UCLA CS111
Operating Systems (Spring 2003, Section 1)

Remote Procedure Call (RPC)
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Send/Receive

One set of primitives to build distributed applications is send and receive, which can be used to synchronize cooperating threads running on different machines. Send and receive communicate messages through mailboxes (ports), which are temporary holding areas for messages. Send and receive are atomic operations. Therefore, they will either send/receive the entire message or nothing, and two receivers cannot get the same message.

To put a message to the network, a thread invokes send with a message and the destination mailbox. Receive waits until a message arrives, and copies the message into a given buffer.

send(message, dest_mbox);

receive(buffer, mbox);

Remote Procedure Call

Remote procedure call (RPC), literally, allows you to invoke a procedure on either a local or a remote machine transparently. A client’s call is translated into a call on the remote machine.

Client

RemoteFileSystem(Write(“yaddy yadda”);

Server

FileSystem(Write(“yaddy yadda”);

RPC is implemented on the top of two-way messaging, with procedure stubs on both the client and the server. These procedure stubs merely provide the invocation interface for programmers (e.g., foo(int a)). The actual implementations of those procedures are defined remotely.

The client stub basically performs the following:

· Build messages (also known as marshalling)

· Send messages

· Wait for response

· Unpack reply

· Return result

The server stub performs the following:

· Create N threads to wait for requests

· Loop:

· Wait for command

· Decode and unpack request parameters (unmarshalling)

· Call procedure

· Build replay message with results

· Send reply

Comparison Between RPC and Procedure Call

From the programmer’s viewpoint, invoking a remote procedure call should be similar to invoking a local procedure call. Parameters of a procedure call are transmitted in the request message. Results of the procedure call are in the reply message. The name of the remote procedure is passed in the requested message by the client’s stub.

However, when passing pointers, since the process running on the remote machine is in a different address space, calling RPC requires copying the data structure pointed by the pointer to the remote procedure.

Implementation Issues

The stubs are automatically generated. A client does not know which port to use until the runtime. Therefore, the client needs to have a well-known port for either a server, or a procedure name server that determines which server to contact.

Since the actual implementation of a procedure is located at the server side, a server can upgrade the implementation without recompiling client applications.

Inter-Process Communication

In addition to file systems, shared memory, and pipes, RPC is another way to communicate between address spaces on different machines, or on the same machine. An example use of RPC on the local machine is the microkernel operating system, which partitions the operating system into several application-level servers to minimize the kernel-level code.

By separating the operating system so that different services run in separate address spaces, we gain the following benefits:

· Fault isolation—bugs are less likely to propagate across different address spaces.

· Modularity—each piece of operating system can be upgraded independently.

· Location transparency—a service can be provided either from the local or remote machines.

Another example of using RPC on the local machine is OLE (object linking and embedding), which allows you to mix and match application components.

Problems with RPC

The failure semantics of RPC in the distributed environment is different from that of local procedure calls. RPC has to handle the following kinds of failures:

· A user-level bug can cause a process failure.

· A kernel-level bug can cause multiple processes to fail.

· A network failure, server failure, or an earthquake can cause multiple machines to fail.

The second concern is the performance. Local procedure calls are faster than local RPC, which is faster than remote RPC. Therefore, a programmer cannot completely treat RPC as local procedure calls.

Network

Receive

Receive

Send

Send

Return

Return

Call

Call

Unbundle return values

Bundle

return values

Unbundle arguments

Server (callee)

Client stub

Server stub

Packet handler

Packet handler

Bundle arguments

Client (caller)

