UCLA CS111
Operating Systems (Spring 2003, Section 1)

Implementing Mutual Exclusion
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

The Big Picture

The “too-much-milk” example shows that implementing a concurrent program directly with load and store instructions would be tricky and error-prone. Instead, a programmer wants to use higher-level operations, such as locks.

	
	Concurrent programs

	High-level atomic operations
	Locks, semaphores, monitors, send and receive

	Low-level atomic operations (hardware)
	Load/store, interrupt disable, test_and_set

Ways of Implementing Locks

All implementations require some level of hardware support

Atomic Memory Load and Store

The too-much-milk solutions are based on low-level atomic memory operations.

Hardware Locks

Intel 432 was a slow machine due to the hardware-level locks.

Disable Interrupts (for Uniprocessors)

On a uniprocessor, an operation is atomic as long as a context switch does not occur in the middle of the operation. However, disabling interrupts for a long time can be problematic. For example, although the following primitives are simple, they are flawed for a number of reasons.

Lock::Acquire() { disable interrupts; }

Lock::Release() { enable interrupts; }

1. A user-level program may not re-enable interrupts and passes the control back to the kernel.

2. Real-time systems need to have guarantees on the duration of interrupts. A critical section may be arbitrarily long.

3. This simple solution may not work for more complex primitives, such as semaphores or conditional variables.

Implementing Locks by Disabling Interrupts (for Uniprocessors)

The following class demonstrates how a lock can be built on the top of disabling interrupts.

class Lock {

int value = FREE;

}

Lock::Acquire() {

// Disable interrupts;

while (value != FREE) {

// Enable interrupts

// Disable interrupts

}

value = BUSY;

// Enable interrupts;

}

Lock::Release() {

// Disable interrupts

value = FREE;

// Enable interrupts

}

Note that the status of the lock is checked while interrupts are disabled. Also, inside the waiting loop, interrupts are enabled first so that someone else may have a chance to release the lock. However, as soon as the lock regains the control inside the loop, interrupts are disabled again before checking the status of the lock. If the lock is free, the value of the lock is set to BUSY, and interrupts are re-enabled.

Although this approach works for uniprocessors, on a multiprocessor, interrupt disable does not provide atomicity because stopping context switching from occurring on one CPU does not stop other CPUs from entering the critical section.

The test_and_set Operation

Unlike disabling interrupts, test_and_set works on both uniprocessors and multiprocessors. The test_and_set operation atomically reads a memory location, sets it to 1, and returns the old value of the memory location.

value = 0;

Lock::Acquire() {

while (test_and_set(value) == 1);

}

Lock::Release() {

value = 0;

}

Busy-Waiting

The problem with both of the existing interrupt disable and test_and_set solutions is busy-waiting, or consumption of CPU cycles while a thread is waiting for a lock. Busy- waiting is very inefficient.

Busy-waiting can be avoided with a waiting queue.

Locks Using Interrupt Disable, Without Busy-Waiting

Lock::Acquire() {

// Disable interrupts;

if (value == BUSY) {

// Put the thread on the waiting queue

// Go to sleep

} else {

value = BUSY;

}

// Enable interrupts;

}

Lock::Release() {

// Disable interrupts;

if (waiting queue is not empty) {

// Take a waiting thread off

// Put the thread on ready queue

} else {

value = FREE;

}

// Enable interrupts;

}

The key to understanding this piece of code is that a pair of interrupt disable and enable operations occurs across a context switch.

Thread A

Thread B

Disable interrupts

Sleep

Sleep return

Enable interrupts

Disable interrupts

Sleep

Sleep return

Enable interrupts

Locks Using test_and_set, Without Minimal Busy-Waiting

While it is impossible to use test_and_set to implement locks without busy-waiting, it is possible to minimize the busy-waiting to the portion of the code that checks the lock value. If the lock is busy, give up the CPU.

Lock::Acquire() {

while (test_and_set(guard));

if (value != FREE) {

// Put the thread on the waiting queue

// Go to sleep

} else {

value = BUSY;

}

guard = 0;

}

Lock::Release() {

while (test_and_set(guard));

if (anyone on wait queue) {

// Take a thread off the wait queue

// Put it on the ready queue

} else {

value = FREE;

}

guard = 0;

}

Context switch

Context switch

