UCLA CS111
Operating Systems (Spring 2003, Section 1)

Synchronization
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Motivation Example: Too Much Milk

Suppose that we have two invisible roommates sharing a refrigerator. Each roommate acts as a single thread of control according to the following time line.

	Time
	Thread A
	Thread B

	3:00
	Look into refrigerator: Out of milk
	

	3:05
	Leave for store
	

	3:10
	Arrive store
	Look into refrigerator: out of milk

	3:15
	Buy milk
	Leave for store

	3:20
	Arrive home: put milk away
	Arrive store

	3:25
	
	Buy milk

	3:30
	
	Arrive home: Oh no….

The example demonstrates that two threads can potentially get into each other’s way without proper coordination.

Definitions

The idea of synchronization is to use atomic operations to ensure cooperation between threads.

Mutual exclusion is a way to ensure one thread does a particular thing at a time, excluding the other threads.

Critical section is a piece of code that only one thread can execute at a time. Only one thread at a time will get into the section of code.

The use of a lock prevents someone from doing something. Therefore, a thread should lock before entering critical section, before accessing shared data. A thread should unlock when leaving the critical section, when done accessing shared data. A thread should wait if the critical section is locked. The key idea of synchronization involves waiting.

Too Much Milk: Solution 1

The solution to the too much milk problem includes two properties: (1) Only one person buys milk, and (2) someone should buy the milk if needed. The basic idea of solution 1 involve three steps:

1. Leave a note (kind of like “lock”)

2. Remove note (kind of like “unlock”)

3. Don’t buy if note (wait)

Solution #1:

if (no milk) {

if (no note) {

// Leave note;

// Buy milk;

// Remove note;

}

}

The solution does not work, because threads can get context switched after checking milk and note, but before buying milk. (Recall that two roommates are invisible. Therefore, Roommates A and B can check the refrigerator within the same time frame without knowing the presence of the other person.)

	Time
	Thread A
	Thread B

	1
	if (no milk) {
	

	2
	
	if (no milk) {

	3
	
	 if (no note) {

	4
	 if (no note) {
	

	5
	 // Leave note
	

	6
	
	 // Leave note

	7
	
	 // Buy milk

	8
	 // Buy milk
	

Too Much Milk Solution 2

One problem with solution 1 is that notes are posted too late. What if both roommates begin with leaving their own notes?

Thread A

Thread B

// Leave note A

// Leave note B

if (no note B) {

if (no note A) {

if (no milk) {

if (no milk) {

// Buy milk

// Buy milk

}

}

}

}

// Remove note A

// Remove note B

This solution turns out not to be perfect either, since it is possible for neither thread to buy milk.

	Time
	Thread A
	Thread B

	1
	// Leave note A
	

	2
	
	// Leave note B

	3
	 if (no note B) {
	

	4
	
	 if (no note A) {

	5
	
	// Remove note B

	6
	// Remove note A
	

The scenario demonstrates the condition for starvation, where a thread waits forever.

Too Much Milk Solution 3

Thread A

Thread B

// Leave note A

// Leave note B

while (note B);

if (no note A) {

if (no milk) {

if (no milk) {

// Buy milk

// Buy milk

}

}

// Remove note A

}

// Remove note B

To verify the solution, we need to iterate cases where Thread A challenges Thread B’s note, and cases where Thread B challenges Thread A’s note.

If each Thread A and B has successfully posted its own note, Thread A will wait until Thread B gives up.

	Time
	Thread A
	Thread B

	1
	
	// Leave note B

	2
	// Leave note A
	

	3
	
	if (no note A) {

	4
	while (note B);
	

	5
	
	// Remove note B

	6
	if (no milk) {
	

	7
	 // Buy milk
	

	8
	// Remove note A
	

	Time
	Thread A
	Thread B

	1
	// Leave note A
	

	2
	
	// Leave note B

	3
	while (note B);
	

	4
	
	if (no note A) {

	5
	
	// Remove note B

	6
	if (no milk) {
	

	7
	 // Buy milk
	

	8
	// Remove note A
	

If Thread B has successfully posted its note and checked that Thread A has not posted its note, Thread B can go ahead and buy the milk, since Thread A will be waiting for Thread B to finish.

	Time
	Thread A
	Thread B

	1
	
	// Leave note B

	2
	
	if (no note A) {

	3
	// Leave note A
	 if (no milk) {

	4
	while (note B);
	 // Buy milk

	5
	
	// Remove note B

	6
	if (no milk) {
	

	7
	// Remove note A
	

If Thread A has successfully posted its note and checked that Thread B has not posted its note, Thread A can go ahead and buy the milk, since Thread B will quit on seeing Thread A’s note.

	Time
	Thread A
	Thread B

	1
	// Leave note A
	

	2
	while (note B);
	

	3
	
	// Leave note B

	4
	if (no milk) {
	

	5
	
	if (no note A) {

	6
	 // Buy milk
	

	7
	
	// Remove note B

	8
	// Remove note A
	

Lessons Learned

Although it works, solution 3 is not totally satisfactory for three reasons:

1. The solution is too complex even for this simple example. It is difficult to enumerate all cases to verify the correctness.

2. Thread A’s code is different from Thread B’s. With N threads, the code development is too difficult.

3. While Thread A is waiting, it is consuming CPU time (busy-waiting).

The solution can be more elegant with higher-level primitives to provide atomic operations. For example, we can design locks to construct atomic building blocks. If multiple threads are waiting for the lock, and both perceive the lock as free, only one can grab the lock.

lock(acquire();

if (no milk) {

// Buy milk;

}

lock(release();

