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Outline 

•  Parallelism and synchronization 
•  Critical sections and atomic instructions 
•  Using atomic instructions to build higher level 

locks 
•  Asynchronous completion 
•  Lock contention 
•  Synchronization in real operating systems 
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Benefits of Parallelism 
•  Improved throughput 

– Blocking of one activity does not stop others 

•  Improved modularity 
– Separating compound activities into simpler pieces 

•  Improved robustness 
– The failure of one thread does not stop others 

•  A better fit to modern paradigms 
– Cloud computing, web based services 
– Our universe is cooperating parallel processes 
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The Problem With Parallelism 
•  Making use of parallelism implies concurrency 

– Multiple actions happening at the same time 
– Or perhaps appearing to do so 

•  True parallelism is incomprehensible 
– Or nearly so 
– Few designers and programmers can get it right 
– Without help . . . 

•  Pseudo-parallelism may be good enough 
–  Identify and serialize key points of interaction 
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Why Are There Problems? 
•  Sequential program execution is easy 

–  First instruction one, then instruction two, ... 
–  Execution order is obvious and deterministic 

•  Independent parallel programs are easy 
–  If the parallel streams do not interact in any way 
–  Who cares what gets done in what order? 

•  Cooperating parallel programs are hard 
–  If the two execution streams are not synchronized 

•  Results depend on the order of instruction execution 
•  Parallelism makes execution order non-deterministic 
•  Understanding possible outcomes of the computation 

becomes combinatorially intractable 
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Solving the Parallelism Problem 
•  There are actually two interdependent 

problems 
– Critical section serialization 
– Notification of asynchronous completion 

•  They are often discussed as a single problem 
– Many mechanisms simultaneously solve both 
– Solution to either requires solution to the other 

•  But they can be understood and solved 
separately 
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The Critical Section Problem 
•  A critical section is a resource that is shared by 

multiple threads 
– By multiple concurrent threads, processes or CPUs 
– By interrupted code and interrupt handler 

•  Use of the resource changes its state 
– Contents, properties, relation to other resources 

•  Correctness depends on execution order 
– When scheduler runs/preempts which threads 
– Relative timing of asynchronous/independent 

events 
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The Asynchronous Completion 
Problem 

•  Parallel activities move at different speeds 
•  One activity may need to wait for another to complete 
•  The asynchronous completion problem is how to 

perform such waits without killing performance 
–  Without wasteful spins/busy-waits 

•  Examples of asynchronous completions 
–  Waiting for a held lock to be released 
–  Waiting for an I/O operation to complete 
–  Waiting for a response to a network request 
–  Delaying execution for a fixed period of real time 



Lecture 8 
Page 9 

CS 111 
Fall 2015  

Critical Sections 

•  What is a critical section? 
•  Functionality whose proper use in parallel 

programs is critical to correct execution 
•  If you do things in different orders, you get 

different results 
•  A possible location for undesirable non-

determinism 
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Critical Sections and  
Re-entrant Code 

•  Consider a simple recursive routine: 
int factorial(x) { tmp =  

 factorial( x-1 ); return x*tmp} 

•  Consider a possibly multi-threaded routine: 
void debit(amt) {tmp = bal-amt;  

 if (tmp >=0) bal = tmp)} 

•  Neither would work if tmp was shared/static 
–  Must be dynamic, each invocation has its own copy 
–  This is not a problem with read-only information 

•  What if a variable has to be writeable? 
–  Writable variables should be dynamic or shared 

•  And proper sharing often involves critical sections 



Lecture 8 
Page 11 

CS 111 
Fall 2015  

Basic Approach to Critical Sections 
•  Serialize access 

– Only allow one thread to use it at a time 
– Using some method like locking 

•  Won’t that limit parallelism? 
– Yes, but . . . 

•  If true interactions are rare, and critical 
sections well defined, most code still parallel 

•  If there are actual frequent interactions, there 
isn’t any real parallelism possible 
– Assuming you demand correct results 
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Recognizing Critical Sections 

•  Generally includes updates to object state 
–  May be updates to a single object 
–  May be related updates to multiple objects 

•  Generally involves multi-step operations 
–  Object state inconsistent until operation finishes 

•  This period may be brief or extended 

–  Preemption leaves object in compromised state 

•  Correct operation requires mutual exclusion 
–  Only one thread at a time has access to object(s) 
–  Client 1 completes its operation before client 2 starts 
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Critical Section Example 1:  
Updating a File 

Process 1 Process 2 
remove(“database”); 
fd = create(“database”); 
write(fd,newdata,length); 
close(fd); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

remove(“database”); 
fd = create(“database”); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

write(fd,newdata,length); 
close(fd); 

−  This result could not occur with any sequential execution 
•  Process 2 reads an empty database 
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Critical Section Example 2: 
Re-entrant Signals 

First signal Second signal 
load r1,numsigs // = 0 
add r1,=1  // = 1 
store r1,numsigs // =1 

load r1,numsigs // = 0 
add r1,=1  // = 1 
store r1,numsigs // =1 

load r1,numsigs // = 0 

numsigs 

add r1,=1  // = 1 
load r1,numsigs // = 0 

r1 

add r1,=1  // = 1 
store r1,numsigs // =1 

store r1,numsigs // =1 

The signal handlers 
share numsigs and 

r1 . . . 

So numsigs 
is 1, instead of 2 
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Critical Section Example 3:   
Multithreaded Banking Code 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2              // = 150 
store r1, balance  // = 150 

Thread 1 Thread 2 
load r1, balance    // = 100 
load r2, amount2 // = 25  
sub r1, r2               // = 75 
store r1, balance   // = 75 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2            // = 150 

100 balance 

r1 

r2 

50 amount1 25 amount2 

100 150 

load r1, balance    // = 100 

100 

load r2, amount2 // = 25  

25 
75 

sub r1, r2              // = 75 
store r1, balance   // = 75 

75 

store r1, balance  // = 150 

50 

CONTEXT SWITCH!!! 

CONTEXT SWITCH!!! 

150 

The $25 debit was lost!!! 
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Are There Real Critical Sections  
in Operating Systems? 

•  Yes! 
•  Shared data for multiple concurrent threads 

–  Process state variables 
–  Resource pools 
–  Device driver state 

•  Logical parallelism 
–  Created by preemptive scheduling 
–  Asynchronous interrupts 

•  Physical parallelism 
–  Shared memory, symmetric multi-processors  
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These Kinds of Interleavings  
Seem Pretty Unlikely 

•  To cause problems, things have to happen 
exactly wrong 

•  Indeed, that’s true 
•  But you’re executing a billion instructions per 

second 
•  So even very low probability events can 

happen with frightening frequency 
•  Often, one problem blows up everything that 

follows 
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Can’t We Solve the Problem By 
Disabling Interrupts? 

•  Much of our difficulty is caused by a poorly 
timed interrupt  
– Our code gets part way through, then gets 

interrupted 
– Someone else does something that interferes 
– When we start again, things are messed up 

•  Why not temporarily disable interrupts to solve 
those problems? 
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Problems With Disabling Interrupts 
•  Not an option in user mode 

–  Requires use of privileged instructions 
•  Dangerous if improperly used 

–  Could disable preemptive scheduling, disk I/O, etc. 

•  Delays system response to important interrupts 
–  Received data isn’t processed until interrupt serviced 
–  Device will sit idle until next operation is initiated 

•  Doesn't help with multicore processors 
–  Other processors can access the same memory 

•  Generally harms performance 
–  To deal with rare problems 
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So How Do We Solve This 
Problem? 

•  Avoid shared data whenever possible 
–  No shared data, no critical section 
–  Not always feasible 

•  Eliminate critical sections with atomic instructions 
–  Atomic (uninteruptable) read/modify/write operations 
–  Can be applied to 1-8 contiguous bytes 
–  Simple: increment/decrement, and/or/xor 
–  Complex: test-and-set, exchange, compare-and-swap 
–  What if we need to do more in a critical section? 

•  Use atomic instructions to implement locks  
–  Use the lock operations to protect critical sections 
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Atomic Instructions – Test and Set 

A C description of a machine language 
instruction 

bool TS( char *p) { 
bool rc; 
rc = *p;    /* note the current value   */ 
*p = TRUE;   /* set the value to be TRUE   */ 
return rc;   /* return the value before we set it  */ 

} 

if !TS(flag) { 
 /* We have control of the critical section! */ 

} 
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Atomic Instructions – Compare  
and Swap 

Again, a C description of machine instruction 
bool compare_and_swap( int *p, int old, int new ) { 
if (*p == old) {  /* see if value has been changed  */ 

*p = new;   /* if not, set it to new value   */ 
return( TRUE);  /* tell caller he succeeded   */ 

} else    /* value has been changed   */ 
 return( FALSE);  /* tell caller he failed    */ 

} 

if (compare_and_swap(flag,UNUSED,IN_USE) { 
 /* I got the critical section! */ 

} else { 
 /* I didn’t get it.  */ 

} 
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Solving Problem #3 With  
Compare and Swap 

Again, a C implementation 
int current_balance; 
writecheck( int amount ) { 
int oldbal, newbal; 
do { 

oldbal = current_balance; 
newbal = oldbal - amount; 
if (newbal < 0) return (ERROR); 

} while (!compare_and_swap( &current_balance, oldbal, newbal)) 
... 
} 
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Why Does This Work? 
•  Remember, compare_and_swap() is atomic 
•  First time through, if no concurrency,  

–  oldbal == current_balance 
–  current_balance was changed to newbal by 
compare_and_swap() 

•  If not, 
–  current_balance changed after you read it 
– So compare_and_swap() didn’t change 
current_balance and returned FALSE 

– Loop, read the new value, and try again 
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Will This Really Solve  
the Problem? 

•  If the compare & swap fails, we loop back and 
try again 
–  If there is a conflicting thread isn’t it likely to 

simply fail again? 
•  Only if preempted during a four instruction 

window 
– By someone executing the same critical section 

•  Extremely low probability event 
– We will very seldom go through the loop even 

twice 
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Limitation of Atomic Instructions 

•  They only update a small number of contiguous bytes 
–  Cannot be used to atomically change multiple locations 

•  E.g., insertions in a doubly-linked list 

•  They operate on a single memory bus 
–  Cannot be used to update records on disk 
–  Cannot be used across a network 

•  They are not higher level locking operations 
–  They cannot “wait” until a resource becomes available 
–  You have to program that up yourself 

•  Giving you extra opportunities to screw up 
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Implementing Locks 
•  Create a synchronization object 

–  Associated it with a critical section 
–  Of a size that an atomic instruction can manage 

•  Lock the object to seize the critical section 
–  If critical section is free, lock operation succeeds 
–  If critical section is already in use, lock operation fails 

•  It may fail immediately 
•  It may block until the critical section is free again 

•  Unlock the object to release critical section 
–  Subsequent lock attempts can now succeed 
–  May unblock a sleeping waiter 
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Using Atomic Instructions to 
Implement a Lock 

•  Assuming C implementation of test and set 
bool getlock( lock *lockp) { 
if (TS(lockp) == 0 ) 

return( TRUE); 
else 

return( FALSE); 
} 
void freelock( lock *lockp ) { 
*lockp = 0; 

} 
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Associating the Lock With a 
Critical Section 

•  Assuming same lock as in last example 
while (!getlock(crit_section_lock)) 
{ 

 yield(); /*or spin on lock */ 
} 
critical_section(); /*Access critical section */ 
freelock(crit_section_lock); 

•   Remember, while you’re in the critical section, no 
one else will be able to get the lock 

−  Better not stay there too long 
−  And definitely don’t go into infinite loop  
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Criteria for Correct Locking 

•  How do we know if a locking mechanism is correct? 
•  Four desirable criteria: 

1.  Correct mutual exclusion 
-  Only one thread at a time has access to critical section 

2.  Progress 
-  If resource is available, and someone wants it, they get it 

3.  Bounded waiting time 
-  No indefinite waits, guaranteed eventual service 

4.  And (ideally) fairness 
-  E.g. FIFO 



Lecture 8 
Page 31 

CS 111 
Fall 2015  

Asynchronous Completion 

•  The second big problem with parallelism 
– How to wait for an event that may take a while 
– Without wasteful spins/busy-waits 

•  Examples of asynchronous completions 
– Waiting for a held lock to be released 
– Waiting for an I/O operation to complete 
– Waiting for a response to a network request 
– Delaying execution for a fixed period of time 
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Using Spin Waits to Solve the 
Asynchronous Completion Problem 
•  Thread A needs something from thread B 

– Like the result of a computation 

•  Thread B isn’t done yet 
•  Thread A stays in a busy loop waiting 
•  Sooner or later thread B completes  
•  Thread A exits the loop and makes use of B’s 

result 
•  Definitely provides correct behavior, but . . . 
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Well, Why Not? 
•  Waiting serves no purpose for the waiting 

thread 
– “Waiting” is not a “useful computation” 

•  Spin waits reduce system throughput 
– Spinning consumes CPU cycles 
– These cycles can’t be used by other threads 
–  It would be better for waiting thread to “yield” 

•  They are actually counter-productive 
– Delays the thread that will post the completion 
– Memory traffic slows I/O and other processors 
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Another Solution  
•  Completion blocks 
•  Create a synchronization object 

– Associate that object with a resource or request 

•  Requester blocks awaiting event on that object 
– Yield the CPU until awaited event happens 

•  Upon completion, the event is “posted” 
– Thread that notices/causes event posts the object 

•  Posting event to object unblocks the waiter 
– Requester is dispatched, and processes the event 
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Blocking and Unblocking 
•  Exactly as discussed in scheduling lecture 
•  Blocking 

– Remove specified process from the “ready” queue 
– Yield the CPU (let scheduler run someone else) 

•  Unblocking 
– Return specified process to the “ready” queue 
–  Inform scheduler of wakeup (possible preemption) 

•  Only trick is arranging to be unblocked 
– Because it is so embarrassing to sleep forever 
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Unblocking and Synchronization 
Objects 

•  Easy if only one thread is blocked on the object 
•  If multiple blocked threads, who should we unblock? 

–  Everyone who is blocked? 
–  One waiter, chosen at random? 
–  The next thread in line on a FIFO queue? 

•  Depends on the resource 
–  Can multiple threads use it concurrently? 
–  If not, awaking multiple threads is wasteful 

•  Depends on policy 
–  Should scheduling priority be used? 
–  Consider possibility of starvation 
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A Possible Problem 

•  The sleep/wakeup race condition 

void sleep( eventp *e ) { 
while(e->posted == FALSE) { 

add_to_queue( &e->queue, 
myproc ); 
myproc->runstate |= BLOCKED; 
yield(); 

} 
} 

void wakeup( eventp *e) { 
      struct proce *p; 

      e->posted = TRUE; 
      p = get_from_queue(&e-> 
queue); 
      if (p) { 

      p->runstate &= ~BLOCKED; 
      resched(); 

      }  /* if !p, nobody’s 
waiting */ 
} 

Consider this sleep code: And this wakeup code: 

What’s the problem with this? 



Lecture 8 
Page 38 

CS 111 
Fall 2015  

A Sleep/Wakeup Race 

•  Let’s say thread B is using a resource and 
thread A needs to get it 

•  So thread A will call sleep() 
•  Meanwhile, thread B finishes using the 

resource 
– So thread B will call wakeup() 

•  No other threads are waiting for the resource  
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The Race At Work 
void sleep( eventp *e ) { 

while(e->posted == FALSE) { 

void wakeup( eventp *e) { 
struct proce *p; 

e->posted = TRUE; 
p = get_from_queue(&e-> queue); 

if (p) { 

 }  /* if !p, nobody’s waiting */ 
} 

Nope, nobody’s in the queue! 

add_to_queue( &e->queue, myproc ); 

myproc->runsate |= BLOCKED; 
yield(); 

  } 
   } 

Yep, somebody’s locked it! 

Thread A Thread B 

The effect?  
Thread A is sleeping But there’s no one to 

wake him up 

CONTEXT SWITCH! 

CONTEXT SWITCH! 
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Solving the Problem 

•  There is clearly a critical section in sleep() 
– Starting before we test the posted flag 
– Ending after we put ourselves on the notify list 

•  During this section, we need to prevent 
– Wakeups of the event 
– Other people waiting on the event 

•  This is a mutual-exclusion problem 
– Fortunately, we already know how to solve those 
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Lock Contention 
•  The riddle of parallel multi-tasking: 

–  If one task is blocked, CPU runs another 
– But concurrent use of shared resources is difficult 
– Critical sections serialize tasks, eliminating 

parallelism 
•  What if everyone needs to share one resource? 

– One process gets the resource 
– Other processes get in line behind him 
– Parallelism is eliminated;  B runs after A finishes 
– That resource becomes a bottle-neck 
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What If It Isn’t That Bad? 
•  Say each thread is only somewhat likely to need a 

resource 
•  Consider the following system 

–  Ten processes, each runs once per second 
–  One resource they each use 5% of their time (5ms/sec) 
–  Half of all time slices end with a preemption 

•  Chances of preemption while in critical section 
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%  

•  Chances a 2nd process will need resource 
–  5% in next time slice, 37% in next second 

•  But once this happens, a line forms 
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Resource Convoys 
•  All processes regularly need the resource 

– But now there is a waiting line 
– Nobody can “just use the resource” 
–  Instead, they must get in line 

•  The delay becomes much longer 
– We don’t just wait a few µ-sec until resource is 

free 
– We must wait until everyone in front of us finishes 
– And while we wait, more people get into the line 

•  Delays rise, throughput falls, parallelism 
ceases 

•  Not merely a theoretical transient response 
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Resource Convoy Performance 

throughput  

offered load 

ideal 

convoy 
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Avoiding Contention Problems 
•  Eliminate the critical section entirely 

– Eliminate shared resource, use atomic instructions 
•  Eliminate preemption during critical section 

– By disabling interrupts … not always an option 
•  Reduce lingering time in critical section 

– Minimize amount of code in critical section 
– Reduce likelihood of blocking in critical section 

•  Reduce frequency of critical section entry  
– Reduce use of the serialized resource 
– Spread requests out over more resources 
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An Approach Based on  
Smarter Locking 

•  Reads and writes are not equally common 
– File read/write: reads/writes > 50 
– Directory search/create: reads/writes > 1000 

•  Writers generally need exclusive access 
•  Multiple readers can generally share a resource 
•  Read/write locks 

– Allow many readers to share a resource 
– Only enforce exclusivity when a writer is active 
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Lock Granularity 
•  How much should one lock cover? 

–  One object or many 
–  Important performance and usability implications 

•  Coarse grained - one lock for many objects 
–  Simpler, and more idiot-proof 
–  Results in greater resource contention 

•  Fine grained - one lock per object 
–  Spreading activity over many locks reduces contention 
–  Time/space overhead – more locks, more gets/releases 
–  Error-prone – harder to decide what to lock when 
–  Some operations may require locking multiple objects 

(which creates a potential for deadlock) 
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Lock Granularity: Pools Vs. 
Elements 

•  Consider a pool of objects, each with its own lock 

•  Most operations lock only one buffer within the pool 
•  Some operations require locking the entire pool 

–  Two threads both try to add block A to the cache 
–  Thread 1 looks for block B while thread 2 is deleting it 

•  The pool lock could become a bottle-neck 
–  Minimize its use, reader/writer locking, sub-pools ... 

buffer A buffer B buffer C buffer D buffer E ... 
pool of file system cache buffers 
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Synchronization in Real World 
Operating Systems 

•  How is this kind of synchronization handled in 
typical modern operating systems? 

•  In the kernel itself? 
•  In user-level OS features? 
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Kernel Mode Synchronization 
•  Performance is a major concern 

– Many different types of exclusion are available 
•  Shared/exclusive, interrupt-safe, SMP-safe 
•  Choose type best suited to the resource and situation 

–  Implementations are in machine language 
•  Carefully coded for optimum performance 
•  Extensive use of atomic instructions 

•  Imposes a greater burden on the callers 
– Most locking is explicit and advisory 
– Caller expected to know and follow locking rules 
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User Mode Synchronization 
•  Simplicity and ease of use of great importance 

– Conservative, enforced, one-size-fits-all locking 
•  E.g., exclusive use, block until available 

–  Implicitly associated with protected system objects 
•  E.g., files, processes, message queues, events, etc. 
•  System calls automatically serialize all operations 

•  Explicit serialization is only rarely used 
– To protect shared resources in multi-threaded apps 
– Simpler behavior than kernel-mode 
– Typically implemented via system calls into the 

OS 
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Case Study: Unix Synchronization 

•  Internal use is very specific to particular Unix 
implementation 
– Linux makes extensive use of semaphores 

internally 
•  But all Unix systems provide some user-level 

synchronization primitives 
–  Including Linux 
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Unix User Synchronization 
Mechanisms 

•  Semaphores 
–  Mostly supporting a Posix standard interface 
–  sem_open, sem_close, sem_post, sem_wait 

•  Mutual exclusion file creation (O_EXCL) 
•  Advisory file locking (flock) 

–  Shared/exclusive, blocking/non-blocking 

•  Enforced record locking (lockf) 
–  Locks a contiguous region of a file 
–  Lock/unlock/test, blocking/non-blocking 

•  All blocks can be aborted by a timer 
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Unix Asynchronous Completions 
•  Most events are associated with open files 

–  Normal files and devices 
–  Network or inter-process communication ports 

•  Users can specify blocking or non-blocking use 
–  Non-blocking returns if no data is yet available 
–  Poll if a logical channel is ready or would block 
–  Select the first of n channels to become ready 

•  Users can also yield and wait 
–  E.g., for the termination of a child process 

•  Signal will awaken a process from any blockage 
–  E.g., alarm clock signal after specified time interval 



Lecture 8 
Page 55 

CS 111 
Fall 2015  

Completion Events 

•  Available in Linux and other Unix systems 
•  Used in multithreaded programs 
•  One thread creates and starts a completion 

event 
•  Another thread calls a routine to wait on that 

completion event 
•  The thread that completes it makes another call 

– Which results in the waiting thread being woken 


