
Measuring Operating Systems Performance
No matter how fast our hardware gets, the performance of our system always matters.  
Programmers tend to add complexity and sophistication to their systems to match any 
hardware performance improvements, so there is always a need to design software that 
achieves good performance on whatever hardware is available to us.

This instantly raises a question: what do we mean by performance?  Most of us have an 
informal sense of what we mean.  Perhaps we mean we don’t want to wait for our 
commands to complete.  Perhaps we mean we want to run complex calculations on very 
large data sets fast enough for the results to be useful.  Perhaps we mean we want to get 
the most possible work through a given piece of hardware that we possibly can.  Perhaps 
we mean we want to use as little space as possible on a storage device, or send as few bits
across a network as possible.  Maybe we care about how long a user has to wait before he
starts to see some response from the system, but maybe we care about how long it takes 
for the entire job to complete.

As these potential answers to the performance question suggest, there’s a lot more to 
understanding performance in a computer system than one might initially think.  And 
there are yet more complexities in actually providing a valid answer to a particular 
performance question, such as “how many web requests per second can my server 
handle,” or “will my VoIP call provide comprehensible speech to the listener if run it over
a particular network,” or “how many buffers should I allocate in my operating system to 
make sure that I/O is not delayed too much?”

Metrics
Perhaps the first and most important step in determining the performance of your system 
is achieving clarity about what you really care about.  If you don’t know what you want 
to measure, you can be quite sure you won’t successfully measure it.  (If only mere 
clarity were enough to ensure that; but it is a vital first step.)  What makes a difference in 
your system?  What must go fast, and what is less important to speed up?  In a word, 
what are your goals?

As a rule, if we care about system performance, we must quantify it.  Saying your system 
is “fast” doesn’t mean much.  Saying it can perform a complex operation in 10 
nanoseconds makes it a lot clearer what’s going on.  So any good performance 
investigation is targeted towards reducing the observed system behavior to some set of 
characteristic numbers.  These numbers must have useful meanings relative to your goals.
So latency is likely to be expressed in some unit of time, and throughput is likely to be 
expressed in some unit of work that is relevant to your system divided by some unit of 
time.  The numbers we choose to characterize the performance of our systems are called 
metrics, and obviously their proper choice is of critical importance.   Just because some 
quantity is measurable, however, does not make it a good metric.  For instance, you can 
put your smart phone on a scale and measure its weight.  That’s a metric, but it won’t tell 
you much about whether you can render video at a high enough frame rate to be 



tolerable.  On the other hand, it might be relevant in a usability study.  The metrics you 
choose need to be relevant to your goals.

One more important point about metrics is that they must be practically measurable by 
you.  That’s limited by your ability to probe hardware and alter software.  If you have a 
proprietary operating system whose source code you cannot see, you will have a hard 
time measuring what’s happening inside it.  You will probably need to be satisfied with 
observing what happens as you enter and leave the operating system, perhaps augmented 
by whatever information the system itself will divulge to you on request.  Similarly, if 
you are measuring the performance of a web server that you do not run yourself, you 
probably can’t run any code at all on that server, and you must choose metrics observable
from places that you can reach.  On the other hand, if you are measuring software running
on top of an operating system, you might have more liberty to alter it for measurement 
purpose.  Or you might not.

Another important point is that we are often using the system whose performance we 
wish to measure to actually capture our results.  If the process of performing the 
measurements itself has a large effect on the performance, we may have obtained false 
readings for our metrics.  Consider, for example, a measurement system that regularly 
writes records concerning file system behavior to the disk drive that stores that file 
system.  Chances are that this experimental logging is competing, in a performance sense,
with the actual behavior you are trying to measure.  Instead of simply observing how long
it would take to perform a set of reads and writes from a group of files in the file system, 
we are also moving the head to another place on the disk where we are storing our log.  
Those head movements would make the file system appear to be slower than it actually 
would be if your experimental framework were not logging data.  If your experimental 
framework interferes with the processes you are trying to measure, you end up with a 
false reading for your metric that will not accurately describe the system’s behavior when
you aren’t running your experiment.

Complexity and the Role of Statistics in Measurement
Given that you’ve determined a good set of metrics, what next?  By this point in your 
studies, you should be painfully aware of the complexities of large systems, particularly 
of operating systems.  That complexity is going to have a big impact on your 
performance measurement studies.  Consider what you already have learned about 
operating systems.  They make heavy use of caching, with an expectation that some 
operations will be cache hits (probably fast) and some will be cache misses (probably 
slow).  Interrupts will occur at unpredictable times, possibly resulting in altered 
performance of the code they break up.  Different scheduling disciplines will insert 
varying delays into the performance of individual processes.  Even if you have access to 
the operating system code, down at the hardware level there are caches and pipelines and 
other optimizations that you can’t see at all, except that they produce varying 
performance results.

All of these characteristics mean that if you measure some metric on your system once, 
and then repeat that measurement again, you might see very different values.  So what’s 



the right value?  The one that makes your system look best?  The worst one you’ve ever 
seen?  Something else?

If you have taken a course in statistics, you may have a pretty good idea already about 
how to handle this issue.  Don’t measure the event of interest on your system only once.  
Measure it many times and treat the set of measurements as a probability distribution.  
You can then use the rich set of tools that this field of mathematics offers us to analyze 
your performance.  Among the simplest of these tools are mean, median, and mode.  The 
mean of a set of measurements is its average, the median is its middle point, and the 
mode is the most common value in the set.  Means are useful for getting a single number 
that somehow captures something important about the entire data set.  Medians are useful
for getting a sense of where the measurements in a data set are “centered,” in some sense.
Mode is typically most useful when one value occurs far more often than any other, since 
then it can give you an idea of what result is most probable from a given data set.  Mode 
tends to be less useful when the measurements are pretty evenly spread out.

It’s often helpful to take a step further and work with quantities called indices of 
dispersion, which essentially describe how spread out a set of measurements are.  Range 
is one such index of dispersion, describing the highest and lowest value observed.   
Standard deviation is another, describing the most commonly occurring range of values 
around the mean within the set.  Confidence intervals describe the probability that a 
particular measurement is within a certain range. 

In figure 1, we show a small set of sample data of latencies (in milliseconds) to access a 
disk block.  Figure 2 shows various statistical properties of that data set.   We calculated 
the mean by adding the 11 latencies and dividing by 11.  We calculated the median by 
ordering the measurements and choosing the one in the middle.  We calculated the mode 
by counting the number of times particular latencies occurred and choosing the one that 
occurred most often.  To determine the range, we simply found the lowest measurement 
and the highest measurement.  Standard deviation is calculated, typically, with a 
somewhat more complicated formula, but it is described in any detailed treatment of 
statistical properties.

Trial Latency
1 27
2 31
3 28
4 26
5 30
6 35
7 31
8 29
9 32
10 25
11 33
Figure 1.  Sample disk drive latencies



Mean 29.7
Median 30
Mode 31
Range 25-35
Standard deviation 3.07
Figure 2.  Some statistical properties of the data in figure 1

These statistical properties are actually a bit more complex than they appear at first 
glance, and full understanding of their proper use is beyond the scope of either this 
chapter or an introductory course on operating systems.  For example, there are actually 
several different ways to calculate means, and calculation of confidence intervals is 
typically based on assumptions about the probability distribution of the measurements.  
We will not further describe the many useful tools that the field of statistics offers, 
beyond recommending that those interested in understanding the performance of their 
systems really need good mastery of some of these tools.

You might wonder how many experimental runs you need to perform to fully capture the 
behavior of a system you’re studying, given that there is possible statistical variation in 
the performance of each run.  The field of statistics has useful tools for this purpose, as 
well, but they are beyond the scope of this chapter.  In brief, the greater the degree of 
variability in what you’re measuring, the more independent measurements you’ll need to 
perform to get a pretty confident picture of its full behavior.  

Comparing Alternatives
Sometimes the purpose of your performance experiment is simply to characterize how a 
system performs according to one or more important metrics.  In other cases, the system 
can be built, configured, or used in several different ways, and you want to know how 
well it performs in those varying situations.  When this kind of comparative form of 
performance measurement is what you need, you have to take some care in how you go 
about doing it.

One issue is that possibly there are a large number of different options you could 
compare.  There may be multiple dimensions in which you could examine the system.  
For example, you might want to know what would happen if you increased or decreased 
the amount of RAM allocated to buffer spaces, or what would happen if you used several 
different scheduling disciplines, or what would happen if you replaced the Ext3 file 
system with Btrfs.  You might want to know what would happen if you made several of 
these changes in different ways.

Things you intentionally alter in performance experiments to determine which of several 
alternatives to use are called factors.  In the paragraph above, the amount of buffer space 
allocated might be one factor, the scheduling disciplined used might be a second factor, 
and the file system you chose might be a third factor.  Factors can be set independently.  
For example, I might want to look at allocating 1Gbyte of buffer space, using Linux’s 
Completely Fair Scheduling, and Btrfs, vs. allocating .5 Gbytes of buffer space, simple 
round robin, and Ext3.    For each choice of settings of factors you want to investigate, 
you’ll need to run some experiments.  As mentioned earlier, you’ll probably need to 
perform multiple runs to capture statistical variations.  



Think about this a moment.  If there are four different buffer sizes I want to investigate, 
three different scheduling disciplines, and two file systems, and I care about all possible 
combinations, how many sets of experiments am I going to have to run?  In this relatively
limited case, we’re up to 24 sets of experiments, each of which will need to be run 
multiple times.  One of the dangers of running performance experiments is getting too 
entranced with the many possibilities.  If you’re not careful, you might spend the rest of 
your life investigating some of these issues.  Or, more likely, you’ll get exhausted and 
give up before you get around to looking at the situations that are really important.  A key
element in successfully obtaining good performance results is striking a balance between 
investigating everything that’s very important versus avoiding a combinatorial explosion 
of experimental settings.  Maybe, on careful consideration, looking at two buffer sizes 
and ignoring one of the scheduling disciplines will still tell you what you need to know.

Another element controlling how much work you need to do is how many runs of each 
alternative you make to capture statistical variation against the number of alternatives you
look at.  Generally, the more you make, the higher your confidence in the statistical 
representativeness of your results (though there is a point of diminishing returns).  Is it 
more important to consider more options or to have greater confidence in the 
performance of the options you do consider?  That’s for you to determine.

One can further generalize this issue to obtain perhaps the most important piece of advice
we can give you before you undertake a set of performance measurements: think first, 
measure second.  Determine exactly what you want to know and what you need to do to 
learn it, then design and perform experiments targeted at that required knowledge.  
Otherwise, you can spend arbitrarily large amounts of times hacking your way through 
the performance measurement jungle, possibly emerging at the end without having 
learned anything of importance.

There are other important issues in comparing the performance of various alternatives.  
One is to treat each alternative you measure fairly.  Don’t create experimental conditions 
that artificially favor one alternative over another.   For example, in some cases things go 
slower the first time you do them than the second or later times.  Caching often causes 
this effect.  So if you ran alternative A first, then ran alternative B, B might appear to be 
faster not because it’s better, but because it benefited from caching.  Merely switching the
order isn’t enough, because now you’ve favored A.  Running each alternative multiple 
times will help wash out these effects, particularly if you randomly intersperse the 
alternatives in different runs.  (That’s not always easy, if you need to perform 
heavyweight reconfiguration of the system to enable different alternatives.)  

That is merely one example of being fair.  Using the same settings for all runs (other than 
those that define the alternatives themselves) is another example.  Resetting the system to
the same state before starting each run is a third example.  Even if caching is not 
involved, there may be some initial work that each system might need to do.  If the 
system is not reset, the later runs can unfairly benefit from the configuration work done 
by earlier runs.  Isolating the system from unrelated effects (such as updates to key pieces
of software, external work loads not intended to be captured by your experiment, filling 
up the disk drive with your own experimental results, and so on) is also important.



Sources of Performance Problems
We can experience poor performance in our systems for many reasons.  Sometimes there 
is an overloaded resource, such as memory or network bandwidth or CPU cycles.  
Sometimes a solution built into the software doesn’t scale, so performance seems fine 
until the load on the system gets high.  Then suddenly we fall off a performance cliff.  
Sometimes we have built an inefficient implementation that puts in unnecessary 
overheads, such as copying a piece of data many times or making lots of calls to 
recursive functions to perform a tiny amount of real work.

The problem you have will affect how you go about looking for it.  If you run 
performance measurements to uncover a scaling issue, a test that only runs a small 
number of iterations or on a small version of the problem may not produce useful results. 
If your problem is a bottleneck in your network, running tests that don’t send messages 
across the network will never find it.  If your problem is contention in scheduling, a 
performance experiment embedded in a single process won’t provide much insight.

There’s an obvious chicken-and-egg problem here.  You might know performance is bad, 
but to run an experiment to determine exactly why, you need to know why performance is
bad.  Otherwise, you might waste your time running an irrelevant experiment that tells 
you nothing.  So how do you get started?

In actuality, you often can get some clues without running any new experiments.  The 
operating system will tell you, on request, how much memory is being used, CPU 
utilization, and many other statistics concerning the behavior of your processes.  If there’s
plenty of free memory and the system is still running poorly, you’d probably waste your 
time building a performance experiment based on investigating the effects of varying 
memory usage.  If there are rarely any ready processes waiting to run, scheduling is very 
likely not the source of your problem.  Knowledge of the general architecture and 
expected behavior of the poorly performing system component can help, as well.  If you 
know that the software that is running slow always works on pretty much the same 
quantity of data, it’s probably not a scaling problem.

But usually these kinds of hints will only get you so far, and often they will provide 
indications, not actually identify the source of the problem.  What then?  Take the best 
knowledge you can easily obtain about your code and the observed performance problem 
and generate a hypothesis about why it’s happening.  Design an experiment that will test 
that hypothesis, proving or disproving it.  Run the experiment and determine if your 
hypothesis is born out.  If not, generate a new hypothesis (with, one would hope, a deeper
knowledge base to work from than before) and try again.  Obviously, there are elements 
of art, experience, and even luck in this process.  But you’ve seen this kind of process 
before.  It’s much like finding a bug in a program, where you observe the erroneous 
behavior, make a hypothesis for its cause, add fixes or extract new information relevant 
to the hypothesis, and test it, until the bug is found and repaired.  Generally, finding 
performance problems is harder than finding bugs, since it’s harder to narrow the field in 
which you’re searching, but the basic approach is similar.

Like finding functionality bugs, finding performance problems is a skill you are likely to 
develop with practice.  You will come to learn the signals that point towards particular 



classes of performance problems and develop instincts that lead you in the right direction 
more often than the wrong one. However, never mistake your experience or a good hunch
for the results of an actual measurement program.  Ultimately, the point of performance 
measurement is to reveal the actual truth of what’s happening, and nothing short of 
measuring it is a substitute for that evidence.

Workloads
One important aspect of running a performance experiment is the workload you use.  In 
some cases, you are examining the performance of a particular program or operating 
system element, in which case you will tailor the workload to exercise that software.  In 
many cases, you are looking for general performance in the face of typical overall system
loads.  In that situation, you need to generate a realistic workload for your system.  Either
way, somehow you must provide data sets, background activities, network traffic, and 
various other types of workload-related effects to test the performance.

There are different aspects of workloads that you need to think about when designing 
performance experiments.  Your system is designed to do certain things: schedule 
processes, lay out a file system on a flash drive, respond to web requests, and so on.  
Obviously, one important aspect of the workload is the tasks you provide to your system 
directly related to its purpose: the set of processes to be scheduled, the files and file 
accesses to be handled, the web requests that clients generate.  An equally important 
aspect of the workload, however, is based on the fact that operating systems are complex 
and involve simultaneous interactions of many different components that might affect 
each other in unpredictable ways.  How your file system would perform if the only 
activity on the operating system was reads and writes to it is not the question you need to 
answer, as a rule.  The important question is how it would perform in the face of all the 
other ordinary activities that the operating system would be doing in a real world setting. 
So your workload must also capture those background activities.

There are several different types of workloads typically used for performance 
measurement.

1. Traces – Take or otherwise obtain a detailed trace of the workload of the system 
in its ordinary activities.  What such a trace consists of depends on the nature of 
what you are testing.  For a web server, the trace is likely to be a set of web 
requests submitted to the server.  For a mail server, it is likely to be a set of 
messages delivered to that server.  For a file system, it might be a set of opens, 
reads, writes, and other file system operations.  For an operating system 
component, it might be a set of applications that are run in a particular order with 
specified inputs.  Whatever the trace might consist of, you capture it from the 
running system, saving it in a form that will allow you to recreate it in a faithful 
manner.  Then, for each experimental run, you start from the beginning and run it 
to the end.

Traces have good and bad properties for performance experiments.  A good 
property is realism, since they represent realistic activities that you would actually
want your system to handle well.  Another good property is reproducibility.  The 
same trace can be replayed over and over, identically for each run.  There is an 



issue here if the performance of the system has an impact on what would have 
happened in the real system.  For example, a trace of a network protocol that 
sends a message and receives an acknowledgement before sending the next 
message would have run differently if the acknowledgement had been produced in
half the time, double the time, or at some other delay than it had been when the 
trace was gathered.  If the system being tested is the one generating the 
acknowledgements, that can result in the replayed trace producing unrealistic 
results.

A disadvantage of a trace is that it is not easily reconfigurable.  If your experiment
needs to examine performance under controlled levels of workload, you might not
be able to get a trace for each workload level you need.  Merely running two 
copies of one trace in parallel might not realistically represent a true doubled load.
Cutting out portions of a trace might not realistically represent a smaller 
workload, either.  Scaling a trace up or down is usually hard.  Another frequent 
disadvantage is availability.  Good traces are not easy to come by, and if your 
system is not yet in production, you might be unable to gather your own.  Except 
for freshly gathered traces of your own, most traces you can find will be 
somewhat (to very) old.  Another disadvantage in some cases is that it might be 
difficult to gather the information needed to create the trace from the tools 
available to you.  You might not be able to capture all the system calls 
applications perform, for instance.  Also, any particular single trace might or 
might not represent the typical activity of the system.  The moment at which it 
was gathered might have been unusual, compared to the ordinary activities of 
your system.  Depending on exactly what you are tracing, there may be privacy 
implications to saving it in a trace.  For certain kinds of system, such as those 
dealing with medical records, you may have legal obligations to handle some of 
the data in particular ways.  Be aware of any such privacy problems before you 
store data for a trace.

2. Live workloads – Sometimes you can perform measurements on a working 
system as it goes about its normal activities.  A production system can also 
instrumented and data gathered as it does its work.  Realism is a clear advantage 
here.  Also, provided you can continue to do tests on the system indefinitely, with 
enough time you can capture a very wide range of real system behavior.  You are 
likely to need to take little or no effort to establish realistic background loads, 
since they establish themselves, in essence.  

This approach has its own disadvantages.  One is lack of control, which manifests 
itself both in not being able to reproduce the behavior seen in previous tests, and 
in not being able to scale loads up and down as desired.  Another is that your 
experimental framework usually needs to have minimal impact, both in 
performance and functionality, on the running system, since it is presumably more
important to complete its live work than to gather your measurements.  Unless 
this impact is essentially nil, you are not likely to be able to run the performance 
measurements for very long on a working system, since those tasked with getting 
it to do its job will not appreciate your experiments getting in the way.  As with 



traces, consider whether there are privacy implications to your observation of the 
live workload. 

3. Standard benchmarks – These are either sets of programs or sets of data that are 
intended to drive performance experiments, typically on some particular thing, 
such as a file system, a database, a web server, or an intrusion detection system.  
They may have been derived from real traces at some point or they may be built 
from models of system behavior.  They are typically designed to be usable by 
many developers, so it is often fairly easy to integrate them into your experiments,
provided you are working in the same general framework they were designed for. 
(For example, a file system benchmark might generate Posix-compliant file 
operations, so any file system that is compatible with Posix can use it for testing.) 
They allow for easy comparison to other systems’ performance, since the 
developers of those system can also run the same benchmark, or, indeed, you can 
yourself, if those other systems are also available for testing.  A well-designed 
benchmark is likely to exercise a wide range of system behaviors, so the results 
you get from it may give you a fairly complete picture of your system’s 
performance under different realistic conditions.  Widely used benchmarks have 
been heavily studied themselves, and are unlikely to have many bugs, and likely 
to be relatively good representations of the kind of workload they are intended to 
mimic.  Some benchmarks (though not all) are built to be inherently scalable, 
allowing you to adjust the workload up or down with little more than changing a 
line or two in a configuration file.  Since benchmarks are artificial, there are 
usually no privacy implications to using them.

As you no doubt expect, though, standard benchmarks have their own set of 
disadvantages.  First, there are a limited number of them available, and there 
might not be one suited for the system or situation you want to test.   One aspect 
of this characteristic is that standard benchmarks might not include portions of the
workload space that are unusual in general, but important for your case.  Another 
aspect of this characteristic is that it’s tempting to use a standard benchmark that 
isn’t quite right for your situation just because it’s easy to do so.  Resist such 
temptations.  Second, since developing a good benchmark is quite a lot of work, 
they tend to be used for a very long time, running the risk of representing archaic 
workloads that no longer match what would happen on a current system.

4. Simulated workloads – In this approach, you build models of the loads you are 
interested in, typically models instantiated in executable code.  These models are 
usually parameterized, allowing them to be scaled up or down, to alter the mix of 
different elements of the load, and otherwise to create variations on the load.  
When testing a system’s performance, one decides which parameter settings are 
most relevant and uses the simulated workload models with suitable settings.  
This approach has the advantage of being easily customized to many different 
scenarios and possibilities, since you need merely alter the model parameters 
accordingly.  One important aspect of this flexibility is good handling of scaling, 
either up or down.  Assuming that there is no true randomization in the models, 
they are infinitely repeatable, allowing you to perform directly comparable tests 



of different system alternatives.  As with standard benchmarks, the artificiality of 
simulated workloads has the benefit of avoiding privacy considerations.

However, the validity of the performance results you achieve is only as good as 
the quality of the models.  It is not easy to produce good models of complex 
systems and phenomena, and one can easily overlook important features of real 
loads in building one’s models.  While parameters can be easily altered and 
scaled, even if the model was faithful to real load for some settings, it may prove 
unrealistic at others.  It may also be unclear how to set the various parameters to 
produce simulated load that matches a particular real load.  If the parameters are 
set incorrectly, one may get a very false picture of how a real system would 
behave in those situations.

Common Mistakes in Performance Measurements
At the highest level, most mistakes in performance measurements can be attributed to 
insufficient thought by the experimenter.  If you leap into a measurement program 
without giving some careful thought to what you are going to do, it may be hard to 
predict what problem you’re going to encounter, but you’ve very likely to encounter 
some problem.   Be clear on what issues you are investigating and what methods you are 
using to investigate them.  Most frequently, you will benefit from writing down what you 
propose to do before you do it.  That allows you to go back and check that you are 
continuing down the path you’d planned and hitting all the points you thought were 
important.  It’s OK to alter your plans as new information arises, but do so knowingly, 
not because you’re blindly flailing around in a huge space of possible performance 
experiments.

At the next level of detail, problems tend to arise in areas like not measuring the right 
thing, not measuring accurately, not measuring in situations matching real world 
behavior, and not understanding what your measurements are telling you.  These issues 
are so broad and have some many variants of the mistakes you can make, which are often
quite specific to the system that you are measuring, that it is not necessarily helpful to pin
down too many particular mistakes.

But there are certain more specific mistakes in measuring system performance that are 
sufficiently common that they are worth calling out in detail.  We’ll go through a few of 
these.

1. Measuring latency without considering utilization.  Everything runs fast (or at 
least faster) on a lightly loaded system.  Measuring the latency of an operation 
when absolutely nothing else is going on in the system is only worthwhile if the 
question to be answered is what is the fastest possible time in which it will 
complete.  For anything else, one should measure the latency when the system has
a characteristic background load.   Most often, one should also examine the 
latency when the system is heavily loaded, as well, since that condition is likely to
arise sooner or later in most systems.

2. Not reporting the variability of measurements.  Sometimes this mistake is even 
more egregious, when a quantity is measured only once and that value reported as
entire truth of the performance.  Even if multiple measurements are taken, 



however, merely reporting the average of the values will often give a false 
impression of the performance observed.  For most phenomena, one needs to 
understand the distribution of those values.  Is it basically bi-modal?  Is there one 
very common value and some outliers?  Are the values uniformly spread across 
some range?   What behavior you will observe in the real world and whether you 
will be happy with your system or miserable may depend on the answers to those 
questions, so a good performance experiment should offer you some insight into 
them.

3. Ignoring important special cases.  This mistake comes in two varieties.  In one, 
you ignore the fact that a few special cases distort the measurement, given you a 
false sense of what happens in the more general case.  In the other, while you 
carefully measure the ordinary case, you fail to consider that there will be some 
special circumstances that are very important and that are likely to display 
different performance.  

Perhaps the most common version of the first variety is ignoring startup effects.  
Computers make effective use of caching in many different ways.  Programs 
loaded off disk may hang around in memory for a while in case they will be run 
again.  Translations of DNS names to IP addresses are stored to avoid having to 
make expensive network requests multiple times.  Hardware caches recently run 
instructions to avoid the cost of fetching them out of RAM when executing a 
loop.  Caching is so ubiquitous and built into so many levels of a system that you 
are unlikely to predict all of its uses.  That means you should regard the first few 
runs of a performance experiment as being potentially biased.  They may have 
paid higher penalties than subsequent runs in order to warm up some caches.  That
does not necessarily mean you should discard them or disregard them, since, after 
all, every cache in a real system pays a performance penalty the first time the data
is used, and that is a real element of system performance.  But it does mean you 
should not compare different alternatives when one alternative has had the benefit
of a warm cache while the other has not.  

A similar problem can work in the opposite way.  Sometimes we have a data 
structure of a limited size, and as long as we are working within that size, things 
go quickly.  When we have more elements than the data structure can hold, 
performance degrades.  For example, consider a hash table that uses chaining to 
handle collisions.  If the table is relatively empty, every read will hit the element it
was looking for immediately, and performance will be fast.  When the table starts 
to fill up, some probes will need to follow a chain of entries to find the one they 
are looking for in that cache bucket; performance will slow down in some cases, 
while remaining fast for others.  If the table is very full, performance will slow 
down for almost everything, since most probes will require searching a chain.  
File systems that use various kinds of indirect blocks are another example.  
Accesses to the first few blocks will avoid the indirect block and will be fast.  
Accesses further into a file will require indirect, doubly indirect, or triply indirect 
access, and will be slower, depending on the access pattern.  Again, these are 
genuine performance effects, but only if you are trying to measure performance 
for conditions where they might occur.



The other variant is also important, because sometimes these genuine effects are 
critical to what you need to measure.  If you only measure a file system’s 
performance on short files, you may never learn that it is very slow once files 
exceed a certain size until, in production use, your system suddenly slows to a 
crawl.  Special cases can be very important.  Sometimes what you really need to 
know, for example, is how long servicing a web request will take under the worst 
circumstances likely to arise, or how your system will behave under extremely 
high load, or what will happen if a piece of hardware experiences partial failure.  
This issue returns to the point of understanding what you are measuring and why 
you are measuring it.

4. Ignoring the costs of your measurement program.  In a few cases, you may be 
measuring a system using tools that are entirely external to the system and impose
little or no load on that system.  Sniffing traffic on a network is one example.  
More commonly, especially for operating system measurement, you are using 
your system to measure your system.  You’re not only sharing the processor, 
memory, network, and secondary storage devices with the system under study, but
you’re sharing some of the abstractions the operating system offers.  For example,
if you are logging information from your measurement code for later examination,
you are probably exercising the file system.  Does that matter?  If what you’re 
measuring is file system performance, it almost certainly does, and it might even 
if you are measuring something that does not have any obvious relationship to the 
file system, such as the scheduler or the memory manager.  The file system is 
obviously not the only example.  If you are running a separate process to perform 
your measurements, for example, it is competing for CPU and memory with the 
processes you are trying to measure.  

Ideally, you want to avoid having your performance measurement program affect 
the behavior of the observed system at all.  Often, this is impossible, in which 
case minimizing the impact and understanding it are the next best alternatives.  
There are useful techniques to minimize measurement costs.  For example, 
instead of writing each observed measurement to disk (an expensive operation 
that interferes with other disk behavior), save it in a RAM buffer.  Either write out
the buffer to disk at the end of the experiment, if you can buffer that much data 
without affecting the experiment in other ways, or infrequently write it to disk if 
you can’t keep a buffer that big.  Keep your measurement code small and cheap.  
If feasible, bundle it into the process you are measuring, rather than running it as a
separate process, unless you have reason to believe that it will cause less 
interference as a separate process.  Avoid doing data analysis while gathering the 
data, since such analysis may be computationally expensive.  Do it when you 
have finished the experiment and its calculations will not interfere with the 
experiment’s timings.  Start up anything computationally expensive related to 
your experiment before you start measuring the system you are investigating.

5. Losing your data.  Never throw away experimental data, even if you think that 
you are finished with your experiment, nor even if you think the data in question 
was gathered in an erroneous way.  Data has a way of proving useful for many 



purposes, but discarded data is never useful.  Of course, you should particularly 
avoid carelessly losing data.  One common beginner mistake is to inadvertently 
overwrite the data from a previous experiment with data being gathered for the 
next experiment. Also remember to label your data.  Even if you have kept every 
byte of data you’ve gathered, if you can’t tell which bytes are related to which 
parts of your experiment, the data is as good as lost.  This advice is for the long 
term.  Ideally, you should be able to go back and look at data you gathered twenty
years ago.  Maybe you will never look at a lot of the data you gathered in the past 
again, but probably you will eventually want to look at some of it, and it’s hard to 
predict what’s going to prove useful in the future.  So save it all, if possible.  It’s 
also important to keep the metadata around, which in this case means information 
about how you set up and ran your experiments.  Which version of the operating 
system was it that you used on that experiment you ran five years ago?  Chances 
are you won’t remember, so make sure it’s written down somewhere you can find.

6. Valuing numbers over wisdom.  Remember, the point of your performance 
experiment is not to obtain a set of numbers.  It’s to understand important 
performance characteristics of your system.  The numbers are the means to an 
end, not themselves the end.  Don’t bother gathering numbers that are not going to
lead to wisdom, and don’t consider your task complete when you have the 
numbers in hand.  You actually have the most important step still to go: using the 
numbers to understand your system performance and, if necessary, using them to 
guide redesign or reconfiguration of your system in ways that are likely to lead to 
better performance.

Unfortunately, it’s hard to offer general advice on how to extract wisdom from 
sets of numbers.  That’s a task you will need to perform on a case-by-case basis.  
But do remember that performing that task is the goal, the entire point of running 
an elaborate performance experiment.  Without the resulting wisdom, the work 
you did to get the numbers will be wasted.
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