UCLA CS111
Operating Systems (Spring 2003, Section 1)

Memory Protection: Kernel and User Address Spaces
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

For the first half of the course, we explored ways to provide the illusion of having an infinite number of CPUs on a single-processor machine. The next topic of memory management addresses a different set of illusions related to memory: protected memory, infinite amount of memory, and transparent sharing.

	Physical memory
	Virtual memory

	No protection
	Each program isolated from all others and from the OS

	Limited size
	Illusion of infinite memory

	Sharing visible to programs
	Each program cannot tell if memory is shared

Memory Organizations

Perhaps the simplest model for using memory is to provide uniprogramming without memory protection, where each application runs with a hardwired range of physical memory addresses. Given that a uniprogramming environment allows only one application to run at a time, an application can use the same physical addresses every time, even across reboots. Typically, applications use the lower memory addresses (low memory), and an operating system uses the higher memory addresses (high memory). An application can address any physical memory location.

One step beyond the uniprogramming model is to provide multiprogramming without memory protection. When a program is copied into memory, a linker-loader alters the code of the program (loads, stores, jumps) to use the address of where the program lands in memory. In this environment, bugs in any program can cause other programs to crash, even the operating system.

The third model is to have a multiprogrammed operating system with memory protection. Memory protection keeps user programs from crashing one another and the operating system. Typical memory protection is achieved by two hardware-supported mechanisms: (1) address translation and (2) dual mode operation.

Address Translation

Recall that each process is associated with an address space, or all the physical addresses a process can touch. However, from the viewpoint of each process, it believes that it owns the entire memory, with the starting virtual address of 0. The missing piece is a translation table that translates every memory reference from virtual addresses to physical addresses.

Translation provides protection because there is no way for a process to talk about other processes’ addresses. Also, a process has no way of touching the code or data under the operating system. The operating system uses physical addresses directly, and involves no translation. Details of the translation tables are deferred to a later lecture.

Dual-Mode Operation Revisited

Translation tables can offer protection only if an application cannot alter their content. Therefore, a user application is restricted to only touching its address space under the user mode. Hardware requires the CPU to be in the kernel mode to modify the address translation tables.

Although we have mentioned this dual-mode operation in prior lectures, we have not addressed two details: (1) how the CPU is shared between the kernel and user programs, and (2) how programs interact among themselves.

Switching from the Kernel to User Mode

A CPU changes from the kernel to the user mode when starting a program. To run a user program, the kernel performs the following steps:

(1) Creates a process

(2) Initializes the address space

(3) Loads the program into the memory

(4) Initializes translation tables

(5) Sets the hardware pointer to the translation table

(6) Sets the CPU to user mode

(7) Jumps to the entry point of the program.

Switching from the User to Kernel Mode

A CPU can change from the user to kernel mode either through voluntary or involuntary mechanisms. The voluntary mechanism is through the use of system calls, where a user application asks the operating system to do something on the user’s behalf. A system call passes arguments to an operating systemm either through registers or copying from the user memory to the kernel memory.

A CPU can also be switched from the user to kernel mode involuntarily by hardware interrupts (e.g., I/O) and program exceptions (e.g., segmentation fault).

On system calls, interrupts, or exceptions, hardware atomically performs the following steps:

(1) Sets the CPU to kernel mode

(2) Saves the current program counter

(3) Jumps to the handler in the kernel (the handler saves old register values)

Unlike threads, context switching among processes also involves saving and restoring pointers to translation tables. To resume the process execution, the kernel reloads old register values, sets the CPU to user mode, and jumps to the old program counter.

Communication Among Address Spaces

Since address spaces do not share memory, processes have to perform inter-process communication (IPC) through the kernel. Common IPC mechanisms include the followings:

· Byte stream (e.g., communicate through pipes connecting stdin/stdout)

· Message passing (send/receive)

· File system (e.g., read and write files)

Alternatively, on most UNIX platforms, a process can ask the kernel to set up an address space to be shared among processes. This invention also provides a cheap way to simulate threads on systems that do not support them.

In all cases, once you allow communication, bugs can propagate from one program to another.

Protection Without Hardware Support

Hardware-supported protection can be prohibitively slow, since applications have to be structured to run in separate address spaces to achieve fault isolation. In the cases of complex applications built by multiple vendors (e.g., Netscape plug-ins), it may be desirable for two different programs to run in the same address space, with guarantees that they can’t trash each other’s code or data. Two approaches are strong typing and software fault isolation.

Protection via Strong Typing

If a programming language disallows the misuse of data structures, one cannot express a program that would trash another program, even in the same address space. Some examples are LISP and Java.

In Java, programs can be downloaded over the net and run safely because the language, compiler, and runtime system prevents the program from doing bad things (e.g., make system calls). Java also defines a separate virtual machine layer, so a Java program can run on different hardware and operating systems. The downside of this protection mechanism is the requirement to learn a new language.

Protection via Software Fault Isolation

A language-independent approach is to have compilers generate code that is provenly safe (e.g., a pointer cannot reference illegal addresses).

For example, a pointer can be checked before it is used.

	Original instruction
	Compiler-modified version

	st r2, (r1)
	Assert safe is a legal address

	
	Copy r1 into safe

	
	Check safe is still legal

	
	st r2, (safe)

By adding the extra checking code, a malicious user cannot just jump to the st r2, (safe) to bypass the check, since safe always holds a legal address. With aggressive compiler optimizations, this approach may induce performance overhead as low as 5%.

Data read or write (untranslated)

Physical addresses

Translation tables

Virtual addresses

Physical Memory

ffffff

000000

200000

Operating System

Application

Physical Memory

ffffff

000000

Application2

Operating System

Application1

