UCLA CS111
Operating Systems (Spring 2003, Section 1)

CPU Scheduling
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Goals for a Scheduler

A scheduler handles the removal of the running process from the CPU and the selection of the next running process, based on a particular strategy. A scheduler aims to accomplish the following goals:

1. Minimize the wait time, or the time for a process to receive its first unit of service from the processor. (Since the definition of response time has different definitions across textbooks, I use wait time throughout my course for consistency.)

2. Maximize the throughput, or the number of completed jobs per unit time. There are two parts to maximizing throughput:

a. Minimize overhead (e.g., context switching).

b. Efficient use of system resources (not only CPU, but disk, memory, etc.).

3. Achieve fairness, so the CPU is shared among users in a fair way.

Note that there are tensions among those three goals.

Assumptions

Scheduling is a well-studied area. In fact, back in the early 70s, scheduling was a big area of research. Common studies make the following assumptions:

1. Each user runs one process.

2. Each process is single threaded.

3. Processes are independent.

Clearly, these assumptions are not realistic. However, they simplify the problem so it can be solved.

Scheduling Policies
First In, First Out (FIFO)

The FIFO strategy assigns the processor in the order of processor requests. The FIFO policy is nonpreemptive in the sense that a process keeps running on a CPU until it is blocked or terminated. The FIFO strategy is also known as the FCFS (first come first serve) in Nutt’s textbook.

Please do go over Nutt’s examples in the book for the actual computation of the wait time and the turnaround time (the total time to complete a process’s execution after it has been made ready to execute).

The main advantage of the FIFO policy is simplicity. The FIFO policy also provides a certain degree of fairness, since requests are served in order. However, the main disadvantage is that short jobs can get stuck behind long running jobs.

Round Robin (RR)

To overcome the FIFO problem, the round-robin policy releases the CPU from long-running jobs periodically (based on timer interrupts), so short jobs also can get a fair share of CPU. Therefore, round robin is a preemptive policy. Just about every real operating system does something of this flavor.

The interval between timer interrupts is referred to as the time slice. After each time slice, the scheduler moves the process to the back of the queue. Choosing the size of time slice is tricky. If the time slice is too big, the wait time suffers. If the size is too small, throughput suffers, since the CPU spends a lot of time doing context switching.

In practice, we need to balance between these two scenarios. Typically, a modern operating system spends 1% overhead doing context switching.

Comparison Between FIFO and Round Robin

Assuming zero-cost time slice, is RR always better than FIFO? Not really. Suppose we have 10 jobs, each takes 100 seconds of CPU time, and the time slice for the round robin is 1 second. Let us look at job completion times.

Job Completion Times

	Job #
	FIFO
	Round robin

	1
	100
	991

	2
	200
	992

	…
	…
	…

	9
	900
	999

	10
	1000
	1000

Although both round robin and FIFO finish at the same time, the average turnaround time is much worse under round robin than under FIFO. Therefore, round robin is better for short jobs, but it is poor for jobs that are the same length.

STCF/SRTCF

STCF (shortest time to completion first) runs whatever job has the least demand on CPU. The STCF is also known as SJN (shortest job next) or SJF (shortest job first).

SRTCF (shortest remaining time to completion first) is just a preemptive version of STCF. If a job arrives that has a shorter time to completion than the remaining time on the current job, SRTCF immediately preempts the CPU for the new job.

The idea is to get short jobs out of the system. We can see a big improvement on turnaround times for short jobs, and a relatively small degradation of turnaround times for larger jobs, resulting in a better average turnaround time. In fact, STCF and SRTCF are the best you can possibly do at minimizing the turnaround time.

Comparison of SRTCF with FIFO and Round Robin

If all jobs are the same length, SRTCF becomes the same as FIFO. In other words, in that instance, FIFO is as good as you can do. Under SRTCF if jobs have varying length, short jobs do not get stuck behind long jobs.

The following is an example that illustrates the benefit of SRTCF. Suppose we have three jobs: A, B, and C. A and B are both CPU bound, and each runs for a week. Job C consists of an I/O bound loop, which consumes 1 msec of CPU and 10 msec of disk I/O (assuming complete overlapping of I/O and CPU processing). By itself, C uses 90% of the disk. By itself, A or B could use 100% of the CPU. What happens if we try to share the system among A, B, and C?

Under FIFO, A and B will take two weeks before getting to job C.

Under round robin with 100 msec of time slice, we can only get 5% of disk utilization, since job C uses disk for 10 msec of every 201 msec.

However, if we reduce the time slice down to 1 msec, we can get 90% disk utilization again—almost as good as job C running alone. Also, we have not slowed down A or B by all that much; they will get 90% of the CPU.

Under SRTCF, job C is run as soon as possible, then A or B is run to completion.

Overall, the advantage of the SRTCF is that it achieves the optimal average turnaround time. However, SRTCF can lead to the possibility of starvation, where lots of short jobs can keep long jobs from making progress. In addition to unfair treatment of long jobs, SRTCF depends on predicting the CPU running time for various jobs.

One way to predict the length of a job is by asking the user. If a user cheats (if a job takes longer than specified), the job is killed. However, the user may not know any better. SRTCF is generally used as the optimal case for comparing various scheduling algorithms.

Multilevel Feedback Queues

One way to predict the future is from the existing behavior of processes. However, since a process may switch between CPU-bound and I/O-bound behaviors, a scheduling policy ideally can adapt changing behaviors based on recent behaviors.

Multilevel feedback queues use multiple queues, each with a different priority. An operating system does a round robin at each priority level—run highest priority jobs first; once those finish, run next highest priority, etc. A round-robin time slice increases exponentially at lower priorities.

	
	Priority
	Time slice

	Queue 1
	1
	1

	Queue 2
	2
	2

	Queue 3
	3
	4

	Queue 4
	4
	8

Multilevel feedback queues adjust each job’s priority as follows:

1. Job starts in the highest priority queue.

2. If time slice expires, drop the job by one level.

3. If time slice does not expire, push the job up by one level.

The resulting algorithm approximates SRTCF: CPU-bound jobs drop like a rock, while short-running I/O-bound jobs stay near the top. The multilevel feedback queues are still unfair for long running jobs. Some programs may sporadically generate meaningless I/Os just to keep the job’s priority high.

Multilevel feedback queues are poor in handling situations like having one long-running job and 100 short-running ones. UNIX tries to age, or increase the priority of, long-running jobs if they are not serviced for a period of time. However, the rate of aging jobs is difficult to determine. Also, for an overloaded system where no job can be serviced, every job increases in priority, and interactive short jobs begin to suffer as well.

Lottery Scheduling

Lottery scheduling is another adaptive scheduling approach that addresses the fairness problem of multilevel feedback queues. The lottery scheduler gives every job some number of lottery tickets, and on each time slice, it randomly picks a winning ticket. On average, the CPU time allotted is proportional to the number of tickets given to each job.

To approximate SRTCF, short jobs get more tickets, and long running jobs get fewer. To avoid starvation, every job gets at least one ticket (so everyone makes progress).

Lottery scheduling behaves gracefully as loads changes. Adding or deleting a job affects all jobs proportionally, independent of how many tickets each job has. For example, if short jobs get 10 tickets, and long jobs get 1 each, for different scenarios listed below, we can get meaningful behavior for all.

	# short jobs/ # long jobs
	% of CPU for each short job
	% of CPU for each long job

	1/1
	91%
	9%

	0/2
	N/A
	50%

	2/0
	50%
	N/A

	10/1
	10%
	1%

	1/10
	50%
	5%

C

A

C

I/O

I/O

CPU

CPU

B

A

C

B

A (100 msec)

A

B

A

C (1 msec)

B

B

A

B

A

B

A

A

C

B

A

I/O

CPU

