UCLA CS111
Operating Systems (Spring 2003, Section 1)

Genesis: From Raw Hardware to Processes
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Suppose we have a simple machine. How do we get from the raw hardware to the point where an operating system is running the first process, or the process 1 under UNIX? Also, how are processes created in general? It’s a fascinating tale, starting with the notion of a simple computing machine….

The von Neumann Architecture

Long, long, long ago (1940s), John von Neumann invented simple von Neumann computer architecture, which is the basis of modern computers. A von Neumann computer consists of a CPU, a memory unit, and I/O devices (e.g., storage devices such as disk drives or tapes). Programs are stored on storage devices, and programs need to be copied into memory for execution. The CPU reads each instruction in the program from the memory and executes accordingly.

A simple model of the CPU can be illustrated by the fetch-execute algorithm. When the machine is initially started, the program counter (PC) is loaded with the address of the first instruction to be executed. This loading step is normally done by a hardware boot sequence. Then, the instruction register (IR) is loaded with the instruction, or the memory content of the memory address pointed to by the PC.

As long as the current instruction is not stopping the machine, the PC can keep on incrementing; the IR can keep on loading the new instruction pointed to by the PC.

PC = <machine start address>;

// IR = memory content of PC

haltFlag = CLEAR;

while (haltFlag not SET during the execution) {

// increment PC;

execute(IR);

// IR = memory content of new PC

}

Since the CPU always begins operating with a fixed sequence of instructions and a fixed machine start address, those instructions are commonly stored in read-only memory (ROM). Therefore, we now have a simple machine, which is capable of executing instructions that are pre-stored in ROM.

The Booting Procedure for Intel 386 Machines

Somewhere inside the ROM on i386 machines, we can find a Basic Input/Output System (BIOS), which knows how to access storage devices. The BIOS code first executes the Power-On Self Test (POST), which checks memory and devices for their presence and correct operation. (During this time, you will hear memory counting, a noise from the floppy drive, and a final beep.)

After the POST, the master boot record (MBR) is loaded from the boot device (configured in BIOS). The MBR is stored at the first logical sector of the boot device (e.g., a hard drive), and the boot record fits into a single 512-byte disk sector (called the boot sector). The MBR describes the physical layout of the disk, such as the number of tracks and number of sectors per track.

After obtaining the information regarding the boot device, the BIOS begins to load a more sophisticated loader from other sectors on the disk. The more sophisticated loader loads the operating system.

Operating System Loaders

Under Linux, this sophisticated loader is called LILO (Linux Loader), which has nothing to do with the movie Lilo and Stitch. A part of LILO is stored in the MBR or the partition boot sector, so during the boot time, LILO allows a user to specify the choice of disk partition and operating system image to boot. On the other hand, the loader for Windows assumes only one bootable disk partition, and allows no choices of booting different operating systems.

After LILO finishes loading the kernel image, it sets the supervisor mode (kernel mode) and jumps to the entry point of an operating system.

Process 1

The initialization of Linux involves setting up the trap table, interrupt handlers, the scheduler, clock, kernel modules, and so on. Near the end of the initialization, Linux sets up the process manager. The process manager then creates the process 1 to run the init program.

The init process is the ancestor of all processes in the sense that all other processes are directly or indirectly created by process 1. The init process also controls transitions between different runlevels:

· Level 0: shutdown

· Level 1: single-user

· Level 2: multi-user (without network file system)

· Level 3: full multi-user

· Level 5: X11

· Level 6: reboot

In addition, the init process executes startup and shutdown scripts for each runlevel.

Process Creation

A UNIX program can create a process by calling the fork system call. Before describing how to create processes, I should give a brief background on system calls.

System Calls

System calls provide a way for processes running at the user mode to access kernel functions, which are trusted code running under the kernel mode. The rationale is to prevent arbitrary programs (run by arbitrary users) from invoking accidental or malicious calls to halt the operating system or modify the master boot sector.

Under UNIX, system calls are implemented through the trap instruction:

A system call issued from the user process contains a trap instruction, which switches the CPU to the kernel mode, looks up the branch table for the system call number, and run the corresponding trusted code under the kernel. When the control returns to the user-level process, the CPU is switched back to the user mode.

The fork System Call Family (UNIX)

For brevity, this section will describe only the fork system call. The fork system call creates a new process, which is a copy of the calling process except that the new process has its own process identification. The following short program Nag.c demonstrates the use of fork.

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

 pid_t pid;

 if ((pid = fork()) == 0) {

 /* this is the child */

 while (1) {

 printf("child’s fork return value %d: I want to play...\n", pid);

 }

 } else {

 /* this is the parent */

 while (1) {

 printf("parent’s fork return value %d: After you finish your project...\n", pid);

 }

 }

 return 0;

}

The program execution first starts with one process, and this parent process generates a child process by calling fork(). During the fork system call, the operating system allocates a new address space and copies the contents of the parent process to the child process. When fork returns, the parent process will receive the process identification number of the child process, and the child process will receive 0 from the fork call. This example program generates the following outputs:

Script started on Wed Feb 2 18:25:33 2000

[awang@spaulding fork]$ fork

child’s fork return value 0: I want to play...

child’s fork return value 0: I want to play...

child’s fork return value 0: I want to play...

... // context switch

parent’s fork return value 1201: After you finish your project...

parent’s fork return value 1201: After you finish your project...

parent’s fork return value 1201: After you finish your project...

... // context switch

child’s fork return value 0: I want to play...

child’s fork return value 0: I want to play...

child’s fork return value 0: I want to play...

...

^C

[awang@spaulding fork]$ exit

exit

Script done on Wed Feb 2 18:25:43 2000
The exec System Call Family (UNIX)

Although it allows the creation of new processes, fork requires the original process to specify the behavior of child processes to make interesting things happen. To make a process run a program or an executable, we need the exec system call family.

The exec system call family starts a program by overwriting the current process. For brevity, this section will demonstrate only the execvp() system call through this simple program called HungryEyes.c.
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define LB_SIZE 1024

int main(int argc, char *argv[]) {

 char fullPathName[] = "/usr/X11R6/bin/xeyes";

 char *myArgv[LB_SIZE];

 myArgv[0] = (char *) malloc(strlen(fullPathName) + 1);

 strcpy(myArgv[0], fullPathName);

 myArgv[1] = NULL; /* last element should be a NULL pointer */

 execvp(fullPathName, myArgv);

 exit(0); /* should not be reached */

}

The execvp system call takes the full path name of the executable and the argument list. If you have only the name of the executable (e.g., xeyes), you can find the full path by examining the PATH environment variable (e.g., echo $PATH). The first path containing the executable name should be selected for execution. Concatenate the selected path (e.g., /bin) with ‘/’ and the executable name (e.g., xeyes) to form the full path name (e.g., /usr/X11R6/bin/xeyes).

The memory of the argument list should be allocated before the call. By UNIX convention, the zero-th element contains the name of the executable; the first element contains the first argument, and so on. The last element should be a NULL pointer.

During the execvp system call, the kernel loads the new executable image, overwrites the current process, and starts execution. If successful, the execvp call does not return.

Processes vs. Threads

Compared to processes, a thread can be created by replacing fork system calls with one of the thread library calls (e.g., pthread_create). Instead of creating a new address space, a newly created thread will share the address space of the current process and all associated resources (e.g., opened files).

Therefore, threads within a process can share process states more efficiently, at the cost of potential state corruptions by a misbehaving thread. The cost of context switching among threads requires saving fewer states than that of processes. Sharing states among processes is more cumbersome; however, one process is significantly less likely to corrupt the states of other processes.

3

2

1

Branch Table

Trusted Code

Set Kernel Mode

Kernel/Supervisor Mode

User Mode

trap

load R3, b

3046

IR

PC

3050

3046

…

…

Memory Addresses

load R4, c

load R3, b

