
Distributed System Security  

Introduction 

An operating system can only control its own machine’s resources.  Thus, operating 
systems will have challenges in providing security in distributed systems, where more 
than one machine must cooperate.  There are two large problems: 

1. The other machines in the distributed system might not properly implement the 
security policies you want. 

2. Machines in a distributed system communicate across a network that none of 
them fully control and that, generally, cannot be trusted. 

As suggested earlier, cryptography will be the major tool we use here, but we also said 
cryptography was hard to get right.  That makes it sound like the perfect place to use 
carefully designed standard tools, rather than to expect everyone to build their own.  
That’s precisely correct.  So, 

  

The Role of Authentication 

How can we handle our uncertainty about whether our partners in a distributed system are 
going to enforce our security policies?  In most cases, we can’t do much.  At best, we can 
try to arrange to agree on policies and hope everyone follows through on those 
agreements.  There are some special cases where we can get high-quality evidence that 
our partners have behaved properly, but that’s not easy, in general.  For example, how 
can we know that they are using full disk encryption, or that they have carefully wiped an 
encryption key we are finished using, or that they have set access controls on the local 
copies of their files properly?  They can say they did, but how can we know?   

Generally, we can’t.  But you’re used to that.  In the real world, your friends and relatives 
know some secrets about you, and they might have keys to get into your home, and if you 
loan them your car you’re pretty sure you’ll get it back.   That’s not so much because you 
have perfect mechanisms to prevent those trusted parties from behaving badly, but 
because you are pretty sure they won’t. If you’re wrong, perhaps you can detect that they 
haven’t behaved well and take compensating actions (like changing your locks or calling 
the police to report your car stolen).  We’ll need to rely on the same factors in distributed 
computer systems. We will simply have to trust that some parties will behave well.  In 
some cases, we can detect when they don’t and adjust our trust in the parties accordingly, 
and maybe take other compensating actions. 

THE CRUX OF THE PROBLEM 
HOW TO PROTECT DISTRIBUTED SYSTEM OPERATIONS? 

How can we secure a system spanning more than one machine?  What tools are 
available to help us protect such systems?  How do we use them properly?  What are 
the areas in using the tools that require us to be careful and thoughtful? 



Of course, in the cyber world, our actions are at a distance over a network, and all we see 
are bits going out and coming in on the network.  For a trust-based solution to work, we 
have to be quite sure that the bits we send out can be verified by our buddies as truly 
coming from us, and we have to be sure that the bits coming in really were created by 
them.  That’s a job for authentication.  As suggested in the earlier authentication chapter, 
when working over a network, we need to authenticate based on a bundle of bits.  Most 
commonly, we use a form of authentication based on what you know.  Now, think back 
to the earlier chapters.  What might someone running on a remote operating system know 
that no one else knows?  How about a password?  How about a private key? 

Most of our distributed system authentication will rely on one of these two elements.  
Either you require the remote machine to provide you with a password, or you require it 
to provide evidence using a private key stored only on that machine1.  In each case, you 
need to know something: either the password (or, better, a cryptographic hash of the 
password plus a salt) or the public key.   

When is each appropriate?  Passwords tend to be useful if there are a vast number of 
parties who need to authenticate themselves to one party.  Public keys tend to be useful if 
there’s one party who needs to authenticate himself to a vast number of parties.  Why?  
With a password, the authentication provides evidence that somebody knows a password.  
If you want to know exactly who that is (which is usually important), only the party 
authenticating and the party checking can know it.  With a public key, many parties can 
know the key, but only one party who knows the matching private key can authenticate 
himself.  So we tend to use both mechanisms, but for different cases.  When a web site 
authenticates itself to a user, it’s done with PK cryptography.  By distributing one single 
public key (to vast numbers of users), the web site can be authenticated by all its users.  
The web site need not bother keeping separate authentication information to authenticate 
itself to each user.  When that user authenticates itself to the web site, it’s done with a 
password.  Each user must be separately authenticated to the web site, so we require a 
unique bit of identifying information for that user, preferably something that’s easy for a 
person to use.  Setting up and distributing public keys is hard, while setting up individual 
passwords is relatively easy. 

How, practically, do we use each of these authentication mechanisms in a distributed 
system?  If we want a remote partner to authenticate itself via passwords, we will require 
it to provide us with that password, which we will check.  We’ll need to encrypt the 
transport of the password across the network if we do that, since otherwise anyone 
eavesdropping on the network (which is easy for many wireless networks) will readily 
learn passwords sent unencrypted.  Encrypting the password will require that we already 
have either a shared symmetric key or our partner’s public key.  So let’s concentrate for 
                                                 
1 We occasionally use other methods, such as smart cards or remote biometric readers.  
They are less common in today’s systems, though.  If you understand how we use 
passwords and public key cryptography for distributed system authentication, you can 
probably figure out how to make proper use of these other techniques, too.  If you don’t, 
you’ll be better off figuring out the common techniques before moving to the less 
common ones. 



the moment on how we handle getting that public key, either to use it directly or to set up 
the cryptography to protect the password in transit. 

We’ll spend the rest of the chapter on securing the network connection, but please don’t 
forget that even if you secure the network perfectly, you still face the major security 
challenge of the uncontrolled site you’re interacting with on the other side of the network.  
If your compromised partner attacks you, it will offer little consolation that his attack was  
authenticated and encrypted. 

Public Key Authentication for Distributed Systems 

The public key doesn’t need to be secret, but we need to be sure it really belongs to our 
partner.  If we have a face-to-face meeting with him, he can give us his public key in 
some form or another, in which case we can be pretty sure it’s his.  That’s limiting, 
though, since we often interact with partners who we never see face to face.  For that 
matter, whose “face” belongs to Amazon or Google?   

Fortunately, we can use the fact that secrecy isn’t required to simply create a bunch of 
bits containing the public key.  Anyone who gets a copy of the bits has the key.  But how 
do they know for sure whose key it is?  What if some other trusted party known to 
everyone who needs to authenticate our partner used their own public key to 
cryptographically sign that bunch of bits, verifying that they do indeed belong to our 
partner?  If we could check that signature, we could then be sure that bunch of bits really 
does represent his public key, at least to the extent that we trust that third party who did 
the signature. 

This technique is how we actually authenticate web sites and many other entities on the 
Internet.  Every time you browse the web or perform any other web-based activity, you 
use it.  The signed bundle of bits is called a certificate.  Essentially, it contains 
information about the party that owns the public key, the public key itself, and other 
information, such as an expiration date.  The entire set of information, including the 
public key, is run through a cryptographic hash, and the result is encrypted with the 
trusted third party’s private key, digitally signing the certificate. If you obtain a copy of 
the certificate, and can check the signature, you can learn someone else’s public key, 
even if you have never met or had any direct interaction with them.   In certain ways, it’s 
a beautiful technology that empowers the whole Internet. 

Let’s briefly go through an example, to solidify the concepts.  Let’s say Frobazz Inc. 
wants to obtain a certificate for its public key, which is KF.  Frobazz Inc. pays big bucks 
to Acmesign Co., a widely trusted company whose business it is to sell certificates.  Such 
companies are commonly called Certificate Authorities, or CAs, since they create 
authoritative certificates trusted by many parties.  Acmesign checks up on Frobazz Inc. to 
ensure that the people asking for the certificate actually are legitimate representatives of 
Frobazz.  Acmesign then makes very, very sure that the public key it’s about to embed in 
a certificate actually is the one that Frobazz wants to use.  Assuming it is, Acmesign runs 
a cryptographic hashing algorithm (perhaps SHA-3) on Frobazz’s name, public key KF, 
and other information, producing hash HF.  Acmesign then encrypts HF with its own 
private key, PA, producing digital signature SF.  Finally, Acmesign combines all of the 



information used to produce HF, plus Acmesign’s own identity and the signature SF, into 
the certificate CF, which it hands over to Frobazz, presumably in exchange for a bunch of 
money.   Remember, CF is just a bunch of bits. 

Now Frobazz Inc. wants to authenticate itself over the Internet to one of its customers.  If 
the customer already has Frobazz’s public key, we can use public key authentication 
mechanisms directly.  If the customer does not have the public key, Frobazz sends CF to 
the customer.  The customer examines the certificate, sees that it was generated by 
Acmesign using, say, SHA-3, and runs the same information that Acmesign hashed (all 
of which is in the certificate itself) through SHA-3, producing HF’.  Then the customer 
uses Acmesign’s public key to decrypt SF (also in the certificate), obtaining HF.  If all is 
well, HF equals HF’, and now the customer knows that the public key in the certificate is 
indeed Frobazz’s.  Public key authentication can proceed2.  If the two hashes aren’t 
exactly the same, the customer knows that something fishy is going on and will not 
accept the certificate. 

There are some wonderful properties about this approach to learning public keys.  First, 
note that the signing authority (Acmesign, in our example) did not need to participate in 
the process of the customer checking the certificate.  In fact, Frobazz didn’t really, either.  
The customer can get the certificate from literally anywhere and obtain the same degree 
of assurance of its validity.  Second, it only needs to be done once per customer.  After 
obtaining the certificate and checking it, the customer has the public key he needs.  From 
that point onward, he can simply store it and use it.  If, for whatever reason, he loses it, he 
can either extract it again from the certificate (if that has been saved), or go through the 
process of obtaining the certificate all over again.  Third, the customer had no need to 
trust the party claiming to be Frobazz until that identity had been proven by checking the 
certificate.  The customer can keep that party at arm’s length and proceed with caution 
until the certificate checks out. 

Assuming you’ve been paying attention for the last few chapters, you should be saying to 
yourself, “now, wait a minute, isn’t there a chicken-and-egg problem here?”  We’ll learn 
Frobazz’s public key by getting a certificate for it.  The certificate will be signed by 
Acmesign.  We’ll check the signature by knowing Acmesign’s public key.  But where did 
we get Acmesign’s key?  We really hope you did have that head-scratching moment and 
asked yourself that question, because if you did, you understand the true nature of the 
Internet authentication problem.  Ultimately, we’ve got to bootstrap it.  You’ve got to 
somehow or other obtain a public key for somebody that you trust.  Once you do, if it’s 
the right public key for the right kind of party, you can then obtain a lot of other public 
keys.  But without something to start from, you can’t do much of anything. 

Where do you get that primal public key?  Most commonly, it comes in a piece of 
software you obtain and install.  The one you use most often is probably your browser, 
which typically comes with the public keys for several hundred trusted authorities.  
                                                 
2 And, indeed, must, since all this business with checking the certificate merely told the 
customer what Frobazz’s public key was.  It did nothing to assure the customer that 
whoever sent him the certificate actually was Frobazz or knew Frobazz’s private key. 



Whenever you go to a new web site that cares about security, it provides you with a 
certificate containing that site’s public key, and signed by one of those trusted authorities 
pre-configured into your browser.  You use the pre-configured public key of that 
authority to verify that the certificate is indeed proper, after which you know the public 
key of that web site.  From that point onward, you can use the web site’s public key to 
authenticate it.  There are some serious caveats here, but let’s put those aside for the 
moment. 

Anyone can create a certificate, not just those trusted CAs, either by getting one from 
someone whose business it is to issue certificates or simply by creating one from scratch, 
following a certificate standard (X.509 is the most commonly used certificate standard 
[I12]).   The necessary requirement is that the party being authenticated and the parties 
performing the authentication must all trust whoever created the certificate.  If they don’t 
trust that party, why would they believe the certificate is correct?   

If you are building your own distributed system, you can create your own certificates 
from a machine you (and other participants in the system) trust and can handle the 
bootstrapping issue by carefully hand-installing the certificate signing machine’s public 
key wherever it needs to be.  There are a number of existing software packages for 
creating certificates, and, as usual with critical cryptographic software, you’re better off 
using an existing, trusted implementation rather than coding up one of your own.  One 
example you might want to look at is PGP (available in both supported commercial 
versions and compatible but less supported free versions) [P16], but there are others.  If 
you are working with a fixed number of machines and you can distribute the public key 
by hand in some reasonable way, you can dispense entirely with certificates.  Remember, 
the only point of a PK certificate is to distribute the public key, so if your public keys are 
already where they need to be, you don’t need certificates. 

OK, one way or another you’ve obtained the public key you need to authenticate some 
remote machine.  Now what?  Well, anything they send you encrypted with their private 
key will only decrypt with their public key, so anything that decrypts properly with the 
public key must have come from them, right?  Yes, it must have come from them at some 
point, but it’s possible for an adversary to have made a copy of a legitimate message the 
site sent at some point in the past and then replay it at some future date.  Depending on 
exactly what’s going on, that could cause trouble, since you may take actions based on 
that message that the legitimate site did not ask for.  So usually we take measures to 
ensure that we’re not being subjected to a replay attack.  Such measures generally 
involve ensuring that each encrypted message contains unique information not in any 
other message.  This feature is built in properly to standard cryptographic protocols, so if 
you follow our advice and use one of those, you will get protection from such replay 
attacks.  If you insist on building your own cryptography, you’ll need to learn a good deal 
more about this issue and will have to apply that knowledge very carefully.  Also, public 
key cryptography is expensive.  We want to stop using it as soon as possible, but we also 
want to continue to get authentication guarantees.  We’ll see how to do that when we 
discuss SSL and TLS. 



Password Authentication for Distributed Systems 

The other common option used to authenticate in distributed systems is to use a 
password.  As noted above, that will work best in situations where only two parties need 
to deal with any particular password: the party being authenticated and the authenticating 
party.  They make sense when an individual user is authenticating himself to a site that 
hosts many users, such as when you log in to Amazon.  They don’t make sense when that 
site is trying to authenticate itself to an individual user, such as when a web site claiming 
to be Amazon wants to do business with you.  Public key authentication works better 
there. 

How do we properly handle password authentication over the network, when it is a 
reasonable choice?  The password is usually associated with a particular user ID, so the 
user provides that ID and password to the site requiring authentication.  That typically 
happens over a network, and typically we cannot guarantee that networks provide 
confidentiality.  If our password is divulged to someone else, they’ll be able to pose as us, 
so we must add confidentiality to this cross-network authentication, generally by 
encrypting at least the password itself (though encrypting everything involved is better).  
So a typical interchange with Alice trying to authenticate herself to Frobazz Inc.’s web 
site would involve the site requesting a user ID and password and Alice providing both, 
but encrypting them before sending them over the network.   

The obvious question you should ask is, encrypting them with what key?  Well, if 
Frobazz authenticated itself to Alice using PK, as discussed above, Alice can encrypt her 
user ID and password with Frobazz’s public key.  Frobazz Inc., having the matching 
private key, will be able to check them, but nobody else can read them.  In actuality, there 
are various reasons why this alone would not suffice, including replay attacks, as 
mentioned above.  But we can and do use Frobazz’s private key to set up cryptography 
that will protect Alice’s password in transit.  We’ll discuss the details in the section on 
SSL/TLS. 

We discussed issues of password choice and management in the chapter on 
authentication, and those all apply in the networking context.  Otherwise, there’s not that 
much more to say about how we’ll use passwords, other than to note that after the remote 
site has verified the password, what does it actually know?  That the site or user who sent 
the password knows it, and, to the strength of the password, that site or user is who it 
claims to be.  But what about future messages that come in, supposedly from that site?  
Remember, anyone can create any message they want, so if all we do is verify that the 
remote site sent us the right password, all we know is that particular message is authentic.  
We don’t want to have to include the password on every message we send, just as we 
don’t want to use PK to encrypt every message we send.  We will use both authentication 
techniques to establish initial authenticity, then use something else to tie that initial 
authenticity to subsequent interactions.  Let’s move right along to SSL/TLS to talk about 
how we do that, so we don’t need to keep promising you that we’ll get to it. 



SSL/TLS 

We saw in an earlier chapter that a standard method of communicating between processes 
in modern systems is the socket.  That’s equally true when the processes are on different 
machines.  So a natural way to add cryptographic protection to communications crossing 
unprotected networks is to add cryptographic features to sockets.  That’s precisely what 
SSL (the Secure Socket Layer) was designed to do, many years ago.  Unfortunately, SSL 
did not get it quite right.  That’s because it’s pretty damned hard to get it right, not 
because the people who designed and built it were careless.  They learned from their 
mistakes and created a new version of encrypted sockets called Transport Layer Security 
(TLS).  You will frequently hear people talk about using SSL.  They are usually treating 
it as a shorthand for SSL/TLS.  SSL, formally, is insecure and should never be used for 
anything.  Use TLS.  The only exception is that some very old devices might run software 
that doesn’t support TLS.  In that case, it’s better to use SSL than nothing.   We’ll adopt 
the same shorthand as others from here on, since it’s ubiquitous. 

The concept behind SSL is simple: move encrypted data through an ordinary socket.  
You set up a socket, set up a special structure to perform whatever cryptography you 
want, and hook the output of that structure to the input of the socket.  You reverse the 
process on the other end.  What’s simple in concept is rather laborious in execution, with 
a number of steps required to achieve the desired result.  There are further complications 
due to the general nature of SSL.  The technology is designed to support a variety of 
cryptographic operations and many different ciphers, as well as multiple methods to 
perform key exchange and authentication between the sender and receiver. 

The process of adding SSL to your program is intricate, requiring the use of particular 
libraries and a sequence of calls into those libraries to set up a correct SSL connection.  
We will not go through those operations step by step here, but you will need to learn 
about them to make proper use of SSL.  Their purpose is, for the most part, to allow a 
wide range of generality both in the cryptographic options SSL supports and the ways 
you use those options in your program.  For example, these setup calls would allow you 
to create one set of SSL connections using AES and another using Triple DES, if that’s 
what you needed to do. 

One common requirement for setting up an SSL connection that we will go through in a 
bit more detail is how to securely distribute whatever cryptographic key you will use for 
the connection you are setting up.  Best cryptographic practice calls for you to use a 
brand new key to encrypt the bulk of your data for each connection you set up.  You will 
use public/private keys for authentication many times, but as we discussed earlier, you 
need to use symmetric cryptography to encrypt the data once you have authenticated your 
partner, and you want a fresh key for that.  Even if you are running multiple simultaneous 
SSL connections with the same partner, you want a different symmetric key for each 
connection. 

So what do you need to do to set up a new SSL connection?  We won’t go through all of 
the gory details, but, in essence, SSL needs to bootstrap a secure connection based 
(usually) on symmetric cryptography when no usable symmetric key exists.  (You’ll hear 
“usually” and “normally” and “by default” a lot in SSL discussions, because of SSL’s 



ability to support a very wide range of options, most of which are ordinarily not what you 
want to do.)  The very first step is to start a negotiation between the client and the server.  
Each party might only be able to handle particular ciphers, secure hashes, key distribution 
strategies, or authentication schemes, based on what version of SSL they have installed, 
how it’s configured, and how the programs that set up the SSL connection on each side 
were written.  In the most common cases, the negotiation will end in both sides finding 
some acceptable set of ciphers and techniques that hit a balance between security and 
performance.  For example, they might use RSA with 2048 bit keys for asymmetric 
cryptography, some form of a Diffie-Hellman key exchange mechanism (see the Aside 
on this mechanism)  to establish a new symmetric key, SHA-1 to generate secure hashes 
for integrity, and AES with 256 bit keys for bulk encryption.  A modern installation of 
SSL might support 50 or more different combinations of these options. 

In some cases, it may be important for you to specify which of these many combinations 
are acceptable for your system, but often most of them will do, in which case you can let 
SSL figure out which to use in each case without worrying about it yourself.  The 
negotiation will happen invisibly and SSL will get on with its main business: 
authenticating at least the server (optionally the client), creating and distributing a new 
symmetric key, and running the communication through the chosen cipher using that key. 

We can use Diffie-Hellman key exchange to create the key (and SSL frequently does), 
but we need to be sure who we are sharing that key with.  SSL offers a number of 
possibilities for doing so, which include skipping authentication and hoping for the best 
(not generally a good option, but still supported as of TLS version 1.2).  The most 
common method is for the client to obtain a certificate containing the server’s public key 
and to use the public key in that certificate to verify the authenticity of the server’s 
messages, typically by having the server send it to the client.  It is possible for the client 
to obtain the certificate through some other means, though less common.  Note that 
having the server send the certificate is every bit as secure (or insecure) as having the 
client obtain the certificate through other means.  Certificate security is not based on the 
method used to transport it, but on the cryptography embedded in the certificate.  

With the certificate in hand (however the client got it), the Diffie-Hellman key exchange 
can now proceed in an authenticated fashion.  The server will sign its Diffie-Hellman 
messages with its private key, which will allow the client to determine that its partner in 
this key exchange is the correct server.  Typically, the client does not provide (or even 
have) its own certificate, so it cannot sign its Diffie-Hellman messages.  This implies that 
when SSL’s Diffie-Hellman key exchange completes, typically the client is pretty sure 
who the server is, but the server has no clue about the client’s identity.  (Again, this need 
not be the case for all uses of SSL.  SSL includes connection creation options where both 
parties know each other’s public key and the key exchange is authenticated on both sides.  
Those options are simply not the most commonly used ones, and particularly are not the 
ones typically used to secure web browsing.) 

 

 



 

Recalling our discussion earlier in this chapter, it actually isn’t a problem for the server to 
be unsure about the client’s identity at this point, in many cases.  As we stated earlier, the 
client will probably want to use a password to authenticate itself, not a public key 
extracted from a certificate.  As long as the server doesn’t permit the client to do anything 
requiring trust before the server obtains and checks the client’s password, the server 
probably doesn’t care who the client is, anyway.  Many servers offer some services to 
anonymous clients (such as providing them with publically available information), so as 
long as they can get a password from the client before proceeding to more sensitive 
subjects, there is no security problem.  So the server can ask the client for a user ID and 

ASIDE:  DIFFIE-HELLMAN KEY EXCHANGE 

What if you want to share a secret key between two parties, but they can only 
communicate over an insecure channel, where eavesdroppers can hear anything they 
say?  You might think this is an impossible problem to solve, but you’re wrong.  Two 
extremely smart cryptographers named Diffie and Hellman solved this problem years 
ago, and their solution is in common use.  It’s called Diffie-Hellman key exchange. 

Here’s how it works.  Let’s say Alice and Bob want to share a secret key, but currently 
don’t share anything, other than the ability to send each other messages.  First, they 
agree on two numbers, n (a large prime number) and g (which is primitive mod n).  They 
can use the insecure channel to do this, since n and g don’t need to be secret.  Alice 
chooses a large random integer, say x, calculates X = gx mod n, and sends X to Bob.  Bob 
independently chooses a large random integer, say y, calculates Y= gy mod n, and sends 
Y to Alice.  The eavesdroppers can hear X and Y, but since Alice and Bob didn’t send x 
or y, the eavesdroppers don’t know those values. 

Alice now computes k=Yx mod n, and Bob computes k=Xy mod n.  Alice and Bob get the 
same value k from these computations.  Why?  Well, Yx mod n = (gy mod n)x mod n, 
which in turn equals gyx mod n. Xy mod n = (gx mod n)y mod n = gxy mod n, which is the 
same thing Alice got.  So k is the same and is known to both Alice and Bob. 

What about those eavesdroppers?  They know g, n, X, and Y, but not x or y.   If they 
compute k’=XY mod n, they get 

€ 

gxmodng
y mod nmodn , which is not equal to the k Alice 

and Bob calculated.  They do have an approach to derive x or y, which would give them 
enough information to obtain k, but that approach requires them to computer a discrete 
logarithm.  That’s a solvable problem, but computationally infeasible for large numbers.  
So if the prime n is large (and meets other properties), the eavesdroppers are out of luck. 

Neat, no?  But there is a fly in the ointment, when one considers using Diffie-Hellman 
over a network.  It ensures that you securely share a key with someone, but gives you no 
assurance of who you’re sharing the key with.  Maybe Alice is sharing the key with 
Bob, as she thinks and hopes, but maybe she’s sharing it with Mallory, who posed as 
Bob and injected his own Y.  Since we usually care who we’re in secure communication 
with, we typically augment Diffie-Hellman with an authentication mechanism to 
provide the assurance of our partner’s identity. 

 



password later, at any point after the SSL connection is established.  Since creating the 
SSL connection sets up a symmetric key, the exchange of ID and password can be 
protected with that key.   

Other Authentication Approaches 

While passwords and public keys are the most common ways to authenticate a remote 
user or machines, there are other options.   

One such option is used all the time.  After you have authenticated yourself to a web site 
by providing a password, as we described above, the web site will continue to assume 
that the authentication is valid.  It won’t ask for your password every time you click a 
link or perform some other interaction with it.   If your session is encrypted at this point, 
it could regard your proper use of the cryptography as a form of authentication; but you 
might even be able to quit your web browser, start it up again, navigate back to that web 
site, and still be treated as an authenticated user, without a new request for your 
password.  At that point, you’re no longer using the same cryptography you used before, 
since you would have established a new session and set up a new cryptographic key.  
How did your partner authenticate that you were the one receiving the new key? 

In such cases, the site you are working with has chosen to make a security tradeoff.  It 
verified your identity at some time in the past using your password and then relies on 
another method to authenticate you in the future.  A common method is to use web 
cookies.  Web cookies are pieces of data that a web site sends to a client with the 
intention that the client store that data and send it back again whenever the client next 
communicates with the server.  Web cookies are built into most browsers and are handled 
invisibly, without any user intervention.  With proper use of cryptography, a server that 
has verified the password of a client can create a web cookie that securely stores the 
client’s identity.  When the client communicates with the server again, the web browser 
automatically includes the cookie in the request, which allows the server to verify the 
client’s identity without asking for his password again.   

If you spend a few minutes thinking about this authentication approach, you might come 
up with some possible security problems associated with it.  The people designing this 
technology have dealt with some of these problems, like preventing an eavesdropper 
from simply using a cookie he copied as it went across the network.  However, there are 
other security problems (like someone other than the legitimate user using the computer 
that was running the web browser and storing the cookie) that can’t be solved with these 
kinds of cookies, but could have been solved if you required the user to provide the 
password every time.  When you build your own system, you will need to think about 
these sorts of security tradeoffs yourself.  Is it better to make life simpler for your user by 
not asking for her password except when absolutely necessary, or is it better to provide 
your user with improved security by frequently requiring proof of her identity?  The point 
isn’t that there is one correct answer to this question, but that you need to think about 
such questions in the design of your system.   

There are other authentication options.  One example is a challenge/response protocol.  
The remote machine sends you a challenge, typically in the form of a number.  To 



authenticate yourself, you must perform some operation on the challenge that produces a 
response.  This should be an operation that only the authentic party can perform, so it 
probably relies on the use of a secret that party knows, but no one else does.  The secret is 
applied to the challenge, producing the response, which is sent to the server.  The server 
must be able to verify that the proper response has been provided.  A different challenge 
is sent every time, requiring a different response, so attackers gain no advantage by 
listening to and copying down old challenges and responses.  Thus, the challenges and 
responses need not be encrypted.  Challenge/response systems usually perform some kind 
of cryptographic operation, perhaps a hashing operation, on the challenge plus the secret 
to produce the response.  Such operations are better performed by machines than people, 
so either your computer calculates the response for you or you have a special hardware 
token that takes care of it.  Either way, a challenge/response system requires pre-
arrangement between the challenging machine and the machine trying to authenticate 
itself.  The hardware token or the data secret must have been set up and distributed before 
the challenge is issued.   

Another authentication option is to use an authentication server.  In essence, you talk to a 
server that you trust and that trusts you.  The party you wish to authenticate to must also 
trust the server.  The authentication server vouches for your identity in some secure form, 
usually involving cryptography.  The party who needs to authenticate you is able to check 
the secure information provided by the authentication server and thus determine that the 
server verified your identity.  Since the party you wish to communicate with trusts the 
authentication server, it now trusts you are who you claim to be.  In a vague sense, 
certificates and CAs are an offline version of such authentication servers.  There are more 
active online versions which involve network interactions of various sorts between the 
two machines wishing to communicate and one or more authentication servers.  Online 
versions are more responsive to changes in security conditions than offline versions like 
CAs.  An old certificate that should not be honored is hard to get rid of, but an online 
authentication server can invalidate authentication for a compromised party instantly and 
apply the changes immediately. The details of such systems can be quite complex, so we 
will not discuss them in depth.  Kerberos is one example of such an online authentication 
server  [NT95].   

Some Higher Level Tools 

In some cases, we can achieve desirable security effects by working at a higher level. 
HTTPS (the cryptographically protected version of the HTTP protocol) and SSH (a 
competitor to SSL most often used to set up secure sessions with remote computers) are 
two good examples. 

HTTPS 

HTTP, the protocol that supports the World Wide Web, does not have its own security 
features.  Nowadays, though, much sensitive and valuable information is moved over the 
web, so sending it all unprotected over the network is clearly a bad idea.  Rather than 
come up with a fresh implementation of security for HTTP, however, HTTPS takes the 
existing HTTP definition and connects it to SSL/TLS. SSL takes care of establishing a 
secure connection, including authenticating the web server using the certificate approach 



discussed earlier and establishing a new symmetric encryption key known only to the 
client and server.  Once the SSL connection is established, all subsequent interactions 
between the client and server use the secured connection.   To a large extent, HTTPS is 
simply HTTP passed through an SSL connection. 

That does not devalue the importance of HTTPS, however.  In fact, it is a useful object 
lesson.  Rather than spend years in development and face the possibility of the same 
kinds of security flaws that other developers of security protocols inevitably find, HTTPS 
makes direct use of a high quality transport security tool, thus replacing an insecure 
transport with a highly secure transport at very little development cost. 

HTTPS obviously depends heavily on authentication, since we want to be sure we aren’t 
communicating with malicious web sites.  HTTPS uses certificates for that purpose.  
Since HTTPS is intended primarily for use in web browsers, the certificates in question 
are gathered and managed by the browser.  Modern browsers come configured with the 
public keys of many certificate signing authorities (CAs, as we mentioned earlier).  
Certificates for web sites are checked against these signing authorities to determine if the 
certificate is real or bogus.  Remember, however, what a certificate actually tells you, 
assuming it checks out: that at some moment in time the signing authority thoughts it was 
a good idea to vouch that a particular public key belongs to a particular party.  These is 
no implication that the party is good or evil, that the matching private key is still secret, 
or even that the certificate signing authority itself is secure and uncompromised, either 
when it created the certificate or at the moment you check it.  There have been real world 
problems with web certificates in all these cases.  Remember also that HTTPS only 
vouches for authenticity.  An authenticated web site using HTTPS can still launch an 
attack on your client.  An authenticated attack, but that won’t be much consolation if it 
succeeds. 

While HTTPS is primarily intended to help secure web browsing, it is sometimes used to 
secure other kinds of communications.  Some developers have leveraged HTTP for 
purposes rather different than standard web browsing, and, for them, using HTTPS to 
secure their communications is both natural and cheap.  However, you can only use 
HTTPS to secure your system if you commit to using HTTP as your application protocol, 
and HTTP was intended primarily to support a human-based activity.  HTTP messages, 
for example, are typically encoded in ASCII and include substantial headers designed to 
support web browsing needs.  You may be able to achieve far greater efficiency of your 
application by using SSL, rather than HTTPS.  Or you can use SSH. 

SSH 

SSH stands for “Secure Shell,” which accurately describes the original purpose of the 
program.  SSH is available on Linux and other Unix systems, and to some extent on 
Windows systems.  SSH was envisioned as a secure remote shell, but it has been 
developed into a more general tool for allowing secure interactions between computers. 
Most commonly this shell is used for command line interfaces, but SSH can support 
many other forms of secure remote interactions.  For example, it can be used to protect 
remote X Windows sessions.  Generally, TCP ports can be forwarded through SSH, 
providing a powerful method to protect remote interactions. 



SSH addresses many of the same problems seen by SSL, often in similar ways.  Remote 
users must be authenticated, shared encryption keys must be established, integrity must 
be checked, and so on.  SSH typically relies on public key cryptography and certificates 
to authenticate remote servers.  Clients frequently do not have their own certificates and 
private keys, in which case providing a user ID and password is permitted.  SSH supports 
other options for authentication not based on certificates, such as the use of authentication 
servers (such as Kerberos) and password-based authentication.  Various ciphers (both for 
authentication and for symmetric encryption) are supported, and some form of 
negotiation is required between the client and the server to choose a suitable set. 

SSH is not built on SSL, but is a separate implementation.  As a result, the two 
approaches each have their own bugs, features, and uses.  A security flaw found in SSH 
will not necessarily have any impact on SSL, and vice versa.   

Summary 

Distributed systems are critical to modern computing, but are difficult to secure.  The 
cornerstone of providing distributed system security tends to be ensuring that the insecure 
network connecting system components does not introduce new security problems.  
Messages sent between the components are encrypted and authenticated, protecting their 
privacy and integrity, and offering exclusive access to the distributed service to the 
intended users.  Standard tools like SSL/TLS and public keys distributed through X.509 
certificates are used to provide these security services.  Passwords are often used to 
authenticate remote human users. 

Symmetric cryptography is used for transport of most data, since it is cheaper than 
asymmetric cryptography.  Often, symmetric keys are not shared by system participants 
before the communication starts, so the first step in the protocol is typically exchanging a 
key.  As discussed in previous chapters, key secrecy is critical in proper use of 
cryptography, so care is required in the key distribution process.  Diffie-Hellman key 
exchange is commonly used, but it still requires authentication to ensure that only the 
intended participants know the key. 

As mentioned in earlier chapters, building your own cryptographic solutions is 
challenging and often leads to security failures.  A variety of tools, including SSL/TLS, 
SSH, and HTTPS, have already tackled many of the challenging problems and made 
good progress in overcoming them.  These tools can be used to build other systems, 
avoiding many of the pitfalls of building cryptography from scratch.  However, proper 
use of even the best security tools depends on an understanding of the tool’s purpose and 
limitations, so developing deeper knowledge of the way such tools can be integrated into 
one’s system is vital to using them to their best advantage. 

Remember that these tools only make limited security guarantees.  They do not provide 
the same assurance that an operating system gets when it performs actions locally on 
hardware under its direct control.  Thus, even when using good authentication and 
encryption tools properly, a system designer is well advised to think carefully about the 
implications of performing actions requested by a remote site, or providing sensitive 



information to that site.  What happens beyond the boundary of the machine the OS 
controls is always uncertain and thus risky. 
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