UCLA CS111
Operating Systems (Spring 2003, Section 1)

Transactions: Reliability from Unreliable Components
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

File systems have lots of metadata: bitmaps for free blocks, directories, file headers, indirect blocks. For performance, most of these metadata are cached. However, the problem occurs when an operating system needs to update those metadata, because a crash may occur in the middle of a series of operations, and the operating system needs to ensure that the file system does not reach an inconsistent state.

For example, to move a file between directories conceptually involves: (1) removing a file from the old directory, and (2) adding a file in the new directory. If a crash occurs in the middle, we should not end up with a file that has disappeared.

UNIX Approach (Ad Hoc Failure-Recovery)

For metadata, the UNIX file system (UFS) uses the synchronous write-through caching policy. An update to metadata is synchronous in the sense that a call to update metadata does not return, until the changes are prorogated to disk. If multiple updates are needed, the file system does them in a specific order, so in the case of crashes, an fsck program can scan the entire disk to repair in-progress operations. The following are some examples:

· If a file is created, but not yet added to any directory (not yet visible to users), delete the file.

· If file blocks are already allocated (visible to users), but not recorded in the bitmap, update the bitmap.

For user data, UFS uses a write-back caching policy. A modified block is written to disk every 30 seconds, unless a user explicitly issues the sync system call. There is no guarantee for data blocks to be written to disk in any order. However, in many cases, providing consistency to metadata is good enough.

For example, vi saves changes of a file to disk by performing the following steps:

1. Write the new version in a temp file.

2. Move the old version to a different temp file.

3. Move the new version into the real file.

4. Remove the old version.

In the case of a crash, vi looks at the temp area to deduce the last step before the crash, and decides to move forward or roll back depending on the integrity of temporary file(s).

Transaction Approach (Journaling)

If we want to group multiple file operations to occur as a unit, we need to rely on a different concept of transaction. A transaction groups actions together with the following characteristics:

· Atomic: either all actions happen or they do not (no partial operations).

· Serializable: transactions appear to happen one after the other.

· Durable: once a transaction happens, it is recoverable and can survive crashes.

A transaction is not considered done until it is committed. Once the transaction is committed, it is durable. If a transaction fails to complete, it must rollback as if it did not happen at all. Note that critical sections are atomic and serializable, but not durable.

Transaction Implementation (One Thread)

The key idea is to bundle multiple updates into a single disk write to achieve atomicity. A simple example is transferring money from account x to y.

Begin transaction

x = x – 1;

y = y + 1;

Commit

Common implementations of transactions involve the use of a log, which is like a journal that is never erased. A file system uses a write-ahead log to track all transactions. Once both changes of x and y are on log, the log is committed to disk in a single write. The actual changes to those accounts can be updated in a later time. If a crash occurs after the commit, just replay the log to ensure that accounts are updated.

The following is the exact sequence of steps:

1. Mark the beginning of the transaction.

2. Write the changes in account x.

3. Write the changes in account y.

4. Commit.

5. Modify account x on disk.

6. Modify account y on disk.

If a crash occurs before the commit, the file system just rolls back and discards this transaction. If a crash occurs after the commit, replay the log and update various accounts on disk. A crash cannot occur during the commit, since commit is built as an atomic operation (i.e., writing a single sector on disk).

Two-Phase Locking (Multiple Threads)

Logging alone does not prevent multiple transactions from trashing one another. The solution is two-phase locking. During the first phase, a thread is only allowed to acquire locks, one at the time. If it succeeds, it begins the second phase, performing updates and releasing all locks. If during the first phase, a lock is already acquired, the thread just releases all its locks and starts the first phase all over. Thus, thread A cannot see thread B’s changes until thread A commits and releases locks. Therefore, this implementation of transactions is serializable.

Transactions in File Systems

Almost all file systems built since 1985 use write-ahead logging (Windows NT, Solaris, OSF, etc.). All changes are written to a log before being written to the actual locations on disk. Write-ahead logging eliminates the need for file system check (fsck) after a crash. Write-ahead logging provides reliability, and modified data blocks can be written sometimes later. However, all modifications need to be written twice.

Log-Structured File System (LFS)

If logging is so great, why don’t we have a file system that treats everything as log records? The idea of a log-structured file system (LFS) is to write modifications only once, by having the log be the only copy of data. Everything from data blocks to file headers is stored as a log entry, with a versioning stamp to distinguish between old and new entries.

Since a new log entry is always appended to the end of the existing log, all writes under LFS are sequential. Seeks only occur during reads. Fortunately, the average seek distance is unlikely to be large due to the temporal locality. In addition, as memory gets larger and absorbs more read requests, LFS gets more performance benefits by optimizing writes.

The problem with the LFS approach is that it consumes contiguous space quickly. LFS constantly needs to create contiguous regions for the log to grow, and this process can be expensive.

RAID and Reliability

So far, we have been discussing reliability mechanisms for a single disk. What if we have multiple disks? The chance of a single-disk failure increases as we increase the number of disks. What can we do to protect ourselves from data loss in a disk farm?

RAID stands for redundant arrays of independent disks. RAID provides a standard way of organizing disks and classifying the reliability of multi-disk systems. Generally, reliability is achieved by using duplicate data, parity methods, and error-correcting codes (ECC).

RAID Level 0 provides no redundancy, and any failure causes data loss.

For RAID Level 1, each disk has a second disk that mirrors its contents. By doing so, the reliability is significantly increased. About a third of disk drives fail before having data loss (simultaneous failures of a pair of mirroring disks). Also, reads are faster. Since two sets of disks race to fulfill read requests, the average rotational delay and seek time are halved. However, the file system needs to write to both sets of disks for updates. The solution is expensive in the sense that these disks can store only half as much information.

Instead of using data mirroring, RAID Level 2 uses extra disks to store the ECC of the actual data blocks. The ECC disks can both detect and correct errors, and the storage requirement is less than mirroring (e.g., 4 data disks require 3 ECC disks). However, this approach is still fairly inefficient in terms of storage overhead. Also, since RAID Level 2 can survive only up to one disk failure, RAID Level 1 provides much higher reliability with some additional storage overhead.

RAID Level 3 uses byte-level striping across multiple disks, so bytes are stored on disks in a round-robin manner (e.g., 1st byte on disk 1, 2nd byte on disk 2, and so on). Only one extra disk is needed to store parity bytes. For example, the following disks store the following bit patterns:

Disk 1:
1001

Disk 2:
0101

Disk 3:
1000

Parity Disk:
0100 = 1001 xor 0101 xor 1000

Disk 2:

0101 = 1001 xor 1000 xor 0100

If disk2 fails, the content of disk2 can be restored by computing the parity of the remaining disks. Thus, RAID Level 3 can survive up to one disk failure. However, parity code is only capable of detecting errors, not correcting errors. The use of parity can detect a bit flip on one of the disks, but not identify which disk contains the bit flip. In addition, the parity disk is frequently the bottleneck.

RAID Level 4 is similar to RAID Level 3, except that RAID Level 4 uses block-level striping across multiple disks, with a parity disk to store parity blocks. Small writes become quite expensive and require 4 I/Os:

1. Read the old block.

2. Read the old parity block.

3. Write the new block.

4. Write the new parity block.

RAID Level 5 removes the bottleneck of parity disk by distributing the storage of parity blocks to all disks.

Commit the log to disk before updating the actual values on disk

New y: 2

Old y: 1

Begin transaction

commit

New x: 0

Old x: 1

Disk

x = 1;

y = 1;

Memory

x = 0;

y = 2;

