UCLA CS111
Operating Systems (Spring 2003, Section 1)

Cooperating Threads
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Definitions

Independent threads have the following characteristics:

1. No states shared with other threads

2. Deterministic computation (output depends on input)

3. Reproducible (output does not depend on the order and timing of other threads)

4. Scheduling order doesn’t matter

Cooperating threads have the following characteristics:

1. Shared states

2. Nondeterministic

3. Nonreproducible

For example, if you have two threads sharing the same display, they are likely to produce unpredictable results.

Thread A

Thread B

printf(“ABC”);

printf(“123”);

You may get “A12BC3” as an outcome.

So, Why Allow Cooperating Threads?

With additional mechanisms for coordination, threads can provide three major benefits:

1. Shared resources: multiple threads can share a single processor.

2. Speedup: an I/O-intensive thread can overlap the computation with a CPU-intensive thread.

3. Modularity: a word processor program can be decomposed into threads for particular functions, such as spelling check and grammar check.

Some Simple Concurrent Programs

Most of the time, threads are working on separate data, so the scheduling order doesn’t matter:

Thread A

Thread B

x = 1;

y = 2;

However, if we have the following code, the final values of x and y are not as obvious:

Thread A

Thread B

x = 1;

y = 2;

x = y + 1;

y = y * 2;

First, what are the underlying indivisible operations?

Atomic Operations

An atomic operation always runs to completion, or it does not happen at all. The operation is indivisible.

On most machines, memory references and assignment (load and store) of words are atomic.

Many instructions are not atomic. For example, on most 32-bit architectures, double precision floating point store is not atomic; it involves two separate memory operations.

An Example of A Larger Concurrent Program

Given that assignments are atomic, can we tell the outcome for the following program?

Thread A

Thread B

j = 0;

j = 0;

while (j < 10) {
while (j > -10) {

j = j + 1;

j = j – 1;

}

}

Print A wins

Print B wins

Who wins? Is it guaranteed that someone wins? Can the computation go on forever?

Race conditions are situations where two or more threads are reading or writing some shared data and the final result depends on who runs precisely when.

