UCLA CS111
Operating Systems (Spring 2003, Section 1)

Distributed File Systems
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

A distributed file system provides transparent access to files stored on a remote disk. As we go through different distributed file systems, you will see a recurrently themes of design issues: failure handling, performance optimizations, and cache consistency.

No Client Caching

A simple way to construct a distributed file system is to use RPC to forward every file system request to the remote server (e.g., open, seek, read, write, and close). The server implements each operation as it would for a local request, and sends back the result to the client.

The advantage of this approach is that the server always has a consistent view of the file system. However, the performance can be slow. The server is both the performance bottleneck and the single point of failure.

Sun Network File System (NFS)

NFS uses client caching to reduce network load. NFS is built on the top of a number of protocols, as illustrated in the following alphabet soup diagram.

NFS

WWW

e-mail

rlogin

RPC

UDP

TCP

IP

Ethernet
ATM

Packet Radio

Since both clients and servers cache file blocks and metadata, the main advantage of this approach is that many file operations (e.g., read, and write) can be done locally. However, NFS has to worry about handling failures and maintaining cache consistency.

NFS Stateless Protocol

If the server crashes, a number of bad things can happen.

1. Any data in server memory that are not yet committed to disk can be lost.

2. Since state is shared across RPCs (e.g., open, seek, read, and close), if the server crashes after the seek operation, client will fail on the read operation.

3. Suppose the server fails after “rm file” but before returning an acknowledgement. The retransmitted message can confuse the server.

If a client crashes, the modified data in the client cache might be lost.

NFS uses the following design principles to handle failures.

1. Write-through caching: modified blocks are sent immediately to the server.

2. Stateless protocol: the server keeps no state about the client, and each client’s request contains enough information to do the entire operation. For example, instead of just reading an opened file, which contains current file location state, a read operation under NFS needs to specify the i_node number and the read position of the file.

3. NFS operations are idempotent: Repeated operations get the same result. So, if the server crashes, a client can just resend the message and perform the operation again.

Read and write operations are easy—a client just re-reads or re-writes a file block without side effects. For operations like file removal, NFS simply does the removal twice, with an error returned for the second call. All operations cannot not use static variables due to the idempotent requirement.

4. Transparent failures to clients: There are two options to handle server crashes. (1) The client waits until the server comes back, even if it takes a week. (2) The client can return an error to the user application. However, since user applications may not know the existence of the NFS (it’s transparent) and ignore error values (e.g., close), some applications may crash.

NFS Weak Consistency Protocol

If multiple clients are reading the same file, each client can just get one copy. However, if multiple clients are writing the same file, we need mechanisms to propagate updates to all copies.
In NFS, a client polls the server periodically for changes. Thus, when a file is modified, the server is immediately notified via the write-through cache, but other clients still use the old version of the file until they timeout. They then check the server and get the new version. If multiple clients write to the same file, the result is completely arbitrary. A client can get either version, or parts of both versions.

NFS Summary

NFS is simple and highly portable. However, NFS sometimes gets into an inconsistent state. Also, NFS does not scale to a large number of clients. The inconsistency problem may sound worse than it is, since typically a file has a single writer, and multiple writers tend not to work on the same file at the same time. Also, we use old and inconsistent data all the time (e.g., Web browsing).

Andrew File System (AFS)

AFS was developed in the late 80s at CMU. It uses the following design principles:

1. Callbacks: The server records who has the copy of a file.

2. Write-back cache on file close: If a file is modified, the update is propagated to server when the file is closed. The server then immediately tells all clients who own an old copy.

3. Files are cached on each client’s disk. NFS caches only in clients’ memory.

4. Session semantics: Updates are only visible on close.

In UNIX (single machine), updates are visible immediately to other processes that have the file open. In AFS, everyone who has the file open sees the old version; anyone who opens the file again will see the new version.

When a client opens a file and the file is not on the local disk, the client gets the file from the server and adds itself on the callback list. When a client closes a file, the client sends the updated copy back to the server and tells all clients to get the new version on the next open.

If the server crashes, the server loses all the callback states and needs to ask all clients to reconstruct the callback states.

AFS vs. NFS

Relative to NFS, AFS has a less server load due to the clients’ disk caches. Also, AFS is not involved for read-only files. However, on a high-speed local area network, it is entirely likely that remote memory accesses can be faster than local disk accesses.

For both AFS and NFS, the central server is a performance bottleneck, since all updates and all cache misses have to go to the server. The server is also the single point of failure.

Serverless Network File Service (xFS)

The key idea of xFS is to construct a file system as a parallel program and to exploit the high-speed local area network. There are four innovative pieces: cooperative caching, write-ownership cache coherence, software RAID, and distributed control.

Cooperative Caching

The key observation is that remote memory accesses can be faster than local disk accesses. Therefore, cooperative caching uses remote memory to avoid going to disk.

1. On a cache miss, get the file from someone else’s memory instead of from disk.

2. At replacement, if the client has the last memory copy of the file, send to a client that is idle, instead of discarding the memory content.

Therefore, active clients can use the memory of idle clients. Also, the combined cache hit-rate is higher for reads.

Write-Ownership Cache Coherence

Since a file is typically updated by one writer at a time, write-ownership cache coherence declares a client to be the owner of the file at writes, while no other clients can have a copy of the file. Therefore, in xFS, there is either one owned copy of a file that is both readable and writeable, or one or multiple copies of a read-only file.

To read a file, if the local copy is valid, the client just reads. If invalid, the client asks the remote owner to mark the file read-only as needed and copy over the file. To write a file, if the local copy is valid and read-only, the client marks all copies invalid, declares itself the owner, and writes. If the local copy is invalid, the client grabs the latest copy, marks all copies invalid, declares itself the owner, and writes.

Software RAID

In this model, pieces of file system are scattered everywhere, and the reliability is a lot worse. If any machine goes down, a part of the file system is unavailable. The xFS solution is to stripe data redundantly over multiple disks, using software RAID. Each client writes its modifications to a log stored on redundant stripe of disks. On failures, other clients can reconstruct data from remote disks to reconstruct missing data.

Distributed Control

The manager for various copies of data is also spread across all machines. If anyone fails, responsibility shifts from the failed client to someone else.

Summary

xFS builds a large system out of large numbers of small, unreliable components. The design allows data, metadata, and control to live anywhere, on any machine, in any memory, on any location on disk. If one machines goes down, everything continues to work. When machines get added, xFS starts to use their resources.

Of course, to achieve this level of reliability and flexibility, performance is a major tradeoff. There are also challenges in areas such as how to upgrade software in this environment while everything is still running.

Fetch the new version next time X is opened

Done

X(X’

Client B cache: X

Client A cache: X’

Server cache: X’

Done

Write

Data

Read

Client B cache: X

Client A cache: X

Server cache: X

Done

Write

Data

Read

Client B cache:

Client A cache:

Server cache: X

