UCLA CS111
Operating Systems (Spring 2003, Section 1)

File Systems and Disk Management
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

The design of a file system aims to provide the following abstractions:

	Physical reality
	File system abstraction

	Block oriented
	Byte oriented

	Physical sectors
	Named files

	No protection
	Users protected from one another

	Data might be corrupted if machine crashes
	Robust to machine failures

File System Components

A file system consists of the following major components:

· Disk management organizes disk blocks into files.

· Naming provides file names and directories to users, instead of track and sector numbers.

· Protection keeps information secure from other users

· Reliability protects information loss due to system crashes.

User vs. System View of a File

At the user level, a user is only aware of the presence of individual files. At the system call level, each call processes a collection of bytes. However, at the operating system level, a block is the logical transfer unit, while a sector is the physical transfer unit. In UNIX, a block size is 4 Kbytes, which is greater than a 512-byte sector.

Given the discrepancy of user and system perceptions, a user access has to be translated into system accesses.

· If a process wants to read bytes 2 to 12, the operating system has to fetch the block containing those bytes, and return those bytes to the process.

· If a process wants to write bytes 2 to 12, the operating system has to fetch the block containing those bytes, modify those bytes, and write out the block.

Even though the system call provides byte-level accesses (e.g., getc and putc), the OS operates in blocks. Therefore, a file is a named collection of blocks.

File Usage Patterns

For a file system to perform well, a designer needs to understand user access behaviors. In general, there are three ways to access a file.

1. Sequential access—bytes are accessed in order.

2. Content-based access—bytes are accessed according to constraints on byte contents (e.g., return 100 bytes starting with “aye carumba”).

3. Random access—bytes are accessed in any order.

Most file systems do not provide the content-based access.

There are also several file usage patterns.

· Most files are small (e.g., .login and .c files), and most file references are to small files.

· Large files use up most of the disk space (e.g., mp3 files).

· Large files account for most of the bytes transferred between memory and disk.

These usage patterns are bad news for file system designers. To achieve high performance, a designer needs to make sure that small files are accessed efficiently, since there are many of them, and they are used frequently. A designer also needs to make sure that large files are accessed efficiently, since they consume most of the disk space, and account for most of the data movement.

Disk Management Policies

Before going into various disk management policies, let’s walk through some common data structures.

A file contains a file header, which associates the file with its disk sectors. Also, a file system needs a disk allocation bitmap to represent free space on disk, one bit per block. Blocks are numbered in cylinder-major order, so that adjacent numbered blocks can be accessed without seeks or rotational delay.

	Block number(s)
	Sector number(s)
	Track number(s)
	Cylinder number(s)

	0
	0-7
	0
	0

	1
	8-15
	0
	0

	…
	
	
	

	31
	247-255
	0
	0

	32
	0-7
	1
	0

	…
	
	
	

	511
	247-255
	15
	0

	512
	0-7
	0
	1

Although the OS keeps a cache of recently used disk blocks in memory, we will ignore caching for now when comparing the performance of different disk management policies.

Contiguous Allocation

For contiguous allocation, file blocks are stored contiguously on disk. A user specifies the file size in advance, and the file system will search the disk allocation bitmap according to various allocation policies (e.g., first-fit and best-fit policies) to locate the space for the file. The file header contains the first block of the file on disk, and the number of blocks in the file.

Contiguous allocation provides fast sequential access. A random disk location in a file can be trivially computed by adding an offset to the first disk block location of the file. The disadvantages are external fragmentation and difficulties to grow files.

Linked-List Allocation

For linked-list allocation, each file block on disk is associated with a pointer to the next block. Perhaps, the most popular example is the MS-DOS file system, which uses the file attribute table (FAT) to implement linked-list files. A file header points to the table entry of the first file block, and the content of the file block contains the table entry number of the next block. A special marker is used to indicate the end of the file.

One advantage of the linked-list approach is that files can grow dynamically with incremental allocation of blocks. However, sequential accesses may suffer since blocks may not be contiguous. Random accesses are horrible and involve multiple sequential searches. Finally, linked-list allocation is unreliable, since a missing pointer can lead to loss of the remaining file.

[image: image1.bmp][image: image2.bmp]
Segment-Based Allocation

Segment-based allocation uses a segment table to allocate multiple regions of contiguous blocks. The file header points to a table of begin-block and end-block pairs.

[image: image3.bmp]
Segment-based allocation provides the flexibility to break the allocation into a number of contiguous disk regions, while it still permits contiguous allocation to reduce disk seek time. However, as the disk becomes increasingly fragmented, in the extreme case, segment-based allocation needs a bigger and bigger table to locate piece-wise contiguous blocks. As an extreme case, segment-based allocation can potentially need one table entry per disk block. In addition, under this scheme, random accesses are not as fast as the contiguous allocation, since the file system needs to locate the pair of begin block and end block that contains the target byte before making the disk accesses.

Indexed Allocation

Indexed allocation uses an index to directly track the file block locations. A user declares the maximum file size, and the file system allocates a file header with an array of pointers big enough to point to all file blocks.

Although indexed allocation provides fast disk location lookups for random accesses, file blocks may be scattered all over the disk. A file system needs to provide additional mechanisms to ensure that disk blocks are grouped together for good performance (e.g., disk defragmentor). Also, as a file increases in size, the file system needs to reallocate the index array and copy old entries. Ideally, the index can grow incrementally.

[image: image4.bmp]
Multilevel Indexed Allocation

Linux uses multilevel indexed allocation, so certain index entries point to index blocks as opposed to data blocks. The file header, or the i_node data structure, holds 15 index pointers. The first 12 pointers point to data blocks. The 13th pointer points to a single indirect block, which contains 1,024 additional pointers to data blocks. The 14th pointer in the file header points to a double indirect block, which contains 1,024 pointers to single indirect blocks. The 15th pointer points to a triple indirect block, which contains 1,024 pointers to double indirect blocks.

This skewed multilevel index tree is optimized for both small and large files. Small files can be accessed through the first 12 pointers, while large files can grow with incremental allocations of index blocks. However, accessing a data block under the triple indirect block involves multiple disk accesses—one disk access for the triple indirect block, another for the double indirect block, and yet another for the single indirect block before accessing the actual data block. Also, the number of pointers provided by this data structure cap the largest file size. Finally, the boundaries between the last four pointers are somewhat arbitrary. With a given block number, it is not immediately obvious as to of which of the 15 pointers to follow.

[image: image5.bmp]
[image: image6.bmp]

Inverted Allocation

If we use a disk as a device for backups (e.g., tape), the storage capacity may be the primary concern, and the speed of disk may not matter (as long as it is faster than tape). Since backup storage keeps track of all modifications, a small modification to a large file results in storing the entire modified file,. Inverted allocation allocates a disk block by hashing the file block content to a disk block location. By doing so, different file blocks of the same content (e.g., empty blocks) can share the same disk block for storage. For example, if one block is modified in a N-block file, the storage requirement for both files is N + 1 blocks.

New file header

Block 1

Block 2

Block 0

Data blocks

Old file header

Block 1

Block 2

Block 0

Data blocks

Block k

…

Block k + 1024

Data blocks

Block j

…

Block j + 1024

Data blocks

Block 12

…

Block 1036

Single indirect block

Double indirect block

Triple indirect block

Data blocks

File header

Data blocks

File header

Block 11

Block 1

…

Block 2

Block 0

Block 0

Data blocks

File header

Entry for block 5

EOF

Entry for block 3

0

Entry for block 4

5

Entry for block 2

4

File header

End block

Begin block

End block

Begin block

End block

Begin block

