UCLA CS111
Operating Systems (Spring 2003, Section 1)

Device Management
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

So far, we have covered how an operating system manages CPU and memory resources. However, a computer is not so interesting without I/O devices (e.g., hard drives, network cards, screen displays, keyboards, mice, rats, and so on). Device management is the part of the OS that manages hardware devices. Device management tries to (1) provide a uniform interface to ease the access to devices with different physical characteristics, and (2) optimize the performance of individual devices.

Basics of I/O Devices

I/O devices can be roughly divided into two categories. A block device (e.g., disks) stores information in fixed-size blocks, each one with its own address. A character device (e.g., keyboards, printers, network cards) delivers or accepts a stream of characters, and individual characters are not addressable.

A device is connected to a computer through an electronic component, or a device controller, which converts between the serial bit stream and a block of bytes and performs error correction if necessary. Each controller has a few device registers that are used for communicating with the CPU, and a data buffer that an OS can read or write. Since the number of device registers and the natures of device instructions vary from device to device, a device driver OS component is responsible hiding the complexity of an I/O device, so that the OS can access various devices in a relatively uniform manner.

Device Addressing

In general, there are two approaches to addressing these device registers and data buffers. The first approach is to assign each device a dedicated range of device addresses in the physical memory, so accessing those device addresses requires special hardware instructions associated with individual devices. The second approach (memory-mapped I/O) is not to distinguish device addresses from normal memory addresses, so devices can be accessed the same way as normal memory, with the same set of hardware instructions.

Device Accesses

Regardless of the device addressing approach, the operating system has to track the status of a device for exchanging data. The simplest approach is to use polling, where the CPU repeatedly checks the status of a device for exchanging data.

However, wasting CPU cycles on busy-waiting is undesirable. A better approach is to use interrupt-driven I/Os, where a device controller notifies the corresponding device driver when the device is available. Although the interrupt-driven approach is much more efficient than polling, the CPU is still actively involved in copying data between the device and memory. Also, interrupt-driven I/Os still impose high overheads for character devices. For example, a printer raises one interrupt per byte, so the overhead of interrupt far exceeds the cost of transmitting a single byte.

An even better approach is to use an additional direct memory access (DMA) controller to perform the actual movements of data, so the CPU can use the cycles for computation as opposed to copying data.

The use of DMA alone still has room for improvement. Since a process cannot access the data that is being brought into memory at the moment, due to mutual exclusion, a more efficient approach is to pipeline the data transfer. The double buffering technique uses two buffers in the following way: while one is being used, the other is being filled. Double buffering is also used extensively for graphics and smooth animation. While the screen displays an image frame from one buffer in the video controller, a separate buffer is being filled pixel-by-pixel in the background, so a viewer does not see the line-by-line scanning on the screen. Once the background buffer is filled, the video controller switches the roles of the two buffers and displays from the freshly filled buffer.

Overlapped I/O and CPU Processing

By freeing up CPU cycles while devices are serving requests, CPU-bound processes can be executed concurrently with I/O-bound processes. For example, if process A is CPU-bound, and process B is I/O-bound, the system as a whole can reach high utilization by overlapping CPU and I/O processing effectively.

Process A

Process B

Loop:

Loop:

90 msec of CPU

10 msec of CPU

10 msec of I/O

90 msec of I/O

Disk as An Example Device

The hard disk is a 30-year-old storage technology, and is incredibly complicated. A modern hard drive comes with 250,000 lines of micro code to govern various hard drive components.

Hardware Characteristics

Briefly, a hard drive consists of a disk arm and disk platters. Disk platters are coated with magnetic materials for recording. The disk arm moves a comb of disk heads, among which only one disk head is active for reading and writing.

One fascinating detail is that heads are aerodynamically designed to fly as close to the surface as possible. In fact, the distance is so close that there is no room for air molecules, and a hard drive is filled with special inert gas to fly disk heads. If a head touches the surface, it results in a head crash, which scrapes off magnetic information.

Each disk platter is further divided into concentric tracks of storage, and each track is divided into sectors (typically 512 bytes). Each sector is a minimum unit of disk storage. A cylinder consists of all tracks with a given arm position.

A modern hard drive also takes advantage of the disk geometry. Disk cylinders are further grouped into zones, so zones near the edge of the disk can store more information than zones near the center of the disk due to the differences in storage area (also known as zone-bit recording). More information stored in outer zones also means that the transfer rate (rotational speed multiplied by the information stored in a cylinder) is higher near the edge of the disk.

Since moving a disk arm from one track to the next takes time, the starting position of the next track is slightly skewed (track skew), so that a sequential transfer of bytes across multiple tracks can incur minimum rotational delay.

A hard drive also periodically performs therm-calibrations, which adjusts the disk head positioning according to the changes in the disk radius caused by temperature changes. To account for other minor physical inaccuracies, typically 100 to 1000 bits are inserted between sectors.

A Simple Model of Disk Performance

The access time to read or write a disk section includes three components:

1. Seek time: the time to position heads over a cylinder (~8 msec on average).

2. Rotational delay: the time to wait for the target sector to rotate underneath the head. Assuming a speed of 7,200 rotations per minute, or 120 rotations per second, each rotation takes ~8 msec, and the average rotational delay is ~4 msec.

3. Transfer time: the time to transfer bytes. Assuming a peak bandwidth of 58 Mbytes/sec, transferring a disk block of 4 Kbytes takes 0.07 msec.

Thus, the overall time to perform a disk I/O = seek time + rotational delay + transfer time.

The sum of the seek time and the rotational delay is the disk latency, or the time to initiate a transfer. The transfer rate is the disk bandwidth.

If a disk block is randomly placed on disk, then the disk access time is roughly 12 msec to fetch 4 Kbytes of data, or a bandwidth 340 Kbytes/sec.

If a disk block is randomly located on the same disk cylinder as the current disk arm position, the access time is roughly 4 msec without the seek time, or a bandwidth of 1.4 Mbytes/sec.

If the next sector is on the same track, the access time is 58 Mbytes/sec without the seek time and the rotational delay.

Therefore, the key to using the hard drive effectively is to minimize the seek time and rotational latency.

Disk Tradeoffs

One design decision is the size of disk sector.

	Sector size
	Space utilization
	Transfer rate

	1 byte
	8 bits/1008 bits (0.8%)
	80 bytes/sec (1 byte / 12 msec)

	4 Kbytes
	4096 bytes/4221 bytes (97%)
	340 Kbytes/sec (4 Kbytes / 12 msec)

	1 Mbyte
	(~100%)
	58 Mbytes/sec (peak bandwidth)

A bigger sector size seems to get a more effective transfer rate from the hard drive. However, this allocation granularity is wasteful if only 1 byte out of 1 Mbyte is needed for storage.

Disk Controller

Two popular disk controllers are SCSI (small computer systems interface), and IDE (integrated device electronics). Since they are not a part of the OS, please surf the net for more information.

Disk Device Driver

One major function of the disk device driver is to reduce the seek time for disk accesses. Since disk can serve only one request at a time, the device driver can schedule the disk request in such a way to minimize disk arm movements. There are a handful of disk scheduling strategies. Please read Nutt’s book for detailed examples.

FIFO

Requests are served in the order of arrival. This policy is fair among requesters, but requests may land on random spots on disk. Therefore, the seek time may be long.

SSTF (Shortest Seek Time First)

The shortest seek time first approach picks the request that is closest to the current disk arm position. (Although called the shortest seek time first, this approach actually includes the rotational delay in calculation, since rotation can be as long as seek.) SSTF is good at reducing seeks, but may result in starvation.

SCAN

SCAN implements an elevator algorithm. It takes the closet request in the direction of travel. It guarantees no starvation, but retains the flavor of SSTF. However, if a disk is heavily loaded with requests, a new request at a location that has been just recently scanned can wait for almost two full scans of the disk.

C-SCAN (Circular SCAN)

For C-SCAN, the disk arm always serves requests by scanning in one direction. Once the arm finishes scanning for one direction, it quickly returns to the 0th track for the next round of scanning.

Track

Disk platters

Disk arm

Sector

B

A

B

A

A

I/O

Hardware

OS level

User level

I/O devices

Device controllers

Device drivers

Various OS components

Memory-mapped I/O

User applications

Memory addresses

Separate device addresses

Device addresses

Memory addresses

Primary memory

CPU

Device 1

Device 0

