
Lecture 8
Page 1

CS 111
Fall 2015

Synchronization, Critical
Sections and Concurrency

CS 111
Operating Systems

Peter Reiher

Lecture 8
Page 2

CS 111
Fall 2015

Outline

•  Parallelism and synchronization
•  Critical sections and atomic instructions
•  Using atomic instructions to build higher level

locks
•  Asynchronous completion
•  Lock contention
•  Synchronization in real operating systems

Lecture 8
Page 3

CS 111
Fall 2015

Benefits of Parallelism
•  Improved throughput

– Blocking of one activity does not stop others

•  Improved modularity
– Separating compound activities into simpler pieces

•  Improved robustness
– The failure of one thread does not stop others

•  A better fit to modern paradigms
– Cloud computing, web based services
– Our universe is cooperating parallel processes

Lecture 8
Page 4

CS 111
Fall 2015

The Problem With Parallelism
•  Making use of parallelism implies concurrency

– Multiple actions happening at the same time
– Or perhaps appearing to do so

•  True parallelism is incomprehensible
– Or nearly so
– Few designers and programmers can get it right
– Without help . . .

•  Pseudo-parallelism may be good enough
–  Identify and serialize key points of interaction

Lecture 8
Page 5

CS 111
Fall 2015

Why Are There Problems?
•  Sequential program execution is easy

–  First instruction one, then instruction two, ...
–  Execution order is obvious and deterministic

•  Independent parallel programs are easy
–  If the parallel streams do not interact in any way
–  Who cares what gets done in what order?

•  Cooperating parallel programs are hard
–  If the two execution streams are not synchronized

•  Results depend on the order of instruction execution
•  Parallelism makes execution order non-deterministic
•  Understanding possible outcomes of the computation

becomes combinatorially intractable

Lecture 8
Page 6

CS 111
Fall 2015

Solving the Parallelism Problem
•  There are actually two interdependent

problems
– Critical section serialization
– Notification of asynchronous completion

•  They are often discussed as a single problem
– Many mechanisms simultaneously solve both
– Solution to either requires solution to the other

•  But they can be understood and solved
separately

Lecture 8
Page 7

CS 111
Fall 2015

The Critical Section Problem
•  A critical section is a resource that is shared by

multiple threads
– By multiple concurrent threads, processes or CPUs
– By interrupted code and interrupt handler

•  Use of the resource changes its state
– Contents, properties, relation to other resources

•  Correctness depends on execution order
– When scheduler runs/preempts which threads
– Relative timing of asynchronous/independent

events

Lecture 8
Page 8

CS 111
Fall 2015

The Asynchronous Completion
Problem

•  Parallel activities move at different speeds
•  One activity may need to wait for another to complete
•  The asynchronous completion problem is how to

perform such waits without killing performance
–  Without wasteful spins/busy-waits

•  Examples of asynchronous completions
–  Waiting for a held lock to be released
–  Waiting for an I/O operation to complete
–  Waiting for a response to a network request
–  Delaying execution for a fixed period of real time

Lecture 8
Page 9

CS 111
Fall 2015

Critical Sections

•  What is a critical section?
•  Functionality whose proper use in parallel

programs is critical to correct execution
•  If you do things in different orders, you get

different results
•  A possible location for undesirable non-

determinism

Lecture 8
Page 10

CS 111
Fall 2015

Critical Sections and
Re-entrant Code

•  Consider a simple recursive routine:
int factorial(x) { tmp =

 factorial(x-1); return x*tmp}

•  Consider a possibly multi-threaded routine:
void debit(amt) {tmp = bal-amt;

 if (tmp >=0) bal = tmp)}

•  Neither would work if tmp was shared/static
–  Must be dynamic, each invocation has its own copy
–  This is not a problem with read-only information

•  What if a variable has to be writeable?
–  Writable variables should be dynamic or shared

•  And proper sharing often involves critical sections

Lecture 8
Page 11

CS 111
Fall 2015

Basic Approach to Critical Sections
•  Serialize access

– Only allow one thread to use it at a time
– Using some method like locking

•  Won’t that limit parallelism?
– Yes, but . . .

•  If true interactions are rare, and critical
sections well defined, most code still parallel

•  If there are actual frequent interactions, there
isn’t any real parallelism possible
– Assuming you demand correct results

Lecture 8
Page 12

CS 111
Fall 2015

Recognizing Critical Sections

•  Generally includes updates to object state
–  May be updates to a single object
–  May be related updates to multiple objects

•  Generally involves multi-step operations
–  Object state inconsistent until operation finishes

•  This period may be brief or extended

–  Preemption leaves object in compromised state

•  Correct operation requires mutual exclusion
–  Only one thread at a time has access to object(s)
–  Client 1 completes its operation before client 2 starts

Lecture 8
Page 13

CS 111
Fall 2015

Critical Section Example 1:
Updating a File

Process 1 Process 2
remove(“database”);
fd = create(“database”);
write(fd,newdata,length);
close(fd);

fd = open(“database”,READ);
count = read(fd,buffer,length);

remove(“database”);
fd = create(“database”);

fd = open(“database”,READ);
count = read(fd,buffer,length);

write(fd,newdata,length);
close(fd);

−  This result could not occur with any sequential execution
•  Process 2 reads an empty database

Lecture 8
Page 14

CS 111
Fall 2015

Critical Section Example 2:
Re-entrant Signals

First signal Second signal
load r1,numsigs // = 0
add r1,=1 // = 1
store r1,numsigs // =1

load r1,numsigs // = 0
add r1,=1 // = 1
store r1,numsigs // =1

load r1,numsigs // = 0

numsigs

add r1,=1 // = 1
load r1,numsigs // = 0

r1

add r1,=1 // = 1
store r1,numsigs // =1

store r1,numsigs // =1

The signal handlers
share numsigs and

r1 . . .

So numsigs
is 1, instead of 2

Lecture 8
Page 15

CS 111
Fall 2015

Critical Section Example 3:
Multithreaded Banking Code

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150
store r1, balance // = 150

Thread 1 Thread 2
load r1, balance // = 100
load r2, amount2 // = 25
sub r1, r2 // = 75
store r1, balance // = 75

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150

100 balance

r1

r2

50 amount1 25 amount2

100 150

load r1, balance // = 100

100

load r2, amount2 // = 25

25
75

sub r1, r2 // = 75
store r1, balance // = 75

75

store r1, balance // = 150

50

CONTEXT SWITCH!!!

CONTEXT SWITCH!!!

150

The $25 debit was lost!!!

Lecture 8
Page 16

CS 111
Fall 2015

Are There Real Critical Sections
in Operating Systems?

•  Yes!
•  Shared data for multiple concurrent threads

–  Process state variables
–  Resource pools
–  Device driver state

•  Logical parallelism
–  Created by preemptive scheduling
–  Asynchronous interrupts

•  Physical parallelism
–  Shared memory, symmetric multi-processors

Lecture 8
Page 17

CS 111
Fall 2015

These Kinds of Interleavings
Seem Pretty Unlikely

•  To cause problems, things have to happen
exactly wrong

•  Indeed, that’s true
•  But you’re executing a billion instructions per

second
•  So even very low probability events can

happen with frightening frequency
•  Often, one problem blows up everything that

follows

Lecture 8
Page 18

CS 111
Fall 2015

Can’t We Solve the Problem By
Disabling Interrupts?

•  Much of our difficulty is caused by a poorly
timed interrupt
– Our code gets part way through, then gets

interrupted
– Someone else does something that interferes
– When we start again, things are messed up

•  Why not temporarily disable interrupts to solve
those problems?

Lecture 8
Page 19

CS 111
Fall 2015

Problems With Disabling Interrupts
•  Not an option in user mode

–  Requires use of privileged instructions
•  Dangerous if improperly used

–  Could disable preemptive scheduling, disk I/O, etc.

•  Delays system response to important interrupts
–  Received data isn’t processed until interrupt serviced
–  Device will sit idle until next operation is initiated

•  Doesn't help with multicore processors
–  Other processors can access the same memory

•  Generally harms performance
–  To deal with rare problems

Lecture 8
Page 20

CS 111
Fall 2015

So How Do We Solve This
Problem?

•  Avoid shared data whenever possible
–  No shared data, no critical section
–  Not always feasible

•  Eliminate critical sections with atomic instructions
–  Atomic (uninteruptable) read/modify/write operations
–  Can be applied to 1-8 contiguous bytes
–  Simple: increment/decrement, and/or/xor
–  Complex: test-and-set, exchange, compare-and-swap
–  What if we need to do more in a critical section?

•  Use atomic instructions to implement locks
–  Use the lock operations to protect critical sections

Lecture 8
Page 21

CS 111
Fall 2015

Atomic Instructions – Test and Set

A C description of a machine language
instruction

bool TS(char *p) {
bool rc;
rc = *p; /* note the current value */
p = TRUE; / set the value to be TRUE */
return rc; /* return the value before we set it */

}

if !TS(flag) {
 /* We have control of the critical section! */

}

Lecture 8
Page 22

CS 111
Fall 2015

Atomic Instructions – Compare
and Swap

Again, a C description of machine instruction
bool compare_and_swap(int *p, int old, int new) {
if (*p == old) { /* see if value has been changed */

p = new; / if not, set it to new value */
return(TRUE); /* tell caller he succeeded */

} else /* value has been changed */
 return(FALSE); /* tell caller he failed */

}

if (compare_and_swap(flag,UNUSED,IN_USE) {
 /* I got the critical section! */

} else {
 /* I didn’t get it. */

}

Lecture 8
Page 23

CS 111
Fall 2015

Solving Problem #3 With
Compare and Swap

Again, a C implementation
int current_balance;
writecheck(int amount) {
int oldbal, newbal;
do {

oldbal = current_balance;
newbal = oldbal - amount;
if (newbal < 0) return (ERROR);

} while (!compare_and_swap(¤t_balance, oldbal, newbal))
...
}

Lecture 8
Page 24

CS 111
Fall 2015

Why Does This Work?
•  Remember, compare_and_swap() is atomic
•  First time through, if no concurrency,

–  oldbal == current_balance
–  current_balance was changed to newbal by
compare_and_swap()

•  If not,
–  current_balance changed after you read it
– So compare_and_swap() didn’t change
current_balance and returned FALSE

– Loop, read the new value, and try again

Lecture 8
Page 25

CS 111
Fall 2015

Will This Really Solve
the Problem?

•  If the compare & swap fails, we loop back and
try again
–  If there is a conflicting thread isn’t it likely to

simply fail again?
•  Only if preempted during a four instruction

window
– By someone executing the same critical section

•  Extremely low probability event
– We will very seldom go through the loop even

twice

Lecture 8
Page 26

CS 111
Fall 2015

Limitation of Atomic Instructions

•  They only update a small number of contiguous bytes
–  Cannot be used to atomically change multiple locations

•  E.g., insertions in a doubly-linked list

•  They operate on a single memory bus
–  Cannot be used to update records on disk
–  Cannot be used across a network

•  They are not higher level locking operations
–  They cannot “wait” until a resource becomes available
–  You have to program that up yourself

•  Giving you extra opportunities to screw up

Lecture 8
Page 27

CS 111
Fall 2015

Implementing Locks
•  Create a synchronization object

–  Associated it with a critical section
–  Of a size that an atomic instruction can manage

•  Lock the object to seize the critical section
–  If critical section is free, lock operation succeeds
–  If critical section is already in use, lock operation fails

•  It may fail immediately
•  It may block until the critical section is free again

•  Unlock the object to release critical section
–  Subsequent lock attempts can now succeed
–  May unblock a sleeping waiter

Lecture 8
Page 28

CS 111
Fall 2015

Using Atomic Instructions to
Implement a Lock

•  Assuming C implementation of test and set
bool getlock(lock *lockp) {
if (TS(lockp) == 0)

return(TRUE);
else

return(FALSE);
}
void freelock(lock *lockp) {
*lockp = 0;

}

Lecture 8
Page 29

CS 111
Fall 2015

Associating the Lock With a
Critical Section

•  Assuming same lock as in last example
while (!getlock(crit_section_lock))
{

 yield(); /*or spin on lock */
}
critical_section(); /*Access critical section */
freelock(crit_section_lock);

•  Remember, while you’re in the critical section, no
one else will be able to get the lock

−  Better not stay there too long
−  And definitely don’t go into infinite loop

Lecture 8
Page 30

CS 111
Fall 2015

Criteria for Correct Locking

•  How do we know if a locking mechanism is correct?
•  Four desirable criteria:

1.  Correct mutual exclusion
-  Only one thread at a time has access to critical section

2.  Progress
-  If resource is available, and someone wants it, they get it

3.  Bounded waiting time
-  No indefinite waits, guaranteed eventual service

4.  And (ideally) fairness
-  E.g. FIFO

Lecture 8
Page 31

CS 111
Fall 2015

Asynchronous Completion

•  The second big problem with parallelism
– How to wait for an event that may take a while
– Without wasteful spins/busy-waits

•  Examples of asynchronous completions
– Waiting for a held lock to be released
– Waiting for an I/O operation to complete
– Waiting for a response to a network request
– Delaying execution for a fixed period of time

Lecture 8
Page 32

CS 111
Fall 2015

Using Spin Waits to Solve the
Asynchronous Completion Problem
•  Thread A needs something from thread B

– Like the result of a computation

•  Thread B isn’t done yet
•  Thread A stays in a busy loop waiting
•  Sooner or later thread B completes
•  Thread A exits the loop and makes use of B’s

result
•  Definitely provides correct behavior, but . . .

Lecture 8
Page 33

CS 111
Fall 2015

Well, Why Not?
•  Waiting serves no purpose for the waiting

thread
– “Waiting” is not a “useful computation”

•  Spin waits reduce system throughput
– Spinning consumes CPU cycles
– These cycles can’t be used by other threads
–  It would be better for waiting thread to “yield”

•  They are actually counter-productive
– Delays the thread that will post the completion
– Memory traffic slows I/O and other processors

Lecture 8
Page 34

CS 111
Fall 2015

Another Solution
•  Completion blocks
•  Create a synchronization object

– Associate that object with a resource or request

•  Requester blocks awaiting event on that object
– Yield the CPU until awaited event happens

•  Upon completion, the event is “posted”
– Thread that notices/causes event posts the object

•  Posting event to object unblocks the waiter
– Requester is dispatched, and processes the event

Lecture 8
Page 35

CS 111
Fall 2015

Blocking and Unblocking
•  Exactly as discussed in scheduling lecture
•  Blocking

– Remove specified process from the “ready” queue
– Yield the CPU (let scheduler run someone else)

•  Unblocking
– Return specified process to the “ready” queue
–  Inform scheduler of wakeup (possible preemption)

•  Only trick is arranging to be unblocked
– Because it is so embarrassing to sleep forever

Lecture 8
Page 36

CS 111
Fall 2015

Unblocking and Synchronization
Objects

•  Easy if only one thread is blocked on the object
•  If multiple blocked threads, who should we unblock?

–  Everyone who is blocked?
–  One waiter, chosen at random?
–  The next thread in line on a FIFO queue?

•  Depends on the resource
–  Can multiple threads use it concurrently?
–  If not, awaking multiple threads is wasteful

•  Depends on policy
–  Should scheduling priority be used?
–  Consider possibility of starvation

Lecture 8
Page 37

CS 111
Fall 2015

A Possible Problem

•  The sleep/wakeup race condition

void sleep(eventp *e) {
while(e->posted == FALSE) {

add_to_queue(&e->queue,
myproc);
myproc->runstate |= BLOCKED;
yield();

}
}

void wakeup(eventp *e) {
 struct proce *p;

 e->posted = TRUE;
 p = get_from_queue(&e->
queue);
 if (p) {

 p->runstate &= ~BLOCKED;
 resched();

 } /* if !p, nobody’s
waiting */
}

Consider this sleep code: And this wakeup code:

What’s the problem with this?

Lecture 8
Page 38

CS 111
Fall 2015

A Sleep/Wakeup Race

•  Let’s say thread B is using a resource and
thread A needs to get it

•  So thread A will call sleep()
•  Meanwhile, thread B finishes using the

resource
– So thread B will call wakeup()

•  No other threads are waiting for the resource

Lecture 8
Page 39

CS 111
Fall 2015

The Race At Work
void sleep(eventp *e) {

while(e->posted == FALSE) {

void wakeup(eventp *e) {
struct proce *p;

e->posted = TRUE;
p = get_from_queue(&e-> queue);

if (p) {

 } /* if !p, nobody’s waiting */
}

Nope, nobody’s in the queue!

add_to_queue(&e->queue, myproc);

myproc->runsate |= BLOCKED;
yield();

 }
 }

Yep, somebody’s locked it!

Thread A Thread B

The effect?
Thread A is sleeping But there’s no one to

wake him up

CONTEXT SWITCH!

CONTEXT SWITCH!

Lecture 8
Page 40

CS 111
Fall 2015

Solving the Problem

•  There is clearly a critical section in sleep()
– Starting before we test the posted flag
– Ending after we put ourselves on the notify list

•  During this section, we need to prevent
– Wakeups of the event
– Other people waiting on the event

•  This is a mutual-exclusion problem
– Fortunately, we already know how to solve those

Lecture 8
Page 41

CS 111
Fall 2015

Lock Contention
•  The riddle of parallel multi-tasking:

–  If one task is blocked, CPU runs another
– But concurrent use of shared resources is difficult
– Critical sections serialize tasks, eliminating

parallelism
•  What if everyone needs to share one resource?

– One process gets the resource
– Other processes get in line behind him
– Parallelism is eliminated; B runs after A finishes
– That resource becomes a bottle-neck

Lecture 8
Page 42

CS 111
Fall 2015

What If It Isn’t That Bad?
•  Say each thread is only somewhat likely to need a

resource
•  Consider the following system

–  Ten processes, each runs once per second
–  One resource they each use 5% of their time (5ms/sec)
–  Half of all time slices end with a preemption

•  Chances of preemption while in critical section
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%

•  Chances a 2nd process will need resource
–  5% in next time slice, 37% in next second

•  But once this happens, a line forms

Lecture 8
Page 43

CS 111
Fall 2015

Resource Convoys
•  All processes regularly need the resource

– But now there is a waiting line
– Nobody can “just use the resource”
–  Instead, they must get in line

•  The delay becomes much longer
– We don’t just wait a few µ-sec until resource is

free
– We must wait until everyone in front of us finishes
– And while we wait, more people get into the line

•  Delays rise, throughput falls, parallelism
ceases

•  Not merely a theoretical transient response

Lecture 8
Page 44

CS 111
Fall 2015

Resource Convoy Performance

throughput

offered load

ideal

convoy

Lecture 8
Page 45

CS 111
Fall 2015

Avoiding Contention Problems
•  Eliminate the critical section entirely

– Eliminate shared resource, use atomic instructions
•  Eliminate preemption during critical section

– By disabling interrupts … not always an option
•  Reduce lingering time in critical section

– Minimize amount of code in critical section
– Reduce likelihood of blocking in critical section

•  Reduce frequency of critical section entry
– Reduce use of the serialized resource
– Spread requests out over more resources

Lecture 8
Page 46

CS 111
Fall 2015

An Approach Based on
Smarter Locking

•  Reads and writes are not equally common
– File read/write: reads/writes > 50
– Directory search/create: reads/writes > 1000

•  Writers generally need exclusive access
•  Multiple readers can generally share a resource
•  Read/write locks

– Allow many readers to share a resource
– Only enforce exclusivity when a writer is active

Lecture 8
Page 47

CS 111
Fall 2015

Lock Granularity
•  How much should one lock cover?

–  One object or many
–  Important performance and usability implications

•  Coarse grained - one lock for many objects
–  Simpler, and more idiot-proof
–  Results in greater resource contention

•  Fine grained - one lock per object
–  Spreading activity over many locks reduces contention
–  Time/space overhead – more locks, more gets/releases
–  Error-prone – harder to decide what to lock when
–  Some operations may require locking multiple objects

(which creates a potential for deadlock)

Lecture 8
Page 48

CS 111
Fall 2015

Lock Granularity: Pools Vs.
Elements

•  Consider a pool of objects, each with its own lock

•  Most operations lock only one buffer within the pool
•  Some operations require locking the entire pool

–  Two threads both try to add block A to the cache
–  Thread 1 looks for block B while thread 2 is deleting it

•  The pool lock could become a bottle-neck
–  Minimize its use, reader/writer locking, sub-pools ...

buffer A buffer B buffer C buffer D buffer E ...
pool of file system cache buffers

Lecture 8
Page 49

CS 111
Fall 2015

Synchronization in Real World
Operating Systems

•  How is this kind of synchronization handled in
typical modern operating systems?

•  In the kernel itself?
•  In user-level OS features?

Lecture 8
Page 50

CS 111
Fall 2015

Kernel Mode Synchronization
•  Performance is a major concern

– Many different types of exclusion are available
•  Shared/exclusive, interrupt-safe, SMP-safe
•  Choose type best suited to the resource and situation

–  Implementations are in machine language
•  Carefully coded for optimum performance
•  Extensive use of atomic instructions

•  Imposes a greater burden on the callers
– Most locking is explicit and advisory
– Caller expected to know and follow locking rules

Lecture 8
Page 51

CS 111
Fall 2015

User Mode Synchronization
•  Simplicity and ease of use of great importance

– Conservative, enforced, one-size-fits-all locking
•  E.g., exclusive use, block until available

–  Implicitly associated with protected system objects
•  E.g., files, processes, message queues, events, etc.
•  System calls automatically serialize all operations

•  Explicit serialization is only rarely used
– To protect shared resources in multi-threaded apps
– Simpler behavior than kernel-mode
– Typically implemented via system calls into the

OS

Lecture 8
Page 52

CS 111
Fall 2015

Case Study: Unix Synchronization

•  Internal use is very specific to particular Unix
implementation
– Linux makes extensive use of semaphores

internally
•  But all Unix systems provide some user-level

synchronization primitives
–  Including Linux

Lecture 8
Page 53

CS 111
Fall 2015

Unix User Synchronization
Mechanisms

•  Semaphores
–  Mostly supporting a Posix standard interface
–  sem_open, sem_close, sem_post, sem_wait

•  Mutual exclusion file creation (O_EXCL)
•  Advisory file locking (flock)

–  Shared/exclusive, blocking/non-blocking

•  Enforced record locking (lockf)
–  Locks a contiguous region of a file
–  Lock/unlock/test, blocking/non-blocking

•  All blocks can be aborted by a timer

Lecture 8
Page 54

CS 111
Fall 2015

Unix Asynchronous Completions
•  Most events are associated with open files

–  Normal files and devices
–  Network or inter-process communication ports

•  Users can specify blocking or non-blocking use
–  Non-blocking returns if no data is yet available
–  Poll if a logical channel is ready or would block
–  Select the first of n channels to become ready

•  Users can also yield and wait
–  E.g., for the termination of a child process

•  Signal will awaken a process from any blockage
–  E.g., alarm clock signal after specified time interval

Lecture 8
Page 55

CS 111
Fall 2015

Completion Events

•  Available in Linux and other Unix systems
•  Used in multithreaded programs
•  One thread creates and starts a completion

event
•  Another thread calls a routine to wait on that

completion event
•  The thread that completes it makes another call

– Which results in the waiting thread being woken

