UCLA CS111
Operating Systems (Spring 2003, Section 1)

Concurrency Conclusion
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

With the assistance of threads and synchronization tools, operating systems can provide cleaner and simpler abstraction to application programmers.

	Programming abstraction
	Sequential execution, each with its own CPU

Semaphores and monitors

	Physical hardware
	Single CPU

Interrupts

test_and_set

Every major operating system built since 1985 (Mach, OS/2, Windows NT, Solaris) has provided threads as they provide a simple model of constructing concurrent programs, from Web servers and databases, to embedded systems. However, threads should be used with caution.

A Cautionary Tale

Initially, Microsoft OS/2 was a spectacular failure (IBM re-wrote the whole operating system from scratch). Since threads are obviously a good idea, OS/2 used threads for everything—Window systems, communication between program, and so on.

However, since the system created lots of threads, but few of them were ready to run at any time, most threads were waiting around for a user to type in a window, or for a network packet to arrive.

Given that each thread needed to store its own execution stack, whether it is running or waiting, the resulting operating system required $200 worth of extra memory to store those threads. So, the extra $200 gave users the ability to keep working while printing…

The moral of the story is that threads are cheap, but they are not free.

