UCLA CS111
Operating Systems (Spring 2003, Section 1)

Address Translation
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Translation tables are implemented in hardware, but they are controlled by software. This handout steps through various translation schemes, starting from the simplest.

[image: image1.bmp]
Base-and-Bound Translation

For the base-and-bound translation, each process is loaded into a contiguous region of physical memory, but with protection among processes.

[image: image2.bmp]
Each process has the illusion that it is running on its own dedicated machine, with memory starting from 0 and going up to the size equal to bound. Like linker-loader, a process gets contiguous regions of memory. Unlike linker-loader, a process can only touch locations in physical memory between base and base + bound.

[image: image3.bmp]
The translation step provides a level of indirection. An operating system can now move a process around by copying bits and changing the base and bound registers.

The main advantages of the base-and-bound translation are its simplicity and speed. However, there are a number of drawbacks.

1. It is difficult to share programs. Each instance of a program needs to have a copy of the code segment.

2. Memory allocation is complex. If a process needs to allocate an address space, the process needs to find a contiguous chunk of memory that is big enough. In the worst case, the memory manager has to shuffle large chunks of memory to fit a new process.

3. Base-and-bound translation does not work so well if address spaces need to grow and shrink dynamically.

Segmentation

A segment is a region of logically contiguous memory, and the idea of segmentation-based translation is to generalize the base-and-bound approach by allowing a table of base-and-bound pairs.

The following is an example of a segmentation table, with 2 bits to identify virtual segments, and a 12-bit segment offset.

	Virtual segment number
	Physical segment base
	Segment bound

	Code
	0x4000
	0x700

	Data
	0
	0x500

	-
	0
	0

	Stack
	0x2000
	0x1000

Each segment gets mapped to a contiguous location in physical memory, but there may be gaps between segments. These gaps allow heap and stack segments of a process to grow by changing the segment bound in the table entry. Also, by adding a protection mode to each segment, we can have a finer control of segment accesses. For example, the code segment should be set to read-only (only execution and loads are allowed). Data and stack segments are set to read-write (stores allowed).

Compare to the base-and-bound approach, segmentation translation is more efficient for processes that do not use the entire address space. Also, segmentation allows multiple instances (processes) of a program to share the same code segment. However, segmentation still require contiguous chunks of memory; therefore, memory allocation is still complex.

Paging

Paging-based translation reduces the complexity of memory allocation by having fixed-size chunks of memory, or pages. The memory manager under paging can use a stream of 0s and 1s, or a bitmap, to track the allocation status of memory pages. Each bit represents one page of physical memory—1 means a page is allocated; 0 means unallocated. Memory mapping is done at the granularity of a page, so a virtual page is mapped to a physical page of memory.

The following is an example of a page table with a page size of 4 Kbytes.

	Virtual page number
	Physical page number

	0
	4

	1
	0

	3
	2

Although it allows code sharing and easier memory allocation, paging has its own drawbacks. First, if a process sparsely uses its address space, the size of the page table is prohibitive, in particular, if a process has the starting virtual address of 0 for the code and 231 – 1 for stack (assuming a 32-bit architecture). With 1-Kbyte pages, a process will need 2 million table entries. Second, if the page size is too big, paging suffers from internal fragmentation, where allocated pages are not fully used. On the other hand, the base-and-bound approach suffers from external fragmentation, where memory is wasted because the available memory is not contiguous for allocation.

Multi-Level Translation

To handle the sparse address space allocation, segmented-paging translation can break the page table into segments that are allocated as necessary—a significant reduction of page table size. The virtual address is now decomposed into three components: virtual segment number, virtual page number, and the offset.

At the lowest level, memory allocation can still be done with a bitmap due to paging. Sharing can be performed at either the segment or the page level.

However, segmented paging also has a few drawbacks: (1) this approach still requires a certain overhead for storing additional pointers; (2) page tables still need to be contiguous; and (3) each memory reference now takes two or more memory table lookups.

Paged Page Tables

To further reduce the overhead of contiguous page tables, another solution uses paged page tables, or a two-level tree of page tables. This approach reduces unwanted allocation of page table entries and can be generalized into multi-level paging.

Multiple levels of page tables also mean multiple memory references before getting to the actual data. One way to speed up the lookup is to use translation lookaside buffers (TLBs), which stores recent translated memory addresses for short-term reuses.

Inverted Page Tables

A simple and power approach to speed up lookups is to use a big hash table (inverted page table), where each virtual page number is hashed to a physical page number. The size of the table is independent of the size of address spaces, and proportional to the number of pages being used. However, managing hash collision can be complex and inefficient.

Page table size

Offset

6250 + bound

base = 6250

bound

0

code

data

stack

Physical addresses

Virtual addresses

code

data

stack

Error

Bound

>

Physical address

+

Virtual address

Base

Data read or write (untranslated)

Physical addresses

Translation tables

Virtual addresses

Physical page number

0x6ff

Error

Physical address

Error

Physical page number

Physical page number

0x0

Physical page number

Offset

Virtual page number

Virtual address

>

>

Physical address

+

Offset

Segment bound

Virtual segment bits

Virtual address

Physical segment base

Segment bound

Physical segment base

Segment bound

Physical segment base

Physical addresses

Virtual addresses

0x4ff

0x0

0x14ff

0x1000

0x2000

0x2fff

0x3000

0x3fff

0x4000

0x46ff

0x5000

0x4000

0x3000

0x2000

0x1000

0x0

0x3fff

0x3000

0x0

0x1000

0x2000

Virtual segment number

Physical addresses

Virtual addresses

Offset

Virtual page number

