
Lecture 1
Page 1

CS 111
Fall 2016

Introduction
CS 111

Operating System Principles
Peter Reiher

Lecture 1
Page 2

CS 111
Fall 2016

Outline

•  Administrative materials
•  Introduction to the course

– Why study operating systems?
– Basics of operating systems

Lecture 1
Page 3

CS 111
Fall 2016

Administrative Issues

•  Instructor and TAs
•  Load and prerequisites
•  Web site, syllabus, reading, and lectures
•  Quizzes, exams, homework, projects
•  Grading
•  Academic honesty

Lecture 1
Page 4

CS 111
Fall 2016

Instructor: Peter Reiher

•  UCLA Computer Science department faculty
member

•  Long history of research in operating systems
•  Email: reiher@cs.ucla.edu
•  Office: 3532F Boelter Hall

– Office hours: TTh 1-2
– Often available at other times

Lecture 1
Page 5

CS 111
Fall 2016

My OS Background

•  My Ph.D. dissertation was on the Locus
operating system

•  Much research on file systems
– Ficus, Rumor, Truffles, Conquest

•  Research on OS security issues
– Data Tethers

Lecture 1
Page 6

CS 111
Fall 2016

TAs
•  Muhammad Mehdi

–  taqi@cs.ucla.edu

•  Diyu Zhou
–  zhoudiyu@cs.ucla.edu

•  Zhaoxing Bu
–  zbu@cs.ucla.edu

•  Jungbeom Lee
–  jungbeol@g.ucla.edu

•  Lab sessions:
–  Lab 1A, Fridays 10-12 AM, Boelter 9436
–  Lab 1B, Fridays 12- 2 PM, Humants 169
–  Lab 1C, Fridays 2-4 PM, Rolfe 3134
–  Lab 1D, Fridays 4-6 PM, Bunche 2160

•  Office hours to be announced

Lecture 1
Page 7

CS 111
Fall 2016

Instructor/TA Division of
Responsibilities

•  Instructor handles all lectures, readings, and
tests
– Ask me about issues related to these

•  TAs handle projects
– Ask them about issues related to these

•  Generally, instructor won’t be involved with
project issues
– So direct those questions to the TAs

Lecture 1
Page 8

CS 111
Fall 2016

Web Site
•  Some materials found on CCLE web site

–  Like quizzes

•  Most materials here:
–  http://www.lasr.cs.ucla.edu/classes/111_fall16

•  What’s there:
– Schedules for reading, lectures, exams, projects
– Copies of lecture slides (Powerpoint and PDF)
– Announcements
– Sample midterm and final problems

Lecture 1
Page 9

CS 111
Fall 2016

Prerequisite Subject Knowledge

•  CS 32 programming
–  Objects, data structures, queues, stacks, tables, trees

•  CS 33 systems programming
–  Assembly language, registers, memory
–  Linkage conventions, stack frames, register saving

•  CS 35L Software Construction Laboratory
–  Useful software tools for systems programming

•  If you haven’t taken these classes, expect to
have a hard time in 111

Lecture 1
Page 10

CS 111
Fall 2016

Course Format

•  Two weekly reading assignments
–  Mostly from the primary text
–  Some supplementary materials available on web

•  Two weekly lectures
–  With online quizzes before the lectures

•  Four (10-25 hour) individual projects
–  Exploring and exploiting OS features
–  Plus one warm-up project

•  A midterm and a final exam

Lecture 1
Page 11

CS 111
Fall 2016

Course Load
•  Reputation: THE hardest undergrad CS class

– Fast pace through much non-trivial material

•  Expectations you should have
–  lectures 4-6 hours/week
–  reading 3-6 hours/week
– projects 3-20 hours/week
– exam study 5-15 hours (twice)

•  Keeping up (week by week) is critical
– Catching up is extremely difficult

Lecture 1
Page 12

CS 111
Fall 2016

Primary Text for Course

•  Remzi and Andrea Arpaci-Dusseau: Operating
Systems: Three Easy Pieces
–  Freely available on line at http://pages.cs.wisc.edu/~remzi/

OSTEP/

•  Supplementary readings from Saltzer and Kaashoek:
Principles of Computer Systems Design
–  Free on line at

http://www.sciencedirect.com/science/book/9780123749574
•  Only on-campus or through the UCLA VPN

•  Supplemented with web-based materials

Lecture 1
Page 13

CS 111
Fall 2016

Course Grading
•  Basis for grading:

–  Quizzes 5%
–  1 midterm exam 20%
–  Final exam 30%
–  Lab 0 5%
–  Other labs 10% each

•  I do look at distribution for final grades
– But don’t use a formal curve

•  All scores available on MyUCLA
– Please check them for accuracy

Lecture 1
Page 14

CS 111
Fall 2016

Quizzes

•  3-5 question quizzes on the assigned reading
materials

•  Must be taken before the lecture
•  Not intended to be hard questions

–  IF you’ve read the assigned materials

Lecture 1
Page 15

CS 111
Fall 2016

Midterm Examination

•  When: Second lecture of the 5th week (in class
section, Tuesday, October 25)

•  Scope: All lectures up to the exam date
–  Approximately 60% lecture, 40% text

•  Format:
–  Closed book
–  10-15 essay questions, most with short answers

•  Goals:
–  Test understanding of key concepts
–  Test ability to apply principles to practical problems

Lecture 1
Page 16

CS 111
Fall 2016

Final Exam

•  When: Monday, December 5, 11:30 AM-2:30 PM
•  Scope: Entire course
•  Format:

–  6-8 hard multi-part essay questions
–  You get to pick a subset of them to answer

•  Goals:
–  Test mastery of key concepts
–  Test ability to apply key concepts to real problems
–  Use key concepts to gain insight into new problems

Lecture 1
Page 17

CS 111
Fall 2016

Lab Projects
•  Format:

– 1 warm-up project
– 4 regular projects
– Done individually

•  Goals:
– Develop ability to exploit OS features
– Develop programming/problem solving ability
– Practice software project skills

•  Lab and lecture are fairly distinct
– Ask instructor about tests and lectures
– Ask TAs about labs

Lecture 1
Page 18

CS 111
Fall 2016

Late Assignments & Make-ups
•  Quizzes

–  No late quizzes accepted, no make-ups

•  Labs
–  Due dates set by TAs
–  TAs also sets policy on late assignments
–  The TAs will handle all issues related to labs

•  Ask them, not me
•  Don’t expect me to overrule their decisions

•  Exams
–  Alternate times or make-ups only possible with prior

consent of the instructor
–  If you miss a test, too bad

Lecture 1
Page 19

CS 111
Fall 2016

Academic Honesty
•  It is OK to study with friends

–  Discussing problems helps you to understand them
•  It is OK to do independent research on a subject

–  There are many excellent treatments out there
•  But all work you submit must be your own

–  Do not write your lab answers with a friend
–  Do not copy another student's work
–  Do not turn in solutions from off the web
–  If you do research on a problem, cite your sources

•  I decide when two assignments are too similar
–  And I forward them immediately to the Dean

•  If you need help, ask the instructor

Lecture 1
Page 20

CS 111
Fall 2016

Academic Honesty – Projects
•  Do your own projects

–  If you need additional help, ask the TA
•  You must design and write all your own code

–  Do not ask others how they solved the problem
–  Do not copy solutions from the web, files or listings
–  Cite any research sources you use

•  Protect yourself
–  Do not show other people your solutions
–  Be careful with old listings

Lecture 1
Page 21

CS 111
Fall 2016

Academic Honesty and the Internet
•  You might be able to find existing answers to some of

the assignments on line
•  Remember, if you can find it, so can we

–  And we have, before
•  It IS NOT OK to copy the answers from other

people’s old assignments
–  People who tried that have been caught and referred to the

Office of the Dean of Students
•  ANYTHING you get off the Internet must be treated

as reference material
–  If you use it, quote it and reference it

Lecture 1
Page 22

CS 111
Fall 2016

Introduction to the Course

•  Purpose of course and relationships to other
courses

•  Why study operating systems?
•  Major themes & lessons in this course

Lecture 1
Page 23

CS 111
Fall 2016

What Will CS 111 Do?
•  Build on concepts from other courses

–  Data structures, programming languages, assembly
language programming, computer architectures, ...

•  Prepare you for advanced courses
–  Data bases and distributed computing
–  Security, fault-tolerance, high availability
–  Network protocols, computer system modeling, queueing

theory

•  Provide you with foundation concepts
–  Processes, threads, virtual address space, files
–  Capabilities, synchronization, leases, deadlock

Lecture 1
Page 24

CS 111
Fall 2016

Why Study Operating Systems?
•  Few of you will actually build OSs
•  But many of you will:

–  Set up, configure, manage computer systems
–  Write programs that exploit OS features
–  Work with complex, distributed, parallel software
–  Work with abstracted services and resources

•  Many hard problems have been solved in OS context
–  Synchronization, security, integrity, protocols, distributed

computing, dynamic resource management, ...
–  In this class, we study these problems and their solutions
–  These approaches can be applied to other areas

Lecture 1
Page 25

CS 111
Fall 2016

Why Are Operating Systems
Interesting?

•  They are extremely complex
–  But try to appear simple enough for everyone to use

•  They are very demanding
–  They require vision, imagination, and insight
–  They must have elegance and generality
–  They demand meticulous attention to detail

•  They are held to very high standards
–  Performance, correctness, robustness,
–  Scalability, extensibility, reusability

•  They are the base we all work from

Lecture 1
Page 26

CS 111
Fall 2016

Recurring OS Themes
•  View services as objects and operations

–  Behind every object there is a data structure
•  Separate policy from mechanism

–  Policy determines what can/should be done
–  Mechanism implements basic operations to do it
–  Mechanisms shouldn’t dictate or limit policies
–  Policies must be changeable without changing mechanisms

•  Parallelism and asynchrony are powerful and vital
–  But dangerous when used carelessly

•  Performance and correctness are often at odds

Lecture 1
Page 27

CS 111
Fall 2016

More Recurring Themes
•  An interface specification is a contract

– Specifies responsibilities of producers &
consumers

– Basis for product/release interoperability

•  Interface vs. implementation
– An implementation is not a specification
– Many compliant implementations are possible
–  Inappropriate dependencies cause problems

•  Modularity and functional encapsulation
– Complexity hiding and appropriate abstraction

Lecture 1
Page 28

CS 111
Fall 2016

Life Lessons From Studying
Operating Systems

•  There Ain’t No Such Thing As A Free Lunch! (TANSTAAFL)
–  Everything has a cost, there are always trade-offs
–  But there are bad, expensive lunches . . .

•  Keep It Simple, Stupid!
–  Avoid complex solutions, and being overly clever
–  Both usually create more problems than they solve

•  Be very clear what your goals are
–  Make the right trade-offs, focus on the right problems

•  Responsible and sustainable living
–  Understand the consequences of your actions
–  Nothing must be lost, everything must be recycled
–  It is all in the details

Lecture 1
Page 29

CS 111
Fall 2016

Moving on To Operating
Systems . . .

•  What is an operating system?
•  What does an OS do?
•  How does an OS appear to its clients?

– Abstracted resources
•  Simplifying, generalizing
•  Serially reusable, partitioned, sharable

Lecture 1
Page 30

CS 111
Fall 2016

What Is An Operating System?

•  Many possible definitions
•  One is:

–  It is low level software . . .
– That provides better, more usable abstractions of

the hardware below it
– To allow easy, safe, fair use and sharing of those

resources

Lecture 1
Page 31

CS 111
Fall 2016

What Does an OS Do?
•  It manages hardware for programs

– Allocates hardware and manages its use
– Enforces controlled sharing (and privacy)
– Oversees execution and handles problems

•  It abstracts the hardware
– Makes it easier to use and improves SW portability
– Optimizes performance

•  It provides new abstractions for applications
– Powerful features beyond the bare hardware

Lecture 1
Page 32

CS 111
Fall 2016

What Does An OS Look Like?
•  A set of management & abstraction services

–  Invisible, they happen behind the scenes
•  Applications see objects and their services

–  CPU supports data-types and operations
•  bytes, shorts, longs, floats, pointers, ...
•  add, subtract, copy, compare, indirection, ...

–  So does an operating system, but at a higher level
•  files, processes, threads, devices, ports, ...
•  create, destroy, read, write, signal, ...

•  An OS extends a computer
–  Creating a much richer virtual computing platform

•  Supporting richer objects, more powerful operations

Lecture 1
Page 33

CS 111
Fall 2016

Where Does the OS Fit In?

Operating System

 System Call Interface

Hardware

 Standard instruction setPrivileged instruction set

(arithmetic, logical, copy, test, flow-control operations, ...)

System Services/Libraries

 Application Binary Interface

(e.g. string, random #s, encryption, graphics ...)

Applications Software
(e.g. word processor, compiler, VOIP program, ...)

Lecture 1
Page 34

CS 111
Fall 2016

Kernel Structure (artists conception)

interrupts traps processor
mode

memory
mapping

atomic
updates

processor
exceptions

configuration
analysis

timers cache
mgmt interrupts I/O

operations traps processor
mode

memory
mapping

atomic
updates

context
switching

DMA

bus drivers

timers cache
mgmt

network
class driver

serial
class driver

display
class driver

storage
class driver

stream
services

block I/O
services

processor
initialization

hot-plug
services

enclosure
management

processor
abstraction

I/O
abstraction

memory
allocation

memory
segments

thread
dispatching

processes
(resource containers)

process/thread
scheduling

thread
synchronization

memory
scheduling paging swapping

fault
handling

I/O resource
allocation

DMA
services

virtual
execution
engine

transport
protocols file systems

synchronization
 model

exception
 model

IPC
 model

file
 model

file I/O
 model

process/thread
 model

file namespace
 model

system call interfaces user visible
OS model

asynchronous
events device drivers device drivers

volume
management

run-time
loader

configuration
services

kernel
debugger

logging
& tracing

higher level
services

authorization
 model

boot
strap

fault
 management

quality
of service …

Lecture 1
Page 35

CS 111
Fall 2016

Instruction Set Architectures (ISAs)
•  The set of instructions supported by a computer

–  What bit patterns correspond to what operations
•  There are many different ISAs (all incompatible)

–  Different word/bus widths (8, 16, 32, 64 bit)
–  Different features (low power, DSPs, floating point)
–  Different design philosophies (RISC vs. CISC)
–  Competitive reasons (68000, x86, PowerPC)

•  They usually come in families
–  Newer models add features (e.g., Pentium vs. 386)
–  But remain upwards-compatible with older models

•  A program written for an ISA will run on any compliant CPU

Lecture 1
Page 36

CS 111
Fall 2016

Privileged vs. General Instructions
•  Most modern ISAs divide instruction set into

privileged vs. general
•  Any code running on the machine can execute

general instructions
•  Processor must be put into a special mode to

execute privileged instructions
– Usually only in that mode when the OS is running
– Privileged instructions do things that are

“dangerous”

Lecture 1
Page 37

CS 111
Fall 2016

Platforms

•  ISA doesn’t completely define a computer
– Functionality beyond user mode instructions

•  Interrupt controllers, DMA controllers
•  Memory management unit, I/O busses
•  BIOS, configuration, diagnostic features
•  Multi-processor & interconnect support

–  I/O devices
•  Display, disk, network, serial device controllers

•  These variations are called “platforms”
– The platform on which the OS must run

Lecture 1
Page 38

CS 111
Fall 2016

Portability to Multiple ISAs

•  A successful OS will run on many ISAs
–  Some customers cannot choose their ISA
–  If you don’t support it, you can’t sell to them

•  Minimal assumptions about specific HW
– General frameworks are HW independent

•  File systems, protocols, processes, etc.
– HW assumptions isolated to specific modules

•  Context switching, I/O, memory management
– Careful use of types

•  Word length, sign extension, byte order, alignment

Lecture 1
Page 39

CS 111
Fall 2016

Distributing an OS

•  Developers want their OS to run on as many
machines as possible

•  There are many different ISAs
– And other platform differences

•  Even more types of peripherals
•  And vast numbers of different applications and

configurations
•  How to get wide, effective distribution?

Lecture 1
Page 40

CS 111
Fall 2016

Binary Distribution Model
•  Binary is the opposite of source

– A source distribution must be compiled
– A binary distribution is ready to run

•  OSes usually distributed in binary
•  One binary distribution per ISA

– No need for special per-OEM OS versions

•  Binary model for platform support
– Device drivers can be added, after-market

•  Can be written and distributed by 3rd parties
•  Same driver works with many versions of OS

Lecture 1
Page 41

CS 111
Fall 2016

Why Not a Source Distribution?
•  What is wrong with distributing an OS in

source form?
1.  On what are you going to compile it?
2.  Are your customers competent to build the OS?

Do they want to build the OS?
3.  Do you really want to give all of your customers

the sources to your main product?
•  Open source OSes are available

–  But most users still download the binary versions

Lecture 1
Page 42

CS 111
Fall 2016

Binary Configuration Model
•  Good to eliminate manual/static configuration

– Enable one distribution to serve all users
–  Improve both ease of use and performance

•  Automatic hardware discovery
– Self-identifying busses

•  PCI, USB, PCMCIA, EISA, etc.
– Automatically find and load required drivers

•  Automatic resource allocation
– Eliminate fixed sized resource pools
– Dynamically (re)allocate resources on demand

Lecture 1
Page 43

CS 111
Fall 2016

Flexibility

•  Different customers have different needs
•  We cannot anticipate all possible needs
•  We must design for flexibility/extension

– Mechanism/policy separation
•  Allow customers to override default policies
•  Changing policies without having to change the OS

– Dynamically loadable features
•  Allow new features to be added, after market
•  File systems, protocols, load module formats, etc.

–  Feature independence and orthogonality

Lecture 1
Page 44

CS 111
Fall 2016

Interface Stability
•  People want new releases of an OS

– New features, bug fixes, enhancements

•  People also fear new releases of an OS
– OS changes can break old applications

•  How can we prevent such problems?
– Define well specified Application Interfaces

•  Application programming interfaces (APIs)
•  Application binary interfaces (ABIs)

– Applications only use committed interfaces
– OS vendors preserve upwards-compatibility

Lecture 1
Page 45

CS 111
Fall 2016

What’s Special About the OS?
•  It is always in control of the hardware

–  Automatically loaded when the machine boots
–  First software to have access to hardware
–  Continues running while apps come & go

•  It alone has complete access to hardware
–  Privileged instruction set, all of memory & I/O

•  It mediates applications’ access to hardware
–  Block, permit, or modify application requests

•  It is trusted
–  To store and manage critical data
–  To always act in good faith

•  If the OS crashes, it takes everything else with it
–  So it better not crash . . .

Lecture 1
Page 46

CS 111
Fall 2016

What Functionality Is In the OS?
•  As much as necessary, as little as possible

–  OS code is very expensive to develop and maintain
•  Functionality must be in the OS if it ...

–  Requires the use of privileged instructions
–  Requires the manipulation of OS data structures
–  Must maintain security, trust, or resource integrity

•  Functions should be in libraries if they ...
–  Are a service commonly needed by applications
–  Do not actually have to be implemented inside OS

•  But there is also the performance excuse
–  Some things may be faster if done in the OS

Lecture 1
Page 47

CS 111
Fall 2016

Where To Offer a Service?

•  Hardware, OS, library or application?
•  Increasing requirements for stability as you

move through these options
•  Hardware services rarely change
•  OS services can change, but it’s a big deal
•  Libraries are a bit more dynamic
•  Applications can change services much more

readily

Lecture 1
Page 48

CS 111
Fall 2016

Another Reason For This Choice

•  Who uses it?
•  Things literally everyone uses belong lower in

the hierarchy
– Particularly if the same service needs to work the

same for everyone
•  Things used by fewer/more specialized parties

belong higher
– Particularly if each party requires a substantially

different version of the service

Lecture 1
Page 49

CS 111
Fall 2016

The OS and Speed

•  One reason operating systems get big is based
on speed

•  It’s faster to offer a service in the OS than
outside it

•  Thus, there’s a push to move services with
strong performance requirements down to the
OS

Lecture 1
Page 50

CS 111
Fall 2016

Why Is the OS Faster?

•  Than something at the application level, above
it?
–  If it involves processes communicating, working at

app level requires scheduling and swapping them
– The OS has direct access to many pieces of state

and system services
•  If an operation requires such things, application has to

pay the cost to enter and leave OS, anyway

– The OS can make direct use of privileged
instructions

Lecture 1
Page 51

CS 111
Fall 2016

Is An OS Implementation
Always Faster?

•  Not always
•  Running standard instructions no faster from

the OS than from applications
•  Entering the OS involves some fairly elaborate

state saving and mode changing
•  If you don’t need special OS services, may be

cheaper to manipulate at the app level
– Maybe by an order of magnitude

Lecture 1
Page 52

CS 111
Fall 2016

The OS and Abstraction

•  One major function of an OS is to offer
abstract versions of resources
– As opposed to actual physical resources

•  Essentially, the OS implements the abstract
resources using the physical resources
– E.g., processes (an abstraction) are implemented

using the CPU and RAM (physical resources)
– And files (an abstraction) are implemented using

disks (a physical resource)

Lecture 1
Page 53

CS 111
Fall 2016

Why Abstract Resources?
•  The abstractions are typically simpler and better

suited for programmers and users
–  Easier to use than the original resources

•  E.g., don’t need to worry about keeping track of disk interrupts

–  Compartmentalize/encapsulate complexity
•  E.g., need not be concerned about what other executing code is

doing and how to stay out of its way

–  Eliminate behavior that is irrelevant to user
•  E.g., hide the slow erase cycle of flash memory

–  Create more convenient behavior
•  E.g., make it look like you have the network interface entirely for

your own use

Lecture 1
Page 54

CS 111
Fall 2016

Generalizing Abstractions
•  Lots of variations in machines’ HW and SW
•  So make many different types appear to be same

–  So applications can deal with single common class
•  Usually involves a common unifying model

–  E.g., portable document format (pdf) for printers
–  Or SCSI standard for disks, CDs and tapes

•  Usually involves a federation framework
–  Per sub-type implementations of standard functions

•  For example:
–  Printer drivers make different printers look the same
–  Browser plug-ins to handle multi-media data

Lecture 1
Page 55

CS 111
Fall 2016

Why Do We Want This Generality?

•  For example, why do we want all printers to
look the same?
– So we could write applications against a single

model, and have it “just work” with all printers
•  What’s the alternative?

– Program our application to know about all possible
printers

–  Including those that were invented after we had
written our application!

Lecture 1
Page 56

CS 111
Fall 2016

Does a General Model Limit Us?

•  Does it stick us with the “least common denominator”
of a hardware type?
–  Like limiting us to the least-featureful of all printers?

•  Not necessarily
–  The model can include “optional features”

•  If present, implemented in a standard way
•  If not present, test for them and do “something” if they’re not there

•  Many devices will have features not in the common
model
–  There are arguments for and against the value of such

features

Lecture 1
Page 57

CS 111
Fall 2016

Common Types of OS Resources

•  Serially reusable resources
•  Partitionable resources
•  Sharable resources

Lecture 1
Page 58

CS 111
Fall 2016

Serially Reusable Resources

•  Used by multiple clients, but only one at a time
– Time multiplexing

•  Require access control to ensure exclusive use
•  Require graceful transitions from one user to

the next
•  Examples: printers, bathroom stalls

Lecture 1
Page 59

CS 111
Fall 2016

What Is A Graceful Transition?

•  A switch that totally hides the fact that the
resource used to belong to someone else
–  Don’t allow the second user to access the

resource until the first user is finished with it
•  No incomplete operations that finish after the

transition

–  Ensure that each subsequent user finds the
resource in “like new” condition

•  No traces of data or state left over from the first user

Lecture 1
Page 60

CS 111
Fall 2016

Partitionable Resources

•  Divided into disjoint pieces for multiple clients
– Spatial multiplexing

•  Needs access control to ensure:
– Containment: you cannot access resources outside

of your partition
– Privacy: nobody else can access resources in your

partition
•  Examples: RAM, hotel rooms

Lecture 1
Page 61

CS 111
Fall 2016

Do We Still Need Graceful
Transitions?

•  Yes
•  Most partitionable resources aren’t

permanently allocated
– The page frame of RAM you’re using now will

belong to another process later
•  As long as it’s “yours,” no transition required
•  But sooner or later it’s likely to become

someone else’s

Lecture 1
Page 62

CS 111
Fall 2016

Shareable Resources
•  Usable by multiple concurrent clients

– Clients do not have to “wait” for access to resource
– Clients don’t “own” a particular subset of resource

•  May involve (effectively) limitless resources
– Air in a room, shared by occupants
– Copy of the operating system, shared by processes

•  May involve under-the-covers multiplexing
– Cell-phone channel (time and frequency

multiplexed)
– Shared network interface (time multiplexed)

Lecture 1
Page 63

CS 111
Fall 2016

Do We Still Need Graceful
Transitions?

•  Typically not
•  The shareable resource usually doesn’t change state
•  Or isn’t “reused”
•  We never have to clean up what doesn’t get dirty

–  Like an execute-only copy of the OS
•  Or things that disappear after use

–  Like the previous second’s bandwidth on a cellular
telephone channel

•  Shareable resources are great!
–  When you can have them . . .

Lecture 1
Page 64

CS 111
Fall 2016

A Brief History of
Operating Systems

•  1950s … OS? We don’t need no stinking OS!
•  1960s batch processing

–  Job sequencing, memory allocation, I/O services

•  1970s time sharing
–  Multi-user, interactive service, file systems

•  1980s work stations and personal computers
–  Graphical user interfaces, productivity tools

•  1990s work groups and the world wide web
–  Shared data, standard protocols, domain services

•  2000 large scale distributed systems
–  The network IS the computer

Lecture 1
Page 65

CS 111
Fall 2016

A Certain Irony

•  Today’s smart phone is immensely more
powerful than 1960s mainframes

•  But we used the mainframes for the biggest
computing tasks we had

•  While we use our powerful smart phones to
move information around and display stuff

•  Which has implications for their operating
systems . . .

Lecture 1
Page 66

CS 111
Fall 2016

General OS Trends
•  They have grown larger and more sophisticated
•  Their role has fundamentally changed

–  From shepherding the use of the hardware
–  To shielding the applications from the hardware
–  To providing powerful application computing platform
–  To becoming a sophisticated “traffic cop”

•  They still sit between applications and hardware
•  Best understood through services they provide

–  Capabilities they add
–  Applications they enable
–  Problems they eliminate

Lecture 1
Page 67

CS 111
Fall 2016

Why?

•  Ultimately because it’s what users want
•  The OS must provide core services to

applications
•  Applications have become more complex

– More complex internal behavior
– More complex interfaces
– More interactions with other software

•  The OS needs to help with all that complexity

Lecture 1
Page 68

CS 111
Fall 2016

OS Convergence
•  There are a handful of widely used OSes

– And a few special purpose ones (E.g., real time
and embedded system OSes)

•  New ones come along very rarely
•  OSes in the same family (e.g., Windows or

Linux) are used for vastly different purposes
– Making things challenging for the OS designer

•  Most OSes are based on pretty old models
– Linux comes from Unix (1970s vintage)
– Windows from the early 1980s

Lecture 1
Page 69

CS 111
Fall 2016

Operating Systems for Mobile
Devices

•  What’s down at the bottom for our smart
phones and other devices?

•  For Apple devices, ultimately XNU
– Based on Mach (an 80s system), with some

features from other 80s systems (like BSD Unix)
•  For Android, ultimately Linux
•  For Microsoft, ultimately Windows CE

– Which has its origins in the 1990s
•  None of these is all that new, either

Lecture 1
Page 70

CS 111
Fall 2016

Why Have OSes Converged?

•  They’re expensive to build and maintain
– So it’s a hard business to get into and stay in

•  They only succeed if users choose them over
other OS options
– Which can’t happen unless you support all the

apps the users want (and preferably better)
– Which requires other parties to do a lot of work

•  You need to have some clear advantage over
present acceptable alternatives

Lecture 1
Page 71

CS 111
Fall 2016

A Resulting OS Challenge

•  We are basing the OS we use today on an
architecture designed 20-40 years ago

•  We can make some changes in the architecture
•  But not too many

– Due to compatibility
– And fundamental characteristics of the architecture

•  Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

Lecture 1
Page 72

CS 111
Fall 2016

Conclusion

•  Understanding operating systems is critical to
understanding how computers work

•  Operating systems interact directly with the
hardware

•  Operating systems provide services via
abstractions

•  Operating systems are constrained by many
non-technical factors

