit the resources expendable on a single packet or entire data flow at that node.

These constraints may cause a different set of adaptations to be performed, or may affect

where adaptations are located.

Optimization of a plan presumes an extensive search in the space of possible

plans.  The plan that demonstrates the best use of network communication and

executional resources must also be deployable. A plan that is deployable is called

feasible.  As we have shown in the previous example, the best location of a compression

adaptation would be the end points of the connection.  But the plan might not be feasible

if the endpoints of the connection are unable to deploy the adaptation because of

insuff icient resources, lack of access to the chosen adapters, etc.  The costs of the

deployment of a plan can be another factor of optimization.

The planner also should take into account the fact each adaptation applied to a

data stream adds delay to that stream.  Even if every adaptation alone does not trespass

the threshold of latency of data transfer, all together they can make the latency

unacceptably long.  The planner should try further compression of the transferred data,

choose less time-consumptive adaptations, run adaptations on more powerful servers, etc.

 Optimization of the plan is an important function of the planner, which also

should be able to find a feasible plan within the limited temporal interval.

3.5 The extensibili ty of the system

Extensibility of planning is a very serious problem for the planning system. New

transformations, data formats, and constraints that are unknown today can appear in the

future.  The need to handle both existing network problems and problems that will be

discovered in the future will produce a significant number of different adaptations,

written by many parties.  The design of the planner and adaptations should presume some

common interface, well understood by both sides.  Creating or using a plan requires

knowledge of the available adapters.  The planner should know their names, locations,

and how to use them.  The planner should distinguish the versions and specifics of

adapters.  The planner should know the amount of resources that those adapters require.

If the compatibili ty of the planner and adaptations that exist already or will be

created in future is lost, the whole idea of planning in OA will be seriously shaken.  The

only way of planning would be to accompany each planner with its own libraries of
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adapters.  It would make li fe of a planner designer a lot easier, but we believe that in

practice the adapters and planner will be maintained independently.

3.6 Other problems

The separate maintenance of the planner and adapters immediately raises more

problems of adaptation composabili ty in addition to the described in previous sections

[Zegura98].

Errors can occur during the process of planning, deployment or running the

adaptations.  The planner should be able do error handling to preserve the safety of data

and re-run the planning process to create error-free plans.

The composition of adapters raises also security issues.  Some adapters will

require that the user be authorized to execute the adapter.  In some cases the process of

planning will require that the designer of the adapter be trusted.  The discovery of the

resources necessary for the deployment of the plan may be the subject to security-based

access constraints.

The use of some adapters will need to be monitored for accounting purposes.

We are not planning to handle these issues; they can be addressed to planner

designers in future.

4. The approach to planning for OA

Our goal is to implement a planning procedure for peer-to-peer communications.

We are working in the context of an application-unaware active network support system

called Panda.  However, the planner could be applied to other OA systems, e.g.

Conductor.  This work is focused on automated planning aspects of active network

services.  Below we give the description of the environment where the planner should be

implemented and our approach to the solution of the planning problem for peer-to-peer

connections.

4.1 The description of our environment

Active networks [Tennenhouse96] represent a new approach to network

architecture that incorporates interposed computation.  These networks are “active” in
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two ways: routers and switches within the network can perform computations on user

data flowing through them; furthermore, users can “program” the network, by supplying

their own programs to perform these computations.  Active networks allow users to

deploy new services by tailoring components of the shared infrastructure to suit their

requirements.  Active technologies have been emerging in the fields of operating systems

and programming languages for some years: PostScript, Safe-Tcl, x-kernel, etc.

The architecture of an active network node consists of three basic components:

The Node OS that supports communication channels; the execution environment (EE)

that exports an API or virtual machine that users can program and control and provides

an interface through which end-to-end network services can be accessed; and the agent

that performs user application message handling.  The message created by the sending

application goes to the Node OS, which determines which of several EEs should handle

the message, or directly to EE as for example in ANTS.  The EE in turn may choose to

select an agent or other piece of code to handle the message.  Once the agent completes

the handling, the EE calls the Node OS to request actual physical transmission along

some network link.  Intermediate nodes can adapt the message via local agents.  At the

destination node, after the EE and agent have done their work, instead of requesting

further transmission, the EE requests the delivery of the message to the destination

object.

ANTS is an EE for an active node transfer system distributed as a Java-based

toolkit for constructing an active network and its applications.  We use ANTS as a base

for our research.  It provides a programming model that allows some kinds of protocol

processing to be expressed, a code distribution system for loading new protocols into the

network, and node runtime for executing them.  ANTS is intended to support novel

network services for routing, caching, transcoding, combining, filtering, regulating, and

otherwise processing packets within network itself. This includes the notion of

“application-specific” protocols where portions of the application processing are

“pushed” into strategic nodes of the network.  ANTS design is guided by three goals:

1) the nodes of the network should support a variety of different network

protocols being used simultaneously,
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2) new protocols should be supported by mutual agreement among interested

parties, rather than requiring centralized registration of agreement between parties

3) new protocols should be deployed dynamically and without the need to

take portions of the network “off-line”.

The combination of a packet and its forwarding routine is called a “capsule”; the

forwarding routine is executed at every active node the capsule visits while in the

network.  The forwarding routine can be cached on active nodes and be executed for a

particular data stream.  The design of ANTS presumes that applications that use ANTS

must be aware of it.

Panda [Reiher00] provides an application-unaware active network.  Panda

automatically traps non-active data streams and converts them into streams of active

packets.  Panda also creates plans for which active services should be performed at each

active network node or switch along the path.  A Panda prototype has been used in our

lab for over a year.  The planning capabiliti es of the original prototype were extremely

primitive.  We are currently implementing an improved prototype that will offer better

planning support.  Panda currently works with the ANTS EE.

Active services in Panda are implemented as adapters that should be deployed

according to a plan on nodes designated by the plan.  After the plan is activated the

adapters modify all data packets arriving at the node.  Adapters increase the cost of the

connection, using resources such as CPU cycles, storage, network controls, etc.  The

deployment of adapters also requires extra time and network bandwidth.  Two adapters

may have different characteristics even if they do the same kind of adaptation for a data

stream.  For example, one adapter might compress a data stream by converting color

images to black-and-white images; another adapter can achieve the same level of

compression by reducing the resolution.  The choice of a particular adapter in this case

depends on the requirements of the user for the data stream.  The location of an adapter

affects the characteristics of data stream.  It is more profitable to extend the number of

links covered by some adapters.  For example, assume that some link requires an adapter

that uses the Ziv Lempel technique for data compression.  Then locating compression and

decompression components as far from each other as possible will i mprove overall

communication because each link will benefit by forwarding compressed data, even if it

has suff icient bandwidth.  At the same time it is undesirable to extend the effects of a



17

forward error correction adapter on links that do not actually require extra reliabilit y,

because this adapter increases the amount of data that must be sent.

The Panda prototype consists of three basic components (see Fig. 2). The Panda

Interception Component (PIC) traps messages sent by applications that do not use active

networking capabiliti es. It examines such messages and gives those it thinks Panda can

assist to the Panda Adaptation Component (PAC).  The PAC is responsible for planning

which adapters to use on behalf of a given data flow and deploying them at the proper

locations in the network. The planning function of the PAC requires information about

conditions in the network. The third Panda component, the Panda Observation

Component (POC) provides this information. The POC observes network and node

conditions and provides information to the PAC as required for planning. If conditions

change drastically, the POC can signal the PAC, which may choose to abandon the

existing plan and re-plan. Panda must be deployed at any node where adapters are to be

run. Panda planning requires information and cooperation from all Panda nodes traversed

by a data flow.

Fig. 2:  A PANDA-enabled node

4.2 Planning

In Section 3 we defined a plan as the instruction to the nodes participating in a

connection of which adaptation to use and in which order.  The basic problem of planning

is to find remedies to a given set of problems located at particular nodes or links in data

path.
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4.2.1 Basic approaches to planning

One simple solution is to precompute a set of reusable plans suitable for common

circumstances.  The planner need merely find a match for its observed problems from

among the set of precomputed plans.  This solution has the advantage of requiring a very

unsophisticated planning component, but the disadvantage of littl e flexibilit y.  It can only

deal with specific sets of problems we foresee.  The basic idea can be extended to allow

precomputed plans with slots to be fill ed in by the planner at runtime [Merigu99], or by

allowing the planner some flexibilit y in where to locate adapters.  The more powerful the

extensions, the greater the flexibilit y, but the greater the complexity of the planner.

Looked at another way, finding a good plan is a searching problem.  Remedies solving

particular problems must be found, and they must be located on nodes that are properly

positioned in the data stream and that offer suff icient resources.  There are a finite

number of problems, a finite number of remedies, a finite number of potential remedy

locations, and a finite number of constraints on what can be done at a given location for

each flow.  The combination of these factors defines the space of all possible plans for

each flow that can be calculated.  Feasible plans, the plans that can be deployed and

actually fix all connection problems, are an interesting subset.  Some feasible plans are

closer to optimal than the others in terms of the efficiency of the data transfer and the

resources needed to deploy and run the adaptations.

One can imagine functions that define the value of certain solutions, based on

whether they solve the problems faced and the costs they incur in doing so.  The

evaluation function must calculate a certain numerical interpretation of all factors of

network communication and adapter deployment, such as throughput.  Monetary cost of

the use of the links in the connection is another important factor in the evaluation

function.  The evaluation function must also take into account the execution resources of

the nodes that run adaptations, as well as the cost of deploying adapter code.  A search

algorithm could evaluate various possibiliti es to find the optimal solution, or at least a

feasible solution that solves all problems at an acceptable cost.

There is an obvious tension between providing optimal behavior for a single flow

and providing overall optimal network behavior.  We do not presume to offer fresh

insight on this problem, but suggest it can be limited by the commonly chosen means in
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active network research, limiti ng the resources devoted to a given flow network wide.

Additional research in this area is ongoing in the active network community, and we will

leverage this work.

We consider the number of nodes that run the adaptations as an important factor

of the search strategy.  The fewer the nodes running the adaptations, the smaller the

solution space and the easier it is to find the optimal plan.  However, the set of the plans

that are built on a smaller number of nodes might not contain feasible plans due to a lack

of resources.  For instance, if only the endpoints are considered, a PDA at one endpoint

may have insuff icient memory or CPU cycles to adapt a video stream in real-time.  Also,

plans built on a limited number of nodes might not be feasible because they do not

include a particular node required by an adapter.  For example, the adapter that provides

an digital signature must be applied exactly at the node whose digital signature is needed

and cannot be replaced by somebody else’s signature.  At the same time, if all nodes are

to be considered some other strategy for reducing the search space is needed.

Looking at the problem as an example of search suggests some solutions.  The

most obvious is an exhaustive search.  If an evaluation function properly values the costs

and benefits of applying various candidate solutions, exhaustive search will find the

optimal solution.  If the number of candidate solutions is small enough, exhaustive search

is a fine method.  Consider, however, a data stream that faces four problems, with 256

different adapters available.  Assuming one adapter is required to solve each problem,

and a purely exhaustive approach to deciding which adapters to use, the system must

examine over 4 billi on possibili ties.  If the problem of adapter ordering is considered, or

the problem of where to locate adapters is added, the possibiliti es grow.

One quick way to limit the growth of the search space is to encode adapters with

the problems they solve.  Instead of blindly trying all possible adapters for all possible

problems, the planner can consider only adapters known to solve the particular problems

being faced.  In the example above, if the 256 adapters each solve a different problem,

the only issues an exhaustive planner would face would be ordering the adapters and

locating them on particular nodes.  For a small enough number of adaptation locations,

the total number of possible solutions would be reasonable.  But if there are 25 different

data compressors, 12 encryptors, half a dozen error-correcting encoders, and three or four

reservation schemes, the number of possible solutions skyrockets.  Part of the promise of
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open architectures is that they will allow a proli feration of adapters that help data

streams, so designing a system suitable for only a small number of adapters seems short

sighted.

Non-exhaustive search strategies can start from an initial candidate solution and

attempt to move towards a better solution.  One initial solution is to do nothing, with each

search step being the addition or replacement or relocation of an already chosen adapter.

A different initial solution is to deploy some remedial adapter in the immediate vicinity

of each problem.  Each search step would be to replace an adapter or move it to a

different location.  Another initial solution is to locate all required remedial adapters on

the source and destination nodes, with each step relocating adapters to more appropriate

locations.  The amount of work done to find superior solutions must be limited by the

amount of latency acceptable to the user.  If the planning process takes too long, simply

sending unaltered data over an unassisted path may be better.  However, if one of the as-

yet-undetected problems turns out to be insuff icient security, this decision could be

disastrous.

4.2.2 Local, centralized, and distr ibuted planning

We distinguish three kinds of planning: centralized, local, and distributed.

Centralized planning is based on the planning information for all li nks and nodes of the

connection.  It runs at one node and produces a complete global plan for the whole

connection.  Local planning runs on each node of the connection and creates a plan just

for two neighboring nodes and the link between them.  Distributed planning runs on a

number of nodes that participate in the connection. After some period of negotiation the

nodes produce the global plan for the connection.

As we saw, the search through the plan space can be a time-consuming operation

that due to the time limits of the planning might be unsuccessful.  This is the main

disadvantage of centralized planning.  However, the space of the search can be

suff iciently reduced if a plan would be calculated locally, just for the link where the

problem occurs.  The consecutive calculation of local plans for each neighboring pair

nodes of the connection will produce an incremental plan.  Local planning is relatively

fast as it consists of trivial plan-per-link plans.  Incremental planning presumes that each

node that participates the communication session builds its own local plan being aware of



21

up-stream planning data and the plans built by up-stream nodes.  Nodes cannot change

any decisions made upstream.

The main disadvantage of incremental planning is the ineff iciency of the overall

plan.  For example, our communication consists of source node A, destination node C,

and intermediate node B (see Fig. 3).  Assume that the user application needs a

throughput of 10Mbps.  Link A-B has spare throughput of 5Mbps, and link A-B has

throughput of 2.5Mbps.  A must reduce the user data stream by half, from 10Mbps to

5Mbps.  It builds the corresponding plan and deploys the adapter that compresses user

data by half.  B obtains planning data from up-stream.  It knows that the user desires

10Mbps, but the A-B link can supply only half of the necessary throughput.  B deploys

the adapter that decompresses data back to 10Mbps.  Then B deploys a compressor that

reduces the data by three quarters.  C deploys the adapter that will decompress data back

to 10Mbps.  As we see, the data was compressed and decompressed twice instead of

using only one 4-fold compression on A and one 4-fold decompression on C.

Incremental planning produced a highly ineff icient planning solution.  Only a global

planning protocol, centralized or distributed, can notice this kind of ineff iciency and

instruct A and C to run the correct compression.

A

A

B

B

C

C

Fig. 3:  a) inefficient plan b) eff icient plan

a)

b)

2-fold 
compression

4-fold 
compression

4-fold 
compression
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Combining both incremental and centralized planning can give the advantages of

both approaches.  A communication can use an incremental plan first, which can be

deployed relatively fast, and then switch to a centralized plan whenever it is calculated

and deployed.  The cost is that the system must support clean switching between plans.

Distributed planning can be implemented using sophisticated negotiating

protocols between the planners that participate in the connection.  Like most distributed

solutions, it is more complex than a centralized solution.  It goes beyond the scope of this

work.

4.2.3 Planning information gathering and stor ing

We can presume that any active network node collects and stores planning data

about its neighbors and adjacent links.  Any local plan can be executed without a special

planning information gathering procedure.  The circumstances are different for

centralized planning, which must collect planning information about all nodes and links

that participate in the connection.  The process of planning data gathering should occur

on-line, during the handshaking phase, before the connection is established.  The first

node that obtains planning data for the whole peer-to-peer connection is the destination

node.  We believe that the centralized planning process should be run as soon as possible,

and therefore the destination node is the most appropriate place for it.  After the

centralized plan is calculated it should be distributed among other active nodes that

participate in the connection.

4.3 The steps of the planning

Based on our analysis, we will combine incremental and centralized planning.

These are the steps of planning procedure:

1) The initial planning signal is sent from source to destination (see Fig. 4).

It collects planning data while it is traveling.  The data is delivered to the planner.
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Source
node

Destination
node

A B C D

Initial planning signal collects planning data on its way to 
the destination node where centralized planning will occur

Local planning invocation

Local 
planner

Central 
planner

Fig. 4:  The local and the centralized planning.  The initial planning signal and local planning invocation
start on the source node at the same time.  The first one moves faster than the second one because it only
collects the planning data. The plan invocation signal waits for the adapter selection by a local planner and
then moves to the next node.  The planner orders the selected adapters and deploys them as a local plan, as
one step in the incremental plan.  The central planner collects the planning data, calculates the central plan
and sends it to the nodes for the deployment, replacing the incremental plan.

2) Parallel to the initial planning signal, local planning is invoked.  It occurs

incrementally, link by link.  When adapter selection is finished on one node, the result of

it is sent to the next node downstream.  Then the node completes its local planning

process i.e. orders the selected adaptations and deploys them.

3) When the next node obtains the list of provided adaptations from the

previous node it can start its own local planning process.  It is important for the next node

to be aware of irreversible actions, such as lossy adaptations, that are planned by the

previous node.  It is undesirable to plan another color-to-B/W conversion to user data if it

was applied already on one of the previous nodes.

4) When the local plan of the link adjacent to the destination is deployed,

acknowledgement is sent to the previous node upstream.  When the plan of the previous

node is deployed and acknowledgment from the downstream node is obtained, the

acknowledgement continues upstream.  The process continues until the source obtains the

acknowledgment from its downstream node that indicates that all l ocal plans are

deployed.  Then the source starts the data transmission.  Note that the chain of local plans

can be considered as one global plan that is consistent but not optimal.  If one local

planning calculation fails because of insuff icient resources on the node, the whole local
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planning procedure fails.  The only hope would be that the centralized planning would

succeed.

5) At the same time data collection packet reaches the central planner, it

starts the global plan calculation process.  When the global plan is calculated it must be

deployed.

The local plan calculation consists of two steps:

1) Adapter selection

2) Adapter ordering

The centralized plan calculation consists of three steps:

1) Adapter selection

2) Adapter ordering

3) Optimization of the global plan

The first two plan calculation steps, adapter selection and adapter ordering, are

similar for both planning concepts.  They produce a global plan as a chain of consistent

local plans.  These global plans obtained by local planners and a centralized planner

might be different because local planners and the central planner may select different

adapters to solve the same communication problems.

The adapter selection process is implemented through a database search among

adapter packages.  A special interface between the planner and adapter packages will be

designed for this purpose.

Adapter ordering is a planning problem that can be solved through least-

commitment planning.  In least commitment planning, a plan is defined by a partially

ordered set of adaptations referred to as a partially ordered plan.  Instead of searching in

the space of possible states, least commitment planning searches in the space of possible

partially ordered plans.  The order in partially ordered plans should come from heuristics,

i.e. the experience in the ordering of adaptations.  For example, experience shows that

compression should be applied before encryption.  Then in a plan we can add an order to

a fully unordered set of adaptations: compression and all adaptations that run before

compression should be applied before encryption and all adaptations that run after

encryption.  The complete order can be added to the plan from particular network

conditions and user preferences.
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Centralized planning before running the optimization phase builds an initial

global plan using local planning.  The chain of local plans obtained through the selection

and ordering of adapters establishes a sub-optimal global plan.  This plan can be

optimized through the reduction of link and node resources that it takes to execute the

plan.  The optimization can be achieved via:

- Extending the effects of the adapters that reduce the usage of link resources,

such as compression, distill ation, filtering

- Merging adapters that duplicate their effect on user data, saving node

computational resources.  For example, compressions running on two adjacent

links can be substituted with one compression adapter covering both links

The problem of plan optimization is very complicated because of complicated

interactions between the effects of adapters on user data and the large complexity of the

operation, which is exponential.  The set of heuristics can suff iciently reduce the search

tree, but we still cannot be sure that the most optimal solution can be found, especially if

we take into account the time constraint, which is limited by seconds.  That is why we

rely on randomized heuristic search.  The idea is to try randomly chosen branches of the

search tree to a certain depth, compare the results using an optimization function that

shows the amount of resources used, and continue the search on the branch that promises

the best result.  Obviously it cannot guarantee that the optimal result, the point where

evaluation function has its global extreme, would be found.  The techniques, such as

simulated annealing, that help to find global minimum/maximum may not help as our

optimization model is discrete and changing the size of the step may not be possible.

The technique that is applied to the optimization process is similar to refinement

planning. The idea of the algorithm is the following. The chain of local plans is a partial

plan.  The process generates candidate global plans through merging neighboring plans.

We start building the merged plan by choosing a local plan and trying to merge it with

neighboring plans, one by one, using heuristics that are based on our experience and

knowledge about the properties of adaptations.  The intent is to extend adaptations that

save link resources, not to extend the adaptations that use more link resources, and merge

similar adaptations to save node computational resources.
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The constraints on both plans to be merged must be preserved.  A conflict

between the constraints must be solved through adding new steps to the plan.  If the

conflict cannot be solved, the merge is canceled, and the optimization process is resumed

at the local plan that refused to join the merged plan.  Ambiguities require the

consideration of all possible cases.  When two plans are merged we evaluate the result

applying an evaluation function.  The newly obtained global plan should be closer to

optimal than the original.  The process continues adding neighboring plans one by one

until , in the ideal case, all plans are merged.  The process can be interrupted at any

moment; the merged plan and the set of local plans that were not merged, given that

available node resource constraints are satisfied, can be returned as the result of plan

optimization procedure.  Typically, the reason for interrupting the optimization process is

the temporal constraint, i.e. the urgency to deploy the plan.  However, the success of plan

merging depends on correct information about adapters, particular network

circumstances, the plan merging procedure, etc.

For example, assume that we have a network that consists of three links.  The first

and second links can use any encryption, but the third link requires special encryption

that can be used only on that link.  Incremental planning build local plans on the first and

second links that run encryption on each.  The local plan on the third link contains special

encryption.  After optimization the encryption on the first and second links was

combined.  The third link encryption was not combined with it because of its special

requirements.

Because of resource constraints, the result of the merging of the local plans may

be dependent on the selection of the initial local plan, and it is impossible to say in

advance which initial local plan should be chosen to bring the optimal result.  That is why

we choose the initial local plan randomly, with some probabili ty.  The probabili ty may

not be distributed uniformly among the local plans; the choice of the initial local plan

depends on the feasibilit y of the local plan, the ordering of adaptations that form the local

plan, etc.

Figure 5 ill ustrates how the selection of the initial local plan influences the result.

Assume that we have a connection that consists of three links and four nodes A, B, C, D,

and E.  End points of the connection A and E are able to run one adaptation each and the
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intermediate nodes B, C and D are able to run two adaptations each.  A problem of link

AB requires adapter X, a problem of link BC requires adapter Y, and a problem of link

DE requires adapter Z.  The adapters X, Y, and Z save the resources of the connection,

and it is desirable to extend them as much as possible.  Adapters consist of two parts

each: DO and UNDO, e.g. compression and decompression, encryption and decryption.

Adapter X if applied on the same node with adapter Y should be executed first.  It is easy

to see that the selection of either of adapters X, Y, or Z as an initial leads to absolutely

different plan.
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B CA E

X

D

Y
Z

B CA E

X

D
ZY

B CA E

X
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Local plans X, Y, and Z for
connection A-E

I. Optimization starts with X
    a) X is stretched to AC

    b) X is stretched to AD

II. Optimization starts with Y
     Y is stretched to BD

III. Optimization starts with Z
      Z is stretched to CE

Fig. 5:  Optimization that starts with different initial local plan after merging produces different
resulting plans

As it was mentioned above, the number of merging processes starts with different

randomly chosen local plans and continues up to a certain depth.  The results of this

preliminary search are compared by the value of the evaluation function, and then the

process resumes the search on the most promising branch.  The process is terminated

when the search reaches a dead end, or planning time is over.

4.4 An example of planning process

Assume that we have a connection that consists of three links and 4 nodes A, B,

C, and D.  AB is a wireless link with limited throughput.  It is also unreliable and
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insecure.  Link BC is a dial-up link.  It has even lower throughput than AB.  CD is a

wired Internet link with suff icient throughput, but insecure.

When node A starts a connection with D, it sends initial message.  The message

moves to D collection planning data.  Node A also activates local plan process for link

AB.  The planning process starts with the selection of adapters.  The selection of adapters

starts with search in planner database for a adaptation package that contains the

correspondent adapter.  When an adaptation packages is selected, the search in adaptation

package database occurs.  The planner selects actual adaptations that can resolve link

problems.  After the selection of the adaptations, node B starts the local planning process

for link BC.  At the same time planner orders the adaptations for the local plan AB.

When the adaptations are ordered, the plan AB is ready to be deployed.  Nodes A and B

deploy the correspondent adaptations.  In our case it is LZ compressor, FEC, and

encryptor.  Local planners for local plans BC and CD work in the same way as one

worked for AB.  Local plan for BC contains LZ compressor and Color Dropper; local

plan for CD contains only encryptor.  Every local planner order adaptations using pre-

calculated templates for single link ordering.  The ordered adapters for local plan AB are

ZL compression, encryption, and FEC.  The ordered adaptations for local plan BC are

Color Dropper and ZL compressor.  The local plan CD contains only one adapter.  After

the deployment incremental plan is ready for use.

At the same time when initial message with all planning data reaches node D, the

centralized planning process starts at D.  The process of adaptation selection and ordering

for centralized planning works using same methods as incremental planning.  Figure 6

ill ustrates the process of the centralized planning.  The planner at node D selects and

orders the adaptations for all four nodes, see Figure 6, b) and c).  Initial global plan

consists of local plans AB, BC, and CD; same initial global plan is on Fig. 6, c) and Fig.

7, c). Note that, unlike compressor, FEC, and encryptor that consist of “DO” and

“UNDO” pieces Color Dropper is a lossy adapter that contains only DO part.  On the

Figure 7 it is shown as the short bar that does not cover the whole link.  Optimization of

the initial global plan is on the Figure 7, b) and c).  The result of the optimization is a

global optimal plan.  Compressor and encryptor are to be executed on the end points of

the connection because compression reduces overall throughput requirements for the
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connection; encryptor augments the security of the whole connection.  However, FEC

runs on link AB only because it increases the requirements to channel throughput, and it

is undesirable to extend it.

When the global plan is deployed, node A switches the data stream from

incremental plan to the new optimal plan.  When the connection is no longer in use the

plan should be decommissioned.

Link:
Low throughput
Unreliable
Insecure

Link:
Very low throughput

Link:
Insecure

A B C D
a)

A B C D

Remedy:
1) LZ Compression
2) FEC
3) Encryption

Remedy:
1) Color Drop and
2) LZ Compression

Remedy:
1) Encryption

A B C D

Plan AB:
1) ZL Compression
2) Encryption
3) FEC

Plan AB:
1) de-FEC
2) de-Encryption
3) de-ZL Compression

Plan BC:
1) Color Drop and
2) LZ Compression

Plan BC:
de-LZ Compression

Plan CD:
Encryption

Plan CD:
de-Encryption

b)

c)

Fig. 6:  a) three links, four nodes connection; b) selection of adaptations; c) order ing of adaptations

4.5 The implementation of the planner

We will im plement the planner on the top of ANTS.  Panda and the planner will

work in parallel as two independent applications.  The planner will calculate plans; Panda

will deploy them using the ANTS EE.  The source Panda node will query the local

planner to obtain a plan for a connection that must be established.  The planning

information must be collected by Panda nodes and delivered to the planner.  The planner

should activate the planning process involving planners that belong to other nodes that

participate in the connection.  The calculated plan is delivered to the Panda nodes that

must deploy it.  During the connection more than one plan can be implemented and the

data stream must be properly switched from the old to the new plan.
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The planner invokes local and centralized planning.  As centralized planning is

time consuming, the data transfer will start with the local plans that should be deployed

on Panda nodes as a chain.  When the central plan is calculated and deployed, the source

Panda node will switch the data stream to the central plan, and local plans should be

decommissioned.

Local planning will consist of three consequent steps: adapter selection, adapter

ordering, and plan feasibili ty verification.  Centralized planning will consist of four

consequent steps: calculation of per link plans that consists of the adapter selection and

the adapter ordering, plan optimization through the merging of the link plans, and plan

feasibili ty verification.

Plan optimization through the merging of the link plans intends to extend

adaptations that save link resources, not to extend the adaptations that use more link

resources, and merge similar adaptations to save node computational resources.
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Fig. 7:  Plan merging star ting with the most left local plan

Initial incremental 
plan

Merging of AB and BC 
local plans

Merging of AC and CD 
plans

The proposed implementation of the planner is focused on the following issues:

1) Planning protocol

The planning protocol gathers and stores planning data and deploys a plan based

on a Panda node.  The protocol is based on the combination of incremental and

centralized planning.  The message that collects the planning data for the centralized
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planning and invokes the centralized planning is followed by the incremental planning

message that invokes the incremental planning.  Plan deployment is supported by

acknowledgments to planners and to a source node.  If all nodes that participate in the

connection report that their fraction of the plan is deployed, then the source node

switches the data stream through the newly deployed plan.

If an acknowledgement to a planner and a source node indicates that a local plan

cannot be deployed successfully on a particular node, the planner and all downstream

planner should re-plan, and the source node should wait for the new acknowledgements

from all downstream nodes.  When all l ocal plans are deployed the source node starts the

data transfer.

If a node reports to the destination node and to the planner that it cannot deploy its

fraction of the centralized plan, the planner re-plans and tries to deploy the new

centralized plan.  The source node waits for acknowledgments from all nodes of the

connection, then switches the data transfer to the new plan.

2) Selection of adapters

The selection of adapters uses the planner-adapter package interface.  A planner

contains a database of all accessible adapter packages.  From that database the adapter

can find which adaptation package resolves which network problem, and an interface to

the correspondent package.  When the planner chooses a package of adaptations, it

queries the package and obtains the name and the location of adapter with the instruction

how to use it.  Each package has its own database that contains the necessary description

of the adapters from this package.  This database is designed together with the adapters

by the same designer.  The record in the planner database that describes the access to the

database for the package is also created by a package designer.

3) Ordering of adapters in local plans

Ordering of adapters for local planning uses least-commitment planning.  Pre-

calculated partially ordered plans are located in the planner’s library.  The order in the

partial order plan comes from our experience with the order of adaptations.  The rest of

adaptation orders are ambiguous and must be resolve during the planning process using

user preferences, network conditions, etc.  The ordering of adaptations helps to build
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local plans and for centralized planning helps to create the order of adaptations that will

suff iciently reduce the branching of the search tree during the plan optimization.

4) Optimization of the local plans

Optimization of local planning is done through a refinement search in the space of

plans.  The search occurs through the modification of the location of the adaptations and

evaluation of this modification using an evaluation function.  The evaluation function

calculates a value that corresponds to the quali ty of a communication and the amount of

network resources used.  The modification of the location of the adapters occurs through

the merging of local plans preserving the previously calculated order of the adapters.  The

strategy of plan merging is discussed in Section 4.3.

5) Evaluation function

The evaluation function for the optimization search contains the quali ty of data transfer

and resources necessary to run the adaptations.  Both these factors are directly dependent;

the function should reflect the point of equili brium between them, which can very for

different networks and connections.  For our implementation we assume that quali ty of

data transfer is more important than adapter execution resources of nodes.  This

assumption will be expressed with the correspondent weight coeff icients applied to

transfer-quali ty and execution-resources factors.  The factors that we are planning to

evaluate are:

- Quali ty of data transfer: throughput, security, reliabili ty, etc.

- The execution resources: CPU cycles, memory

6) Switch between plans

The destination node should be able to switch between locally and centrally calculated

global plans for the connection.  Each data packet should carry the identification of the

plan version that must be applied to the packet.  Panda nodes dispatch the packets

according to this identification.

7) Extensibili ty

The system must demonstrate the abili ty to extend itself when it is necessary to add an

adapter, adapt a package, implement a “new” method of adaptation, or present a “new”

problem of network communication.  Extension of the system should be accompanied
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with necessary modifications in databases and minimal changes in the code of the

planner.

The result of the implementation is a system to automatically and properly deploy

adaptations that help to fix the problems of networks.

4.6 Measurements

The evaluation and the measurement of the work of the planner will be performed

on peer-to-peer network connections that consist of one or more links.  Multimedia data

transfer will be used for the measurements: color images, video, etc.

The preliminary list of the potential network problems and their potential

solutions in parenthesis is:

- Throughput (compression)

- Latency (prefetching and caching)

- Burstiness (buffering)

- Security (encryption)

The preliminary list of the potential remedies is:

- Compression (Ziv Lempel, color drop, quali ty reduction)

- Prefetching and caching: (prefetcher, cache)

- Buffering (buffer)

- Security (public key encryption)

To make the measurements for typical cases several scenarios are possible:

1. Local planning: The connection consists of one problematic link; different kinds of

problems cause the deployment of a number of adapters.  The goal of the test is to

verify the eff iciency of the ordering of adapters and the timing of the elementary

planning.

2. Centralized planning: The connection consists of two links; each link has its own set

of problems.  The goal is to verify the efficiency of the planner to calculate an

optimized central plan.

3. Centralized planning: The connection consists of a various number links with some

“average” number of adapters.  The goal of the test is to

- measure the average “per link” speed of the local planning
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- find the dependency of the centralized planning duration on the number of

links of the connection

4. Centralized planning: “Realistic case” – some interesting scenario, for example: a

mobile computer communicates with a base station, which via telephone line

communicates with the Internet.  The goal is to make a benchmark for some realistic

case.

5. Centralized planning: “Multicast case” – some multicast connection.  The goal is to

show that even fragmental planning for peer-to-peer fractions of the multicast tree

improves the connection.

6. We are planning to deploy Panda with the planner in our off ice for testing,

debugging, more extensive measurements, and casual use.

To demonstrate the advantages of automated planning we will make a comparison

of quali ty of service of a data stream with and without planning for all scenarios.  To

define a tradeoff between improved quali ty of service and extra latency that is brought by

planning the following measurements of time consumed will be done:

1. On-line planning data gathering

2. Plan calculation:

1) adapter selection

2) adapter ordering

3) optimization of the centralized plan

3. Plan deployment (optionally as Panda designers can already presume this)

4. Switching between plans

5. Plan execution

The improved quali ty of service can be recognized visually during demonstration,

through the actual measuring of the quantity of packets delivered and dropped within a

unit of time, or both.

The contemporary implementation of ANs demonstrates higher latency of

communications than conventional Internet because of the overhead, Java slowness, etc.

The comparison of the ANs equipped with the planner and the conventional networks is

problematic.
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6. Schedule

To visualize the progress of work involved into the planner implementation we

have constructed a preliminary schedule of the research with milestones and estimated

completion times.

1. System built

1. Working framework Fall 2000

2. Full scale system (improved framework) Winter 2001

3. Tuning the system Spring 2001

4. Measurements/Demonstration done Summer 2001

5. Dissertation written Fall 2001

6. Summary

We showed the current status of planning for open architectures.  We presented

the most criti cal problems that planning for ANs faces.  The solution of planning problem

is somewhere on the cross point between open architecture technology and AI planning

theory.

We presented the approach to the planner design for ANs.  Panda is the example

of an active network system that provides an adaptation service for end-to-end

connections and automated planning for the selection and deployment of adaptations.

The planning process presumes that a search for a feasible plan in the space of all

possible plans will succeed.  The complexity of the search depends on the scale of the

plan space.  We believe that in a practical system the plan space is very large, making

automated planning a hard Artificial Intelligence problem.

At the same time, finding a feasible plan is limited by the temporal constraints of

a real-time application.  Our work is focused on the methods of fast and efficient plan

space traversal for possible solutions.  We have outlined what we believe to be the key

components and tradeoffs to the problem.  We are investigating the chosen planning

strategy and how well it suits the open architecture we are working with and the kinds of

problems we are interested in solving.  We presented a number of scenarios of
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communication for which we will make controlled measurements of the eff iciency of the

system.

We are currently working on the planner implementation for use in the Panda

prototype.  We believe that the planner will im prove active network architectures and

make active networks better achieve their potential.  Legacy applications will benefit

from using the planner.
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