
Access Control 

Introduction 

So we know what our security goals are, we have at least a general sense of the security 
policies we’d like to enforce, and we have some evidence about who is requesting 
various system services that might (or might not) violate our policies.  Now we need to 
take that information and turn it into something actionable, something that a piece of 
software can perform for us. 

There are two important steps here:   

1. Figure out if the request fits within our security policy 
2. If it does, perform the operation.  If not, make sure it isn’t done. 

The first part of this problem is generally referred to as access control.  We will 
determine which system resources or services can be accessed by which parties in which 
ways under which circumstances.  Basically, it boils down to another of those binary 
decisions that fit so well into our computing paradigms: yes or no.  But how to make that 
decision? 

To make the problem more solid, consider this case.  User X wishes to read and write file 
/var/foo.  Under the covers, this case probably implies that a process being run under 
the identity of User X issued a system call something like 

open(“/var/foo”, O_RDWR) 

Note here that we’re not talking about the Linux open() call, which is a specific 
implementation that handles access control a specific way.  We’re talking about the 
general idea of how you might be able to control access to a file open system call.  Hence 
the different font, to remind you. 

How should the system handle this request from the process, making sure that the file is 
not opened if the security policy to be enforced forbids it, but equally making sure that 
the file is opened if the policy allows it?  We know that the system call will trap to the 
operating system, giving it the opportunity to do something to make this decision.  
Mechanically speaking, what should that “something” be? 

  

THE CRUX OF THE PROBLEM 
HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE GRANTED? 

How can the operating system decide if a particular request made by a particular 
process belonging to a particular user at some given moment should or should not be 
granted?  What information will be used to make this decision?  How can we set this 
information to encode the security policies we want to enforce for our system? 



Important Aspects of the Access Control Problem 

As usual, the system will run some kind of algorithm to make this decision.  It will take 
certain inputs and produce a binary output, a yes-or-no decision on granting access.  At 
the high level, access control is usually spoken of in terms of subjects, objects, and 
access.   A subject is the entity that wants the access, perhaps a user or a process.  An 
object is the thing the subject wants to access, perhaps a file or a device.  Access is some 
particular mode of dealing with the object, such as reading it or writing it.  So an access 
control decision is about whether a particular subject is allowed to perform a particular 
mode of access on a particular object. 

One relevant issue is when will access control decisions be made?  The system must run 
whatever algorithm it uses every time it makes such a decision.  The code that 
implements this algorithm is called a reference monitor, and there is an obvious incentive 
to make sure it is implemented both correctly and efficiently.  If it’s not correct, you 
make the wrong access decisions⎯obviously bad.  Its efficiency is important because it 
will inject some overhead whenever it is used.  Perhaps we wish to minimize these 
overheads by not checking access control on every possible opportunity.  On the other 
hand, remember that principle of complete mediation we introduced a couple of chapters 
back?  That principle said we should check security conditions every time someone asked 
for something.   

Clearly we’ll need to balance costs against security benefits.  But if we can find some 
beneficial special cases where we can achieve low cost without compromising security, 
we can possibly manage to avoid trading off one for the other, at least in those cases. 

One way to do so is to give subjects objects that belong only to them.  If the object is 
inherently theirs, by its very nature and unchangeably so, the system can let the subject (a 
process, in the operating system case) access it freely.  Virtualization allows us to create 
virtual objects of this kind.  Virtual memory is an excellent example.  A process is 
allowed to access its virtual memory freely1, with no special operating system access 
control check at the moment the process tries to use it.  A good thing, too, since otherwise 
we would need to run our access control algorithm on every process memory reference, 
which would lead to a ridiculously slow system.  We can play similar virtualization tricks 
with hardware.  If a process is given access to some virtual device, which is actually 
backed up by a real physical device controlled by the OS, if no other process is allowed 
to use that device, the operating system need not check for access control every time the 
process wants to use it.  For example, a process might be granted control of a GPU based 
on an initial access control decision, after which the process can write to the GPU’s 
memory or issue instructions directly to it without further intervention by the OS. 

Of course, as discussed earlier, virtualization is mostly an operating-system provided 
illusion.  Processes share memory, devices, and other computing resources.  What 
                                                 
1 Almost.  Remember the bits in the page table that determine whether a particular page 
can be read, written, or executed?  But it’s not the operating system doing the runtime 
check here, it’s the virtual memory hardware.   



appears to be theirs alone is actually shared, with the operating system running around 
behind the scenes to keep the illusion going.  That means the operating system, without 
the direct knowledge and participation of the applications using the virtualized resource, 
still has to make sure that only proper forms of access to it are allowed.  So merely 
relying on virtualization to ensure proper access just pushes the problem down to 
protecting the virtualization functionality of the OS.  

Even if we leave that issue aside, sooner or later we have to abandon cheap special cases 
and deal with the general problem.  Subject X wants to read and write object /tmp/foo.  
Maybe it’s allowable, maybe it isn’t.  Now what? 

Computer scientists have come up with two basic approaches to solving this question, 
relying on different data structures and different methods of making the decision.  One is 
called access control lists and the other is called capabilities.  It’s actually a little 
inaccurate to claim that computer scientists came up with these approaches, since they’ve 
been in use in non-computer contexts for millennia.  Let’s look at them in a more general 
perspective before we consider operating system implementations. 

Let’s say we want to start an exclusive nightclub (called, perhaps, Chez Andrea) 
restricted to only the best operating system researchers and developers.   We don’t want 
to let any of those database or programming language people slip in, so we’ll need to 
make sure only our approved customers get through the door.  How might we do that?  
One way would be to hire a massive intimidating doorman and give him a list of all the 
approved members.  When someone wanted to enter the club, he would prove to the 
doorman who he was and the doorman would look him up on the list.  If it was Linus 
Torvalds, the doorman would let him in, but he’d keep out the hoi polloi networking 
folks who had failed to distinguish themselves in the field of operating systems. 

Another approach would be to put a really great lock on the door of the club and hand out 
keys to that lock to all of our OS buddies.  If Jerome Saltzer wanted to get in to Chez 
Andrea, he’d merely pull out his key and unlock the door.  If some computer architect 
with no OS chops wanted to get in, he wouldn’t have the key and would be stuck outside.  
Compared to the other approach, we’d save on the salary of the doorman, though we 
would have to pay for the locks and keys2.  As new luminaries in the OS field emerge 
who we want to admit, we’ll need new keys for them, and once in a while we may make 
a mistake and hand out a key to someone who doesn’t deserve it, or a member might lose 
his key, in which case we need to make sure that key no longer opens the club door. 

The same ideas can be used in computer systems.  Early computer scientists decided to 
call the approach that’s kind of like locks and keys a capability-based system, while the 

                                                 
2 Note that for both access control lists and capabilities, we are assuming we’ve already 
authenticated the person trying to enter the club.  If some nobody wearing a Linus 
Torvalds mask gets past our doorman, or if we aren’t careful to determine that it really is 
Jerome Saltzer before handing a random guy the key, we’re not going to keep the riffraff 
out.  Abandoning the cute analogy, absolutely the same issue applies in real computer 
systems, which is why the previous chapter discussed authentication in detail. 



approach based on the doorman and the list of those to admit was called an access-
control-list system.  Capabilities are thus like keys, or tickets to a movie, or tokens that 
let you ride a subway.  Access control lists are thus like, well, lists. 

How does this work in an operating system?  If you’re using capabilities, when a process 
belonging to user X wants to read and write file /tmp/foo, it hands a capability 
specific to that file to the system.  (And precisely what, you may ask, is a capability in 
this context?  Good question!  We’ll get to that.)   If you’re using access control lists 
(ACLs, for short), the system looks up user X on an ACL associated with /tmp/foo, 
only allowing the access if the user is on the list.  In either case, the check can be made at 
the moment the access (an open() call, in our example) is requested.  The check is made 
after trapping to the operating system, but before the access is actually permitted, with an 
early exit and error code returned if the access control check fails. 

At a high level, these two options may not sound very different, but when you start 
thinking about the algorithm you’ll need to run and the data structures required to support 
that algorithm, you’ll quickly see that there are major differences.  Let’s walk through 
each in turn. 

Using ACLs for Access Control 

What if, in the tradition of old British men’s clubs, Chez Andrea gives each member his 
own private room, in addition to access to the library, the dining room, the billiard parlor, 
and other shared spaces?  In this case, we need to ensure not just that only members get 
into the club at all, but that Ken Thompson (known to be a bit of a scamp [T84]) can’t 
slip into Whitfield Diffie’s room and short-sheet his bed.  We could have one big access 
control list that specifies allowable access to every room, but that would get 
unmanageable.  Instead, why not have one ACL for each room in the club? 

We do the same thing with files in a typical OS that relies on ACLs for access control.  
Each file has its own access control list, resulting in simpler, shorter lists and quicker 
access control checks.  So our open() call in an ACL system will examine a list for 
/tmp/foo, not an ACL encoding all accesses for every file in the system. 

When this open() call traps to the operating system, the OS consults the running 
process’ PCB to determine who owns the process.  That data structure indicates that user 
X owns the process.  The system then must get hold of the access control list for 
/tmp/foo.  This ACL is more file metadata, akin to the things we discussed in the 
chapter titled “Files and Directories.”  So it’s likely to be stored with or near the rest of 
the metadata for this file.  Somehow, we obtain that list from persistent storage.  We now 
look up X on the list.   Either X is there or he isn’t.  If not, no access for him.  If he is on 
the list, we’ll typically go a step further to determine if the ACL entry for X allows the 
type of access he’s requesting.  In our example, X wanted to open /tmp/foo for read 
and write.  Perhaps the ACL allows X to open that file for read, but not for write.  In that 
case, the system will deny the access and return an error to the process. 

In principle, this isn’t too complicated, but remember the devil being in the details?  He’s 
still there.  Consider some of those details.  For example, where exactly is the ACL 



persistently stored?  It really does need to be persistent for most resources, since the 
ACLs effectively encode our chosen security policy, which is probably not changing very 
often.  So it’s somewhere on the disk.  Unless it’s cached, we’ll need to read it off the 
disk every time someone tries to open the file.  In most file systems, as was discussed in 
the sections on persistence, you already need to perform several disk reads to actually 
obtain any information from a file.  Are we going to require another read to also get the 
ACL for the file?  If so, where on the disk do we put the ACL to ensure that we at least 
don’t also have to do another seek?  It had better be close to something we’re already 
reading, which suggests a few possible locations:  the file’s directory entry, the file’s 
inode, or perhaps the first data block of the file.  At the minimum, we want to have the 
ACL close to one of those locations, and it might be better if it was actually in one of 
them, such as the inode. 

That leads to another vexing detail: how big is this list?  If we do the naïve thing and 
create a list of actual user IDs and access modes, in principle the list could be of arbitrary 
size, up to the number of users known to the system.  For some systems, that could be 
thousands of entries.  But typically files belong to one user and are often available only to 
that user and perhaps a couple of his friends.  So we wouldn’t want to reserve enough 
space in every ACL for every possible user to be listed, since most users wouldn’t appear 
in most ACLs.  With some exceptions, of course:  a lot of files should be available in 
some mode (perhaps read or execute) to all users.  After all, commonly used executables 
(like ls and mv) are stored in files, and we’ll be applying access control to them, just like 
any other file.  Our users will share the same font files, configuration files for 
networking, and so forth.  We have to allow all users to access these files or they won’t 
be able to do much of anything on the system. 

So the naïve implementation would reserve a big per-file list that would be totally filled 
for some files and nearly empty for others.  That’s clearly wasteful.  For the totally filled 
lists, there’s another worrying detail: every time we want to check access in the list, we’ll 
need to search it.  Modern computers can search a list of a thousand entries rather 
quickly, but if we need to perform such searches all the time, we’ll add a lot of 
undesirable overhead to our system.  We could solve the problem with variable-sized 
access control lists, only allocating the space required for each list.  Spend a few 
moments thinking about how you would fit that kind of metadata into the types of file 
systems we’ve studied, and the implications for performance. 

Fortunately, in most circumstances we can benefit from a bit of legacy handed down to us 
from the original Bell Labs Unix system.  Back in those primeval days when computer 
science giants roamed the Earth (or at least certain parts of New Jersey), persistent 
storage was in short supply and pretty expensive.  There was simply no way they could 
afford to store large ACLs for each file.  In fact, when they worked it out, they figured 
they could afford about 9 bits for each file’s ACL.  9 bits don’t go far, but fortunately 
those early Unix designers had plenty of cleverness to make up for their lack of hardware.  
They thought about their problem and figured out that there were effectively three modes 
of access they cared about (read, write, and execute, for most files), and they could 
handle most security policies with only three entries on each access control list.  Of 
course, if they were going to use one bit per access mode per entry, they would have 



already used up their 9 bits, leaving no bits to specify who the entry pertained to.  So they 
cleverly partitioned the entries on their access control list into three groups.  One is the 
owner of the file, whose identity they had already stored away in the inode.  One is the 
members of a particular group or users; this group ID could also be stored in the inode.  
The final one is everybody else, everybody who wasn’t the owner or a member of his 
group.  No need to use any bits to store that, since it was just the complement of the user 
and group.  

This solution not only solved the problem of the amount of storage eaten up by ACLs, 
but also solved the problem of the cost of accessing and checking them.  You already 
needed to access a file’s inode to do almost anything with it, so if the ACL was 
embedded in the inode, there would be no extra seeks and reads to obtain it.  And instead 
of a search of an arbitrary sized list, a bit of simple logic on a few bits would provide the 
answer to the access control question.  And that logic is still providing the answer in most 
systems that use Posix-compliant file systems to this very day. Of course, the approach 
has limitations, since it cannot express complex access modes and sharing relationships.  
For that reason, some modern systems (such as Windows) allow extensions that permit 
the use of more general ACLs, but many rely on the tried-and-true Unix-style 9 bit 
ACLs3.     

There are some good features of ACLs and some limiting features.  Good points first.  
First, what if you want to figure out who is allowed to access a resource?  If you’re using 
ACLs, that’s an easy question to answer, since you can simply look at the ACL itself.  
Second, if you want to change the set of subjects who can access an object, you merely 
need to change the ACL, since nothing else can give the user access.  Third, since the 
ACL is typically kept either with or near the file itself, if you can get to the file, you can 
get to all relevant access control information.  This is particularly important in distributed 
systems, but it also has good performance implications for all systems, as long as your 
design keeps the ACL near the file or its inode.  

Now for the less desirable features.  First, ACLs require you to solve problems we 
mentioned earlier: having to store the access control information somewhere near the file 
and dealing with potentially expensive searches of long lists.  We described some 
practical solutions that work pretty well in most systems, but these solutions limit what 
ACLs can do.  Second, what if you want to figure out the entire set of resources some 
principal (a process or a user) is permitted to access?  You’ll need to check every single 
ACL in the system, since that principal might be on any of them.  Third, in a distributed 
environment, you need to have a common view of identity across all the machines for 
ACLs to be effective.  If a user on cs.ucla.edu wants to access a file stored on 
cs.wisconsin.edu, the Wisconsin machine is going to check some identity provided 

                                                 
3 The history is a bit more complicated than this.   The CTSS system offered a more 
limited form of condensed ACL than Unix did [C+63], and the Multics system included 
the concept of groups in a more general access control list consisting of character string 
names of users and groups [S74].  Thus, the Unix approach was a crossbreeding of these 
even earlier systems. 



by UCLA against an access control list stored at Wisconsin.  Does user remzi at UCLA 
actually refer to the same principal as user remzi at Wisconsin?  If not, you may allow a 
remote user to access something he shouldn’t.  But trying to maintain a consistent name 
space of users across multiple different computing domains is challenging. 

 

Using Capabilities for Access Control 

Access control lists are not your only option for controlling access in computer systems.  
Almost, but not quite.  You can also use capabilities, the option that’s more like keys or 
tickets.  Chez Andrea could give keys to its members to allow admission.  Different 
rooms could have different keys, preventing the more mischievous members from leaving 
little surprises in other members’ rooms.  Each member would carry around a set of keys 
that would admit her to the particular areas of the club she should have access to. 

Like ACLs, capabilities have a long history of use in computer systems, with [DV64] 
being perhaps the earliest example.  [W+74] describes the Hydra Operating System, 
which used capabilities as a fundamental control mechanism.  [L84] gives a book-length 
summary of the use of capabilities in early hardware and software systems.  In capability 
systems, a running process has some set of capabilities that specify its access 
permissions.  If you’re using a pure capability system, there is no ACL anywhere, and 
this set is the entire encoding of the access permissions for this process.  That’s not how 
Linux or Windows work, but other operating systems, such as Hydra, examined this 
approach to handling access control. 

ASIDE:  NAME SPACES 

We just encountered one of the interesting and difficult problems in distributed systems: 
what do names mean on different machines?  The name space problem is relatively easy 
on a single computer. If the name chosen for a new thing is already in use, don’t allow it 
to be assigned.  So when a particular name is issued on that system by any user or 
process, it means the same thing.  /etc/password is the same file for you and for all 
the other users on your computer. 

But what about distributed systems composed of multiple computers?  If you want the 
same guarantee about unique names understood by all, you need to make sure someone 
on a machine at UCLA does not create a name already being used at the University of 
Wisconsin.  How to do that? 

Different answers have different pluses and minuses.  One approach is not to bother and 
to understand that the namespaces are different. (That’s what we do with process IDs, 
for example.)  Another approach is to require an authority to approve name selection.  
(That’s more or less how AFS handles file name creation.)  Another approach is to hand 
out portions of the name space to each participant and allow them to assign any name 
from that portion, but not any other name.  (That’s how the World Wide Web and the 
IPv4 address space handle the issue.)  None of these answers are universally right or 
wrong.  Design your name space for your needs, but understand the implications. 



How would we perform that open() call in this kind of pure capability system?  When 
the call is made, either your application would provide a capability permitting your 
process to open the file in question as a parameter, or the operating system would find the 
capability for you.  In either case, the operating system would check that the capability 
does or does not allow you to perform a read/write open on file /tmp/foo.  If it does, 
the OS opens it for you.  If not, back comes an error to your process, chiding it for trying 
to open a file it does not have a capability for.  (Remember, we’re not talking about 
Linux here.  Linux uses ACLs, not capabilities, to determine if an open() call should be 
allowed.) 

There are some obvious questions here.  What, precisely, is a capability?  Clearly we’re 
not talking about metal keys or paper tickets.  Also, how does the OS check the validity 
of capability?  And where do capabilities come from, in the first place? 

Just like all other information in a computer, capabilities are bunches of bits.  They are 
data.  Given that there are probably lots of resources to protect, and capabilities must be 
specific to a resource, capabilities are likely to be fairly long, and perhaps fairly complex.  
But, ultimately, they’re just bits.  Anything composed of a bunch of bits has certain 
properties we must bear in mind.  For example, anyone can create any bunch of bits they 
want.  There are no proprietary or reserved bit patterns that processes cannot create.  
Also, if a process has one copy of a particular set of bits, it’s trivial to create more copies 
of it.  The first characteristic implies that it’s possible for anyone at all to create any 
capability they want.  The second characteristic implies that once someone has a working 
capability, they can make as many copies of it as they want, and can potentially store 
them anywhere they want, including off-machine. 

That doesn’t sound so good from a security perspective.  If a process needs a capability 
with a particular bit pattern to open /tmp/foo for read and write, maybe it can just 
generate that bit pattern and successfully give itself the desired access to the file.  That’s 
not what we’re looking for in an access control mechanism.  We want our capabilities to 
be unforgeable.  Even if we can get around that problem, the ability to copy a capability 
would suggest we can’t take access permission away, once granted, since the process 
might have copies of the capability stashed away in various places.  Further, perhaps the 
process can grant access to another process merely by using IPC to transfer a copy of the 
capability to that other process. 

We typically deal with these issues when using capabilities for access control by never 
letting a process get its metaphoric hands on any capability.  The operating system 
controls and maintains capabilities, storing them somewhere in its protected memory 
space.  Processes can perform various operations on capabilities, but only with the 
mediation of the operating system.  If, for example, process A wishes to give process B 
read/write access to file /tmp/foo using capabilities, A can’t merely send B the 
appropriate bit pattern.  Instead, A must make a system call requesting the operating 
system to give the appropriate capability to B.  That gives the OS a chance to decide on 
whether its security policy permits B to access /tmp/foo, and to deny the capability 
transfer if it does not.   



So if we want to rely on capabilities for access control, the operating system will need to 
maintain its own protected capability list for each process.  That’s simple enough, since 
the OS already has a per-process protected data structure, the PCB.  Slap a pointer to the 
capability list into the process’ PCB and you’re all set.  Now when the process attempts 
to open /tmp/foo for read/write, the call traps to the OS, the OS consults the capability 
list for that process to see if there is a relevant capability for the operation on the list and 
proceeds accordingly. 

In a general system, keeping an on-line capability list of literally everything some 
principal is permitted to access would incur some high overheads.  If we used capabilities 
for file-based access control, a user might have tens or hundreds of thousands of 
capabilities, one for each file he was allowed to access in any way.  Generally, if one is 
using capabilities, the system persistently stores the capabilities somewhere safe, and 
imports them as needed. So a capability list attached to a process is not necessarily very 
long, but there is an issue of deciding which capabilities of the immense set a user has at 
his discretion to give to each process he runs. 

There is another option.  Capabilities need not be stored in the operating system.  Instead, 
they can be cryptographically protected entities, which solves the forgeability problem 
and allows them to be left in users’ hands.  Cryptographic capabilities make most sense in 
a distributed system, so we’ll talk about them in the chapter on distributed system 
security. 

There are good and bad points about capabilities, just as there were for access control 
lists.  With capabilities, it’s easy to determine which system resources a given principal 
can access.  Just look through his capability list.  Revoking his access merely requires 
removing the capability from the list, which is easy enough if the operating system has 
exclusive access to the capability.   (But much more difficult if it does not.)  If you have 
the capability readily available in memory, it can be quite cheap to check it, particularly 
since the capability can itself contain a pointer to the data or software associated with the 
resource it protects.  Perhaps merely having such a pointer is the system’s core 
implementation of capabilities.   

On the other hand, determining the entire set of principals who can access a resource 
becomes more expensive.  Any principal might have a capability for the resource, so you 
must check all principals’ capability lists to tell.  Simple methods for making capability 
lists short and manageable have not been as well developed as the Unix method of 
providing short ACLs.  Also, the system must be able to create, store, and retrieve 
capabilities in a way that overcomes the forgery problem, which can be challenging. 

One neat aspect of capabilities is that they offer a good way to create processes with 
limited privileges.  With access control lists, a process inherits the identity of its parent 
process, also inheriting all of the privileges of that principal.  It’s hard to give the process 
just a subset of the parent’s privileges.  Either you need to create a new principal with 
those limited privileges, change a bunch of access control lists, and set the new process’ 
identity to that new principal; or you need some extension to your access control model 
that doesn’t behave quite the way access control lists ordinarily do.  With capabilities, it’s 
easy.  If the parent has capabilities for X, Y, and Z, but only wants the child process to 



have the X and Y capabilities, when the child is created, the parent only transfers X and 
Y, not Z.   

In practice, user-visible access control mechanisms tend to use access control lists, not 
capabilities, for a number of reasons.  However, under the covers operating systems make 
extensive use of capabilities.  For example, in a typical Linux system, that open() call 
we were discussing has ACL-based access control performed.  However, assuming the 
Linux open() was successful, as long as the process keeps the file open, the ACL is not 
examined on subsequent reads and writes.  Instead, Linux creates a data structure that 
amounts to a capability indicating that the process has read and write privileges for that 
file.  This structure is attached to the process’ PCB.   On each read or write operation, the 
OS can simply consult this data structure to determine if reading and writing are allowed, 
without having to find the file’s access control list.  If the file is closed, this capability-
like structure is deleted from the PCB and the process can no longer access the file 
without performing another open() which goes back to the ACL.  Similar techniques 
can be used to control access to hardware devices and IPC channels, especially since 
Unix-like systems treat these resources as if they were files.   

Mandatory and Discretionary Access Control 

Who gets to decide what the access control on a computer resource should be?  For most 
people, the answer seems obvious: whoever owns the resource.  In the case of a user’s 
file, the user himself should determine access control settings.  In the case of a system 
resource, the system administrator, or perhaps the owner of the computer, should 
determine them.  However, for some systems and some security policies, that’s not the 
right answer.  In particular, the parties who care most about information security 
sometimes want tighter controls than that. 

The military is the most obvious example.  We’ve all heard of Top Secret information, 
and probably all understand that even if you are allowed to see Top Secret information, 
you’re not supposed to let other people see it, too.  And that’s true even if the information 
in question is in a file that you created yourself, such as a report that contains statistics or 
quotations from some other Top Secret document.  In these cases, the simple answer of 
the creator controlling access permissions isn’t right.  Whoever is in overall charge of 
information security in the organization needs to make those decisions, which implies 
that principal has the power to set the access controls for information created by and 
belonging to other users, and that those users can’t override his decisions. 

The more common case is called discretionary access control.  Whether almost anyone 
or almost no one is given access to a resource is at the discretion of the owning user.  The 
more restrictive case is called mandatory access control.  At least some elements of the 
access control decisions in such systems are mandated by an authority, who can override 
the desires of the owner of the information. The choice of discretionary or mandatory 
access control is orthogonal to whether you use ACLs or capabilities, and is often 
independent of other aspects of the access control mechanism, such as how access 
information is stored and handled.   A mandatory access control system can also include 



discretionary access control elements, which allow further restriction (but not loosening) 
of the mandatory controls. 

Many people will never work with a system running mandatory access controls, so we 
won’t go further into how they work, beyond observing that clearly the operating system 
is going to be involved in enforcing them.  Should you ever need to work in an 
environment where mandatory access control is important, you can be sure you will hear 
about it.  You should learn more about it at that point, since when someone cares enough 
to use mandatory access control mechanisms, they also care enough to punish users who 
don’t follow the rules.  [L01] describes a special version of Linux that incorporates 
mandatory access control.  This is a good paper to start with if you want to learn more 
about the characteristics of such systems. 

Practicalities of Access Control Mechanisms  

Most systems expose either a simple or more powerful access control list mechanism to 
their users, and most of them use discretionary access control.  However, given that a 
modern computer can easily have hundreds of thousands, or even millions of files, having 
human users individually set access control permissions on them is infeasible.  Generally, 
the system allows each user to establish a default access permission that is used for every 
file he creates.   If one uses the Linux open() call to create a file, one can specify which 
access permissions to initially assign to that file.  Access permissions on newly created 
files in Unix/Linux systems can be further controlled by the umask() call, which 
applies to all new file creations by the process that performed it. 

If desired, the owner can alter that initial ACL, but experience shows that users rarely do.  
This tendency demonstrates the importance of properly chosen defaults.  Here, as in 
many other places in an operating system, a theoretically changeable or tunable setting 
will, in practice, be used unaltered by almost everyone almost always. 

However, while many will never touch access controls on their resources, for an 
important set of users and systems these controls are of vital importance to achieve their 
security goals.  Even if you mostly rely on defaults, many software installation packages 
use some degree of care in setting access controls on executables and configuration files 
they create.  Generally, you should exercise caution in fiddling around with access 
controls in your system.  If you don’t know what you’re doing, you might expose 
sensitive information or allow attackers to alter critical system settings and services.  Or, 
if you tighten existing access controls, you might suddenly cause a bunch of daemon 
programs running in the background to stop working. 

One practical issue that many large institutions discovered when trying to use standard 
access control methods to implement their security policies is that people performing 
different roles within the organization require different privileges.  For example, in a 
hospital, all doctors might have a set of privileges not given to all pharmacists, who 
themselves have privileges not given to the doctors.  Organizing access control on the 
basis of such roles and then assigning particular users to the roles they are allowed to 
perform makes implementation of many security policies easier.  This approach is 
particularly valuable if certain users are permitted to switch roles depending on the task 



they are currently performing, since then one need not worry about setting or changing 
the individual’s access permissions on the fly, but simply switch their role from one to 
another.  Usually they will hold the role’s permission only as long as they maintain that 
role.  Once they exit the particular role (perhaps to enter a different role with different 
privileges), they lose the privileges of the role they exit. 

This observation led to the development of Role-Based Access Control, or RBAC.  The 
core ideas had been around for some time before they were more formally laid out in a 
research paper by Ferraiolo and Kuhn {FK92].  Now RBAC is in common use in many 
organizations, particularly large organizations.  Large organizations face more serious 
management challenges than small ones, so approaches like RBAC that allow groups of 
users to be dealt with in one operation can significantly ease the management task.  For 
example, if the company determines that all programmers should be granted access to a 
new library that has been developed, but accountants and janitors should not, RBAC 
would achieve this effect with a single operation that assigns the necessary privilege to 
the Programmer role.  If a programmer is promoted to a management position for which 
access to the library is unnecessary (or, less happily, demoted to janitor), you can merely 
remove the Programmer role from the set he could take on. 

RBAC sounds a bit like using groups in access control lists, and there is some similarity, 
but RBAC systems typically have a more formal approach than merely including 
individuals in groups.  They often require a new authentication step to take on an RBAC 
role, and usually taking on Role A requires relinquishing privileges associated with one’s 
previous role, say Role B. RBAC systems may offer finer granularity than merely being 
able to read or write a file.  A particular role (Salesman, for instance) might be permitted 
to add a purchase record for a particular product to a file, but would not be permitted to 
add a restocking record for the same product to the same file, since salesmen don’t do 
restocking.  This degree of control is sometimes called type enforcement.  It associates 
detailed access rules to particular objects using what is commonly called a security 
context for that object.  There are implications for performance, storage of the security 
context information, and authentication that we hope are obvious to you, at this stage. 

One can build a minimal RBAC system under Linux and similar OSes using ACLs and 
groups.  The Linux sudo command offers a simple approach, allowing users with 
particular privileges to run commands under other identities.  For example, 

sudo –u Programmer install newprogram 

would run this install command under the identity of user Programmer, rather than 
the identity of the user who ran the command, assuming the user who ran the command 
was on a system-maintained list of users allowed to take on the identity Programmer.  
Usually the sudo command requires a new authentication step, as with other RBAC 
systems. 

For more advanced purposes, one typically uses a system that supports finer granularity 
and more careful tracking of role assignment.  This system might be part of the operating 
system or might be some form of add-on to the system, or perhaps a programming 
environment.  Often, if you’re using RBAC, you also run some degree of mandatory 



access control.  If not, in the example of sudo above, the user running under the 
Programmer identity could run a command to change the access permissions on files, 
making the install command available to non-Programmers.  With mandatory access 
control, he could take on the role of Programmer to do the installation himself, but could 
not use that role to allow salesmen or accountants to perform the installation. 

ASIDE:  THE ANDROID ACCESS CONTROL MODEL 

The Android system is one of the leading software platforms for today’s mobile 
computing devices, especially smart phones.  These devices pose different access 
control challenges than classic server computers, or even personal desktop computers or 
laptops.  Their functionality is based on the use of many relatively small independent 
applications, commonly called apps, that are downloaded, installed, and run on a device 
belonging to only a single user.  Thus, there is no issue of protecting multiple users on 
one machine from each other.  If one used a standard access control model, these apps 
would run under that user’s identity.  But apps are developed by many entities, and 
some of them are malicious.  Further, most apps have no legitimate need for most of the 
resources stored on the device.  If they are granted too many privileges, a malicious app 
can access the phone owner’s contacts, make phone calls, or buy things over the 
network, among many other undesirable behaviors. The principle of least privilege thus 
implies that we should not give apps the full privileges belonging to the phone’s owner.  
But they must have some privileges if they are to do anything interesting for that user 

Android runs on top of a version of Linux, and an application’s access limitations are 
achieved in part by generating a new user ID for each installed app.  The app runs under 
that ID and its accesses can be controlled on that basis.  However, the Android 
middleware offers additional facilities for controlling access.  Application developers 
define accesses required by their app.  When a user considers installing an app on his 
device, he is shown what permissions it requires.  He can either grant the app those 
permissions, not install the app, or limit its permissions, though the latter choice may 
also limit the app’s utility.  Also, the developer specifies ways in which other apps can 
communicate with his new app.  The data structure used to encode this access 
information is called a permission label.  An app’s permission labels (both what it can 
access and what it provides to others) are set at the app’s design time, and encoded into 
a particular Android system at the moment the app is installed on that machine. 

Permission labels are thus like capabilities, since possession of them by the app allows 
the app to do something, while lacking that possession prevents the app from doing that 
thing.  An app’s set of permission labels is set statically at install time.  The user can 
subsequently change those permissions, though, again, limiting them may damage app 
functionality.  Permission labels are a form of mandatory access control.  The Android 
security model is discussed in detail in [E+09]. 

The Android security approach is interesting, but it is not perfect.  In particular, users 
are not always aware of the implications of granting an application access to something, 
and, faced with the choice of granting the access or not being able to effectively use the 
app, they will often grant it.  Which is too bad if the app is malicious.   



Summary 

Implementing most security policies requires controlling which users can access which 
resources in which ways.  Access control mechanisms built in to the operating system 
provide the necessary functionality.  A good access control mechanism will provide 
complete mediation (or close to it) of security-relevant accesses through use of a 
carefully designed and implemented reference monitor. 

Access control lists and capabilities are the two fundamental mechanisms used by most 
access control systems.  Access control lists specify precisely which subjects can access 
which objects in which ways.  Presence or absence on the relevant list determines if 
access is granted.  Capabilities work more like keys in a lock.  Possession of the correct 
capability is sufficient proof that access to a resource should be permitted.  User-visible 
access control is more commonly achieved with a form of access control list, but 
capabilities are often built in to the operating system at a level below what the user sees.   
Neither of these access control mechanisms is inherently better or worse than the other.  
Rather, like so many options in system design, they have properties that are well suited to 
some situations and uses and poorly suited to others.  You need to understand how to 
choose which one to use in which circumstance. 

Access control mechanisms can be discretionary or mandatory.  Some systems include 
both.  Enhancements like type enforcement and role-based access control can make it 
easier to achieve the security policy you require. 

Even if the access control mechanism is completely correct and extremely efficient, it can 
do no more than implement the security policies that it is given.  Security failures due to 
faulty access control mechanisms are rare.  Security failures due to poorly designed 
policies implemented by those mechanisms are not. 
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