UCLA CS111
Operating Systems (Spring 2003, Section 1)

Caching and TLBs
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

The idea of caching is to store copies of data at places that can be accessed more quickly than accessing the original. By keeping additional copies, caching can speed up the access to frequently used data, at the cost of slowing down the access to infrequently used data. Caching is a fundamental concept used in many places in computer systems. It underlies many of the techniques that are used today to make computers go fast: caching address translations, memory locations, pages, file blocks, file names, network routes, authorizations for security systems, and so on.

Caching in Memory Hierarchy

Caching is used at each level of memory hierarchy, to provide the illusion of GB storage, with register access time.

	
	
	Access Time
	Size
	Cost

	Primary memory
	Registers
	1 clock cycle
	~500 bytes
	On chip

	
	Cache
	1-2 clock cycles
	<10 MB
	

	
	Main memory
	1-4 clock cycles
	< 4GB
	$0.2/MB

	Secondary memory
	Disk
	5-50 msec
	< 100 GB
	$0.002/MB

Caching in memory hierarchy exploits two hardware characteristics:

1. Smaller memory provides faster access times.

2. Large memory provides cheaper storage per byte.

Thus, caching puts frequently accessed data in small, fast, and expensive memory; caching uses large, slow, and cheap memory for everything else. This data placement strategy works because the behavior of user programs is not random. That is, user programs display locality in access patterns. There are two well-known types of localities.

· A program displays temporal locality if recently referenced locations are more likely to be referenced in the near future. For example, recently used files are more likely to be used in the near future.

· A program displays spatial locality if referenced locations tend to be clustered. For example, ls accesses all files under a single directory.

By storing a small set of data in cache, a small, high-speed cache can easily provide the illusion of having a large storage with the speed of the small cache.

However, caching does not work well for programs that do not display enough spatial or temporal localities. For example, if a program sequentially scans the entire disk, it will flush the cache content, leaving behind cache content with no localities (cache pollution). Fortunately, such programs are relatively few.

Generic Issues in Caching

The effectiveness of caching is commonly measured in the frequency of cache hit, where a lookup is resolved by the content stored in cache; and the frequency of cache miss, where a lookup cannot be resolved by the content stored in the cache. The effective access time is defined with the following equation:

T = P(cache hit)*(cost of hit) + P(cache miss)*(cost of miss)

Suppose a cache has a hit rate of 99%, and the access time is 2 clock cycles; a cache has a miss rate of 1%, and the memory access time is 4 clock cycles. The effective access time is the following:

T = 99%*2 + 1%*4 = 1.98 + .04 = 2.02 (clock cycles)

Therefore, with caching, 10 MB of cache effectively provides an illusion of 4 GB of memory storage running at the speed of hardware cache.

Reasons for Cache Misses

Cache misses can be divided into four categories.

· Compulsory misses occur because data are brought into the cache for the first time (e.g., running a program for the first time since booting the machine).

· Capacity misses are caused by the limited size of a cache. A program may require a large hash table that exceeds the cache capacity, such that no caching policy can effectively improve the performance of the program.

· There are also misses due to competing cache entries. These misses are not compulsory or capacity misses. Since a cache entry can be potentially assigned to multiple pieces of data, should two pieces of data be active, each will preempt the other from the cache on reference, causing cache misses.

· Policy misses are caused by the cache replacement policy—or the policy to choose which cache entry to replace when the cache is full.

Design Issues of Caching

The design of a caching mechanism needs to answer the following questions:

1. How is a cache entry lookup performed?

2. If the data is not in the cache, which cache entry should be replaced?

3. How does the cache copy maintain consistency with the real version of data?

We will illustrate these design processes through the example of applying caching to address translation.

Caching Applied to Address Translation

Since a process often references the same page repeatedly, translating each virtual address to physical address through multi-level translation is wasteful. Therefore, modern hardware provides a translation lookaside buffer (TLB) to track frequently used translations, to avoid going through translation in the common case. Typically, the TLB is on the CPU chip, so the lookup time is significantly faster than looking up from the memory.

Since Linux uses paging-based address tranlation, the remaining handout uses simple paging as the address translation scheme. The following is an example of the TLB content:

	Virtual page number
	Physical page number
	Control bits

	2
	1
	Valid, rw

	-
	-
	Invalid

	0
	4
	Valid, rw

TLB Lookups

There are a number of ways to look up a TLB entry.

1. Sequential search of the TLB table.

2. Direct mapping restricts each virtual page to using a specific slot in the TLB. For example, one approach is to use upper bits of the virtual page number to index the TLB.

if (TLB[UpperBits(vpn)].vpn == vpn) {

return TLB[UpperBits(vpn)].ppn;

} else {

ppn = PageTable(vpn);

TLB[UpperBits(vpn)].control = INVALID;

TLB[UpperBits(vpn)].vpn = vpn;

TLB[UpperBits(vpn)].ppn = ppn;

TLB[UpperBits(vpn)].control = VALID|READ|WRITE;

return ppn;

}

By using the upper bits alone, two pages may compete for the same TLB slot. For example, a page referenced by the program counter may be competing for the same TLB entry that is used by the stack pointer page. Therefore, cache content may be tossed out even if still needed.

By using the lower bits alone, TLB references will be highly clustered, failing to take the full range of TLB entries. Thus, common approaches select a combination of high and lower bits.

3. Set associativity refers to having N separate hardware TLB banks, so N banks perform lookup simultaneously. The following diagram illustrates the two-way set associative cache.

If either entries match, use the PPN; otherwise, translate and replace one of the two entries.

4. Fully associative cache allows looking up all TLB entries in parallel.

If either entries match, use the PPN; otherwise, translate and replace one of the entries.

Typically, the TLBs are small and fully associative. Hardware caches are larger, and are direct mapped or set associative to a small degree.

Replacements of TLB Entries

For direct mapping, the entry being mapped is replaced whenever there is a mismatch of the virtual page number. For set associative or fully associative cache, it is possible to replace a random entry, the least recently used entry, or the most recently used, depending on the reference patterns. In hardware, TLB replacement is mostly random because it is simple and fast. In software, memory page replacements typically do something more sophisticated. The tradeoffs are the CPU cycles and the cache hit rate.

Consistency Between TLB and Page Tables

Since different processes have different page tables, the on-chip TLB entries have to be entirely invalidated on context switches. An alternative is to include process IDs in TLB, at the additional cost of hardware and an additional comparison per lookup.

Relationship Between TLB and Hardware Memory Caches

A cache of memory values can be inserted in a number of places in the address translation process. The cache between the CPU and the translation tables is called the virtually addressed cache. If the virtually addressed cache gets a cache hit, it returns the data immediately without translating the virtual address. The cache between the translation tables and the main memory is called the physically addressed cache. If the physically addressed cache gets a cache hit, it returns the data without consulting the main memory.

If the cache data is modified, there are two ways to propagate the data back to the main memory.

1. The write-through approach immediately propagates update through various levels of caching, so the cached values are more consistent across different levels of memory hierarchy.

2. The write-back approach delays the propagation until the cached item is replaced from cache. The goal is to amortize the cost of update propagation across several cache modifications.

Since write-back policy is less costly, memory caches typically use write-back. On the other hand, file systems typically use write-through policy because they care more about the persistence of data to survive machines crashes.

Data read or write (untranslated)

Physical addresses

Translation tables

Virtual addresses

Cache hit

Cache miss

Data

PA

Physically Addressed Cache

Data

PA

Data

PA

Data

PA

Cache miss

Cache hit

Virtually Addressed Cache

Data

VA

Data

VA

Data

VA

TLB miss

TLB hit

=

CPU

=

PPN

VPN

PPN

VPN

=

TLB

Data read or write (untranslated)

Main memory

Translation tables

PPN

VPN

Virtual page number

hash

=

PPN

VPN

PPN

VPN

PPN

VPN

=

PPN

VPN

PPN

VPN

PPN

VPN

Virtual page number

Not in TLB

In TLB

TLB

