UCLA CS111
Operating Systems (Spring 2003, Section 1)

Concurrency: Threads, Address Spaces, and Processes
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Why Concurrency?

On a single-processor machine, the operating system’s support for concurrency allows multiple applications to share resources in such a way that applications appear to run at the same time. Since a typical application does not consume all resources at a given time, a careful coordination can make each application run as if it owns the entire machine.

An analogy is juggling. While there are only two hands, each ball thinks that it is caught and tossed with a pair of dedicated hands.

There are a number of benefits for an operating system to provide concurrency:

1. Of course, the most obvious benefit is to be able to run multiple applications at the same time.

2. Since resources that are unused by one application can be used for other applications, concurrency allows better resource utilization.

3. Without concurrency, each application has to be run to completion before the next one can be run. Therefore, concurrency allows a better average response time of individual applications.

4. Concurrency does not merely timeshare the computer; concurrency can actually achieve better performance. For example, if one application uses only the processor, while another application uses only the disk drive, the time to run both applications concurrently to completion will be shorter than the time to run each application consecutively.

Concurrency also introduces certain drawbacks:

1. Multiple applications need to be protected from one another.

2. Multiple applications may need to coordinate through additional mechanisms.

3. Switching among applications requires additional performance overheads and complexities in operating systems (e.g., deciding which application to run next.)

4. In extreme cases of running too many applications concurrently will lead to severely degraded performance.

Overall, when properly used, concurrency offers more benefits than drawbacks.

Thread

A thread is a sequential execution stream, and it is also the smallest scheduling unit of concurrency to run on a processor. The beauty of the thread is that each thread can be programmed as if it owns the entire CPU (e.g., you can use an infinite loop within a thread without halting the entire system). In other words, a thread contains the states of its own program counter, register values, and execution stacks. Therefore, threads provide the illusion of having an infinite number of CPUs, even on a single-processor machine.

Threads simplify programming significantly, and Microsoft Word is an example. As you are typing in Word, there is a thread dedicated for checking grammar, a thread for checking spelling, a thread for reformatting the text, and many other threads for various purposes. Since the thread for grammar checking can be programmed independently from the thread for spelling check, the difficulty for programming a large application like Word is greatly simplified.

Address Space

An address space contains all states necessary to run a program—the code, the data, the stack, the program counter, register values, resources required by the program, and the status of the running program.

Process

A process is a fundamental unit of computation. A process, under UNIX, consists of everything that is needed to run a sequential stream of execution. In particular, it consists of an address space and at least a thread of execution. The address space offers protection among processes, and threads offer concurrency.

Process =? Program

A program is simply a collection of statements in C or any other programming language. A process is a running instance of the program, with additional states and system resources.

In one sense, a process is more than a program, since it is possible for two processes to run the same program. The code of the program is just parts of running states within those two processes.

From a different perspective, a program is more than a process, since it is possible for a program to create multiple processes.

As an analogy, a program is like a recipe, and a process is like everything that is needed (e.g., kitchen) to prepare a dish. Two different chefs can cook the same recipe in different kitchens. One complex recipe can also consist of several simpler recipes that can be made into separate dishes.

Some Definitions

Up to this point, we have encountered many similar terms. Let’s take a moment to distinguish among them.

Uniprogramming means running one process at the time.

Multiprogramming means running multiple processes (with separate address spaces) concurrently on a machine.

Multiprocessing means running programs on a machine with multiple processors.

Multithreading means having multiple threads per address space.

Multitasking means that a single user can run multiple processes.

Classifications of Operating Systems

With the vocabulary of process, thread, and address space, we can classify operating systems into four major categories.

	
	Single address space
	Multiple address spaces

	Single thread
	MS DOS, Macintosh
	Traditional UNIX

	Multiple threads
	Embedded systems
	Windows NT, Solaris, OS/2

Threads and Dispatching Loop

Inside each thread, there is a thread control block. The thread control block maintains the execution states of the thread, the status of the thread (e.g., running or sleeping), and scheduling information of the thread (e.g., priority).

Threads are run from a dispatching loop.

LOOP

Run thread

Save states (into the thread control block)

Choose a new thread to run

Load states from a different thread (from the thread control block)

To run a thread, just load its states (registers, program counter, stack pointer) into the CPU, and do a jump. The process of saving the states of one thread and restoring states of another thread is often called a context switch. The decision of which thread to run next involves scheduling.

Although this dispatching loop looks simple, there are a number of questions we need to address: How does the dispatcher regain control after a thread starts running? What states should a thread save? How does the dispatcher choose the next thread?

How Does The Dispatcher Regain Control?

The dispatcher gets control back from the running thread in two ways:

1. Internal events (sleeping beauty—go to sleep and hope Prince Charming will wake you):

(a) A thread is waiting for I/O.

(b) A thread is waiting for some other thread.

(c) Yield—a thread gives up CPU voluntarily.

2. External events:

(a) Interrupts—a completed disk request wakes up the dispatcher, so the dispatcher can choose another thread to run).

(b) Timer—it’s like an alarm clock.

What States Should a Thread Save?

A thread should save anything that the next thread may trash before a context switch: program counter, registers, changes in execution stack. Each thread should be treated as an independent stream of execution.

As a side note, a context switch can also occur during an interrupt. During an interrupt, hardware causes the CPU to stop what it’s doing, and to run the interrupt handler. The handler saves the states of the interrupted thread, runs the handler code, and restores the states of the interrupted thread.

How Does the Dispatcher Choose the Next Thread?

The dispatcher keeps a list of threads that are ready to run.

If no threads are ready to run—the dispatcher just loops.

If one thread is ready to run—easy.

If more than one thread are ready to run, we can choose the next thread according to different scheduling policies. Some examples are FIFO (first in, first out), LIFO (last in, first out), and priority-based policies.

The dispatcher also has the control of how to share the CPU among multiple threads. Suppose that we have thread A, B, and C. At one extreme, a dispatcher can run one thread to completion before running the other.

Alternatively, a dispatcher can use the timer to timeshare the CPU among three threads.

Per-Thread States

Each thread can be in one of three states:

1. Running—has the CPU

2. Blocked—waiting for I/O or another thread

3. Ready to run—on the ready list, waiting for the CPU

Running

Ready

Blocked

I/O request

I/O complete

Yield, timer

Scheduled

A

B

C

Time

Time

C

B

A

A

B

C

A

C

A

C

