UCLA CS111
Operating Systems (Spring 2003, Section 1)

More on Semaphores—the Pigeon Network
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

The Pigeon Network Scenario

Pigeons
 are good message carriers: they are reasonably reliable and relatively fast for rural areas with less developed means of transportation. Let’s make the story more interesting by adding two small towns—Mars and Venus. The town Mars has all male pigeons, and town Venus has all female pigeons. Each town delivers messages to the other by sending a pigeon through the shared flying path and waiting for the same pigeon to fly back as an acknowledgement. From years of experience, town people have observed that the reliability drops significantly whenever both towns send messages simultaneously, because pigeons of opposite genders pose serious distractions. Your goal is to develop a solution that is both efficient and fair.

Developing Solutions

Perhaps the easiest way to solve a problem is to map the problem to another problem that is already solved. In the synchronization arena, there is a fairly small reservoir of standard synchronization problems: Bounded buffer problems are often mapped to the producer-consumer problem; fairness policy-related problems are often the reader-writer problem in disguise; and multiple resource acquisitions are variants of the dining philosopher problems. In this case, the solution of the pigeon network falls into the reader-writer category.

Of course, there are times in your life (like CS111 exams) where you need to develop your own solutions. As a first-time instructor with finite wisdom, I can only offer you my approach of writing concurrent programs as an example, rather than a guideline.

My first step toward writing a concurrent program (or anything) is to visualize the problem via drawings. Visualization helps me to identify the shared resources and the scope of sharing for the shared resources. In this case, the flying path is one shared resource. After identifying the shared resources, the next step is to associate each shared resource with a lock with the corresponding scope.

The following is probably the simplest implementation:

semaphore flyingPath = 1;

Conceptually, each town will raise a giant flag as a signal for both towns not to send any pigeons during any session of pigeon transmission.

As you can see, this solution is extremely simple and fair, but not efficient because only one pigeon can fly at a time. Since Venusian pigeons love to fly in groups, the Venus town people decide to add a little counter to keep track of multiple Venusian pigeons in transit. Notice that this little counter is a shared resource, and its scope is within the Venusian pigeons. Therefore, we need place a lock around the counter. (Note that multiple shared resources can share a lock if they have the same scope of sharing. For example, if needed, we can keep track of the total number of Venusian messages served within the VenusianLock as well.)

semaphore flyingPath = 1;

semaphore VenusianLock = 1;

int VenusianInTransit = 0;

The strategy is to raise the flag on the Venus side, as long as there are still Venusian pigeons in transit. The if statements determine the triggering conditions to raise and lower and the flag. The modified solution enables multiple Venusian pigeons to transmit messages efficiently—however, at the cost of fairness. Now Martian pigeons need to wait longer to get a chance to visit the wonderland.

With the sight of frequent visiting Venusian pigeons and rising testosterone, Martians start to feel like flying in groups. Again, we need to introduce a counter, shared among the Martian pigeons, along with a lock to protect the integrity of the counter:

semaphore flyingPath = 1;

semaphore VenusianLock = 1;
 semaphore MartianLock = 1;

int VenusianInTransit = 0; int MartianInTransit = 0;

Now, both Venusian and Martian pigeons can transmit multiple messages efficiently. From the equal selfishness point, the algorithm is fair, except that each side can completely block off the other side indefinitely. Fortunately, pigeons do sleep (unlike CS111 students), and daily cycles will stop the resource hogging. As an exercise, implement a mechanism to reset the program periodically based on the total number of serviced messages (without rebooting, that is).

It Takes Two to Tangle: Proving the Correctness of Your Programs

It’s easy to cook up a program, but how do you prove the correctness? To prove correctness, you need to show that your program fulfills at least the safety and liveness requirements. (In many scenarios, fairness is an additional requirement.)

By safety, you need to show that, at most, one process is in the critical section at any time. You need to demonstrate that all the preconditions are met at the entrance of a critical section (e.g., acquisitions of certain locks and obtaining certain states for variables). You also need to make sure that all the shared resources are protected and that state transitions are atomic.

By liveness, you need to show that if more than one process is interested in executing the critical section, some processes will eventually do so. In most cases, it is sufficient to show that your program is deadlock free, by using the techniques listed in the textbook.

To show the optional requirement of fairness, you need to further demonstrate that for every process that wants to execute the critical section, it will eventually do so. In other words, you need to show that your program does not lead to any forms of starvation.

/* a Venusian pigeon */

P(VenusianLock);

 VenusianInTransit++;

 if (VenusianInTransit

 == 1) {

 P(flyingPath);

 }

V(VenusianLock);

<send the message>

P(VenusianLock);

 VenusianInTransit--;

 if (VenusianInTransit

	== 0) {

 V(flyingPath);

 }

V(VenusianLock);

/* a Martian pigeon */

P(MartianLock);

 MartianInTransit++

 if (MartianInTransit

 	== 1) {

 P(flyingPath);

 }

V(MartianLock);

<send the message>

P(MartianLock);

 MartianInTransit--;

 if (MartianInTransit

 == 0) {

 V(flyingPath);

 }

V(MartianLock);

/* a Martian pigeon */

P(flyingPath)

<send the message>

V(flyingPath)

/* a Venusian pigeon */

P(VenusianLock);

 VenusianInTransit++;

 if (VenusianInTransit

 == 1) {

 P(flyingPath);

 }

V(VenusianLock);

<send the message>

P(VenusianLock);

 VenusianInTransit--;

 If (VenusianInTransit

	== 0) {

 V(flyingPath);

 }

V(VenusianLock);

/* a Venusian pigeon */

P(flyingPath);

<send the message>

V(flyingPath);

/* a Martian pigeon */

P(flyingPath);

<send the message>

V(flyingPath);

� Scientists demonstrated a pigeon’s ability to sense magnetic field by putting an on-off switching device on the top of a pigeon’s head. It’s amusing to see pigeons turning their heads synchronously. (It’s like you really believe in whatever I say now.)

