UCLA CS111
Operating Systems (Spring 2003, Section 1)

Naming and Directories
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

File Header Storage

Early UNIX systems store file headers (or i-node) in a special array and put them on the outermost cylinders. The UNIX approach seems strange in two ways:

1. File headers are not near data blocks. Reading a small file involves a seek to get the file header, and other seeks to get file blocks.

2. The file header array is fixed in size. Therefore, the maximum number of files is fixed at the time of creating a file system.

File headers are not placed near data for several reasons:

1. Reliability: Data corruptions are unlikely to affect file headers.

2. Reduced fragmentation: Since file headers are smaller than a whole block, by compacting them into an array, multiple file headers can be fetched from disk at the same time.

3. File headers are accessed more often than file data (i.e., ls). Therefore, grouping file headers improves disk efficiency.

UNIX BSD 4.2 stores portions of the file header array on each cylinder. For small directories, a cylinder can fit all file headers and data in the same cylinder to reduce seek time.

Naming

You probably all remember the first file you created, and that odd moment when your computer asks you to name the file. Naming makes life easier for users, so users do not need to remember i-node numbers. However, naming is still limiting in many ways. For example, inexperienced users tend to come up with poor and not descriptive names. Also, it is difficult to name hundreds of photographs you have taken from your vacation.

A directory is just a table of file names and corresponding i-node numbers. In many file systems, a directory is implemented as a normal file containing file names and i_node numbers. Only an operating system is permitted to modify directories.

Name Space

Flat Name Space

There are a number of ways to organize the name space of a file system. The simplest organization is to have a flat name space, in which all files are stored in a single directory. A flat name space is easy to implement; however, as the number of files increases, a user may have a hard time locating a file in the directory. Also, as the number of files increases, the probability of having name collisions, or multiple files with the same names, also increases.

Hierarchical Naming

Perhaps the most popular name space organization is the hierarchical name space, constructed by multiple levels of directories. In many ways, the conceptual model of the hierarchical name space maps well into the human model of organizing things. A file cabinet contains file folders, and a file folder contains many files. The chance of name collisions decreases with this name space organization. A file system can also take advantage of the spatial locality of files to store all files under a directory within a cylinder to avoid seeks.

Under the hierarchical name space, each file is given an absolute path name consisting of the path from the root directory ‘/’ to the file. An example file name is /pets/cat.jpg, where a root directory contains a subdirectory pets, which in turn contains the file cat.jpg.

There are several drawbacks for the hierarchical name space. First, not all files relate to one another in a strictly hierarchical model. It may be hard to decide whether cat.jpg should be stored under the pet folder or the allergen folder. Second, accessing a file may involve many levels of directory lookups or a path resolution before getting to the file content. For example, to access the data content of the file /pets/cat.jpg, a file system needs to perform the following disk I/Os.

1. Read in the file header for the root directory ‘/’ (always at a fixed location on disk).

2. Read the first data block for the root directory.

3. Lookup the file header for pets.

4. Read the file header for pets.

5. Read the first data block for the pet directory.

6. Lookup the file header for cat.jpg.

7. Read the data block for cat.jpg.

Fortunately, top-level directories are usually cached, so a path resolution does not involve too many disk accesses. Also, if a user is inside a directory (e.g, /pets), a user can issue relative path names (e.g., cat.jpg) to refer to files within the current directory.

Relational Name Space

In the hierarchical naming model, directories form an acyclic graph or a tree. One step beyond the acyclic graph is to allow the construction of a general graph. In other words, in the relational naming model, a file can belong to multiple folders according to its attributes, and files can be accessed in a manner similar to relational databases. For example, to find the materials that are related to either cats or dogs, you can easily locate those files by specifying the following attributes: (keywords contain ”cats” or keywords contain ”dogs”).

Although relational naming is flexible, naming a single object may require specifying a long list of attributes. For example, to locate this class note, you may need to specify the following attributes (keywords contain ”operating systems” and keywords contain ”file systems” and keywords contain “naming” and file_type=”Word 2000”). Also, you may need to specify those file attributes at file creation time. Additionally, a relational database is more suitable for performing name resolutions.

Contextual Naming

To avoid specifying a long list of attributes, contextual naming takes advantage of the observation that certain attributes can be added by the system automatically; therefore, certain attributes are implicitly specified by the context of search. For example, you are looking for a clip art in a Word file; implicitly you are searching for image files with file types supported by Word. This contextual information greatly reduces the search space for your file.

Content-Based Naming

Of course, after you have created, installed, downloaded, and pirated 200 Gbytes of information onto your hard drive, you are unlikely to remember every single file name and directory name. Ideally, with content-based naming you can search your file by the content instead of names, and file contents are extracted automatically. For example, you just want a photograph of your cat taken five years ago, and your file system should be able locate all files satisfying your search criteria. Unfortunately, automated content-based naming requires advanced information processing techniques (i.e., image recognition). Many existing content-based naming systems use manual indexing, based on indexing methods developed in the field of library science. Truly automated content-based naming is still an active area of research.

Example 1: The “Internet File System”

In some ways, Web pages on the Internet can be viewed as a worldwide file system, and its name space contains certain shades of various naming schemes.

· Flat name space: Each URL provides a unique file name.

· Hierarchical name space: You can navigate within individual websites in a hierarchical fashion.

· Relational name space: You can search the Internet through search engines.

· Contextual name space: Web pages are ranged according to the frequency of use. With a high probability, you can locate desired files with few keywords.

· Content-based name space: Without knowing the exact file names and attributes in advance, you can perform searches to find your information.

Example 2: Plan 9
Modern UNIX has a deep-rooted influence from the Plan 9 operating system developed by Bell Lab. One particular aspect of Plan 9 is the uniform file interface to just about everything. Therefore, processes, files, IPC, and devices share a single hierarchical name space.

Under Linux, you can examine process states through the /proc memory file system (see exercise 1 in the project book). To communicate between two processes via pipe, you use the same open/close/read/write calls as for files. Under the /dev file system, with root privilege, you can use the same open/close/read/write calls to modify the content for various devices. For example, (don’t do this at home) you can modify /dev/mem to change memory content, and /dev/fd0 to change the content on the disk in the floppy drive.

