
Lecture 12
Page 1

CS 111
Fall 2016

Operating System Principles:
Devices, Device Drivers, and I/O

CS 111
Operating Systems

Peter Reiher

Lecture 12
Page 2

CS 111
Fall 2016

Outline

•  Devices and device drivers
•  I/O performance issues
•  Device driver abstractions

Lecture 12
Page 3

CS 111
Fall 2016

So You’ve Got Your Computer . . .
It’s got memory, a bus,

a CPU or two
But there’s usually a lot

more to it than that

Lecture 12
Page 4

CS 111
Fall 2016

Welcome to the Wonderful
World of Peripheral Devices!

•  Our computers typically have lots of devices
attached to them

•  Each device needs to have some code
associated with it
– To perform whatever operations it does
– To integrate it with the rest of the system

•  In modern commodity OSes, the code that
handles these devices dwarfs the rest

Lecture 12
Page 5

CS 111
Fall 2016

Peripheral Device Code and the OS
•  Why are peripheral devices the OS’ problem,

anyway?
•  Why can’t they be handled in user-level code?
•  Maybe they sometimes can, but . . .
•  Some of them are critical for system correctness

–  E.g., the disk drive holding swap space

•  Some of them must be shared among multiple
processes
–  Which is often rather complex

•  Some of them are security-sensitive
•  Perhaps more appropriate to put the code in the OS

Lecture 12
Page 6

CS 111
Fall 2016

Where the Device Driver Fits in
•  At one end you have an application

– Like a web browser

•  At the other end you have a very specific piece
of hardware
– Like an Intel Gigabit CT PCI-E Network Adapter

•  In between is the OS
•  When the application sends a packet, the OS

needs to invoke the proper device driver
•  Which feeds detailed instructions to the

hardware

Lecture 12
Page 7

CS 111
Fall 2016

Device Drivers
•  Generally, the code for these devices is pretty

specific to them
•  It’s basically code that drives the device

– Makes the device perform the operations it’s
designed for

•  So typically each system device is represented
by its own piece of code

•  The device driver
•  A Linux 2.6 kernel came with over 3200 of

them . . .

Lecture 12
Page 8

CS 111
Fall 2016

Typical Properties of
Device Drivers

•  Highly specific to the particular device
–  System only needs drivers for devices it hosts

•  Inherently modular
•  Usually interacts with the rest of the system in

limited, well defined ways
•  Their correctness is critical

–  Device behavior correctness and overall correctness
•  Generally written by programmers who understand

the device well
–  But are not necessarily experts on systems issues

Lecture 12
Page 9

CS 111
Fall 2016

Abstractions and Device Drivers
•  OS defines idealized device classes

– Disk, display, printer, tape, network, serial ports

•  Classes define expected interfaces/behavior
– All drivers in class support standard methods

•  Device drivers implement standard behavior
– Make diverse devices fit into a common mold
– Protect applications from device eccentricities

•  Abstractions regularize and simplify the chaos
of the world of devices

Lecture 12
Page 10

CS 111
Fall 2016

What Can Driver Abstractions
Help With?

•  Encapsulate knowledge of how to use the device
–  Map standard operations into operations on device
–  Map device states into standard object behavior
–  Hide irrelevant behavior from users
–  Correctly coordinate device and application behavior

•  Encapsulate knowledge of optimization
–  Efficiently perform standard operations on a device

•  Encapsulate fault handling
–  Understanding how to handle recoverable faults
–  Prevent device faults from becoming OS faults

Lecture 12
Page 11

CS 111
Fall 2016

How Do Device Drivers Fit
Into a Modern OS?

•  There may be a lot of them
•  They are each pretty independent
•  You may need to add new ones later
•  So a pluggable model is typical
•  OS provides capabilities to plug in particular

drivers in well defined ways
•  Then plug in the ones a given machine needs
•  Making it easy to change or augment later

Lecture 12
Page 12

CS 111
Fall 2016

Layering Device Drivers
•  The interactions with the bus, down at the

bottom, are pretty standard
– How you address devices on the bus, coordination

of signaling and data transfers, etc.
– Not too dependent on the device itself

•  The interactions with the applications, up at
the top, are also pretty standard
– Typically using some file-oriented approach

•  In between are some very device specific
things

Lecture 12
Page 13

CS 111
Fall 2016

A Pictorial View

App 1 App 2 App 3

User space

Kernel
space

Hardware

USB bus
controller

PCI bus
controller

USB
bus

PCI
bus

Device
Drivers

System
Call

Device
Call

Lecture 12
Page 14

CS 111
Fall 2016

Device Drivers Vs. Core OS Code
•  Device driver code is in the OS, but . . .
•  What belongs in core OS vs. a device driver?
•  Common functionality belongs in the OS

– Caching
– File systems code not tied to a specific device
– Network protocols above physical/link layers

•  Specialized functionality belongs in the drivers
– Things that differ in different pieces of hardware
– Things that only pertain to the particular piece of

hardware

Lecture 12
Page 15

CS 111
Fall 2016

Devices and Interrupts
•  Devices are primarily interrupt-driven

– Drivers aren’t schedulable processes

•  They work at different speed than the CPU
– Typically slower

•  They can do their own work while CPU does
something else

•  They use interrupts to get the CPU’s attention

Lecture 12
Page 16

CS 111
Fall 2016

Devices and Busses

•  Devices are not connected directly to the CPU
•  Both CPU and devices are connected to a bus
•  Sometimes the same bus, sometimes a different bus
•  Devices communicate with CPU across the bus
•  Bus used both to send/receive interrupts and to

transfer data and commands
–  Devices signal controller when they are done/ready
–  When device finishes, controller puts interrupt on bus
–  Bus then transfers interrupt to the CPU
–  Perhaps leading to movement of data

Lecture 12
Page 17

CS 111
Fall 2016

CPUs and Interrupts

•  Interrupts look very much like traps
– Traps come from CPU
–  Interrupts are caused externally to CPU

•  Unlike traps, interrupts can be enabled/
disabled by special CPU instructions
– Device can be told when they may generate

interrupts
–  Interrupt may be held pending until software is

ready for it

Lecture 12
Page 18

CS 111
Fall 2016

The Changing I/O Landscape
•  To quote a recent Nobel Prize winner, “the times they

are a’changing”
•  Storage paradigms

–  Old: swapping, paging, file systems, data bases
–  New: NAS, distributed object/key-value stores

•  I/O traffic
–  Old: most I/O was disk I/O
–  New: network and video dominate many systems

•  Performance goals:
–  Old: maximize throughput, IOPS
–  New: low latency, scalability, reliability, availability

Lecture 12
Page 19

CS 111
Fall 2016

Device Performance

•  The importance of good device utilization
•  How to achieve good utilization

Lecture 12
Page 20

CS 111
Fall 2016

Good Device Utilization
•  Key system devices limit system performance

–  File system I/O, swapping, network communication
•  If device sits idle, its throughput drops

– This may result in lower system throughput
– Longer service queues, slower response times

•  Delays can disrupt real-time data flows
– Resulting in unacceptable performance
–  Possible loss of irreplaceable data

•  It is very important to keep key devices busy
–  Start request n+1 immediately when n finishes

Lecture 12
Page 21

CS 111
Fall 2016

Poor I/O Device Utilization
IDLE

BUSY

I/O
device

process

1.  process waits to run

2.  process does computation in preparation for I/O operation

3.  process issues read system call, blocks awaiting completion

4.  device performs requested operation

5.  completion interrupt awakens blocked process

6.  process runs again, finishes read system call

7.  process does more computation

8.  Process issues read system call, blocks awaiting completion

Lecture 12
Page 22

CS 111
Fall 2016

How To Do Better

•  The usual way:
– Exploit parallelism

•  Devices operate independently of the CPU
•  So a device and the CPU can operate in

parallel
•  But often devices need to access RAM

– As does the CPU

•  How to handle that?

Lecture 12
Page 23

CS 111
Fall 2016

What’s Really Happening on the
CPU?

•  Modern CPUs try to avoid going to RAM
– Working with registers
– Caching on the CPU chip itself

•  If things go well, the CPU doesn’t use the
memory bus that much
–  If not, life will be slow, anyway

•  So one way to parallelize activities is to let a
device use the bus instead of the CPU

Lecture 12
Page 24

CS 111
Fall 2016

Direct Memory Access (DMA)
•  Allows any two devices attached to the

memory bus to move data directly
– Without passing it through the CPU first

•  Bus can only be used for one thing at a time
•  So if it’s doing DMA, it’s not servicing CPU

requests
•  But often the CPU doesn’t need it, anyway
•  With DMA, data moves from device to

memory at bus/device/memory speed

Lecture 12
Page 25

CS 111
Fall 2016

Keeping Key Devices Busy
•  Allow multiple requests to be pending at a time

–  Queue them, just like processes in the ready queue
–  Requesters block to await eventual completions

•  Use DMA to perform the actual data transfers
–  Data transferred, with no delay, at device speed
–  Minimal overhead imposed on CPU

•  When the currently active request completes
–  Device controller generates a completion interrupt
–  OS accepts interrupt and calls appropriate handler
–  Interrupt handler posts completion to requester
–  Interrupt handler selects and initiates next transfer

Lecture 12
Page 26

CS 111
Fall 2016

Interrupt Driven Chain Scheduled I/O
xx_read/write() {

 allocate a new request descriptor
 fill in type, address, count, location
 insert request into service queue
 if (device is idle) {
 disable_device_interrupt();
 xx_start();
 enable_device_interrupt();
 }
 await completion of request
 extract completion info for caller

}

xx_start() {
 get next request from queue
 get address, count, disk address
 load request parameters into controller

 start the DMA operation
 mark device busy

}

xx_intr() {
 extract completion info from controller
 update completion info in current req
 wakeup current request
 if (more requests in queue)
 xx_start()
 else
 mark device idle

}

Lecture 12
Page 27

CS 111
Fall 2016

Multi-Tasking & Interrupt Driven I/O
device 1A

 process 1 1A

1.  P1 runs, requests a read, and blocks

2.  P2 runs, requests a read, and blocks

3.  P3 runs until interrupted

4.  Awaken P1 and start next read operation

5.  P1 runs, requests a read, and blocks

6.  P3 runs until interrupted

 process 2

 process 3

2A 1B 2B

1B 1C

2A 2B

7. Awaken P2 and start next read operation

8. P2 runs, requests a read, and blocks

9. P3 runs until interrupted

10. Awaken P1 and start next read operation

11. P1 runs, requests a read, and blocks

Lecture 12
Page 28

CS 111
Fall 2016

Bigger Transfers are Better

Lecture 12
Page 29

CS 111
Fall 2016

(Bigger Transfers are Better)

•  Disks have high seek/rotation overheads
– Larger transfers amortize down the cost/byte

•  All transfers have per-operation overhead
–  Instructions to set up operation
– Device time to start new operation
– Time and cycles to service completion interrupt

•  Larger transfers have lower overhead/byte
– This is not limited to software implementations

Lecture 12
Page 30

CS 111
Fall 2016

I/O and Buffering

•  Most I/O requests cause data to come into the
memory or to be copied to a device

•  That data requires a place in memory
– Commonly called a buffer

•  Data in buffers is ready to send to a device
•  An existing empty buffer is ready to receive

data from a device
•  OS needs to make sure buffers are available

when devices are ready to use them

Lecture 12
Page 31

CS 111
Fall 2016

OS Buffering Issues

•  Fewer/larger transfers are more efficient
– They may not be convenient for applications
– Natural record sizes tend to be relatively small

•  Operating system can consolidate I/O requests
– Maintain a cache of recently used disk blocks
– Accumulate small writes, flush out as blocks fill
– Read whole blocks, deliver data as requested

•  Enables read-ahead
– OS reads/caches blocks not yet requested

Lecture 12
Page 32

CS 111
Fall 2016

Deep Request Queues
•  Having many I/O operations queued is good

– Maintains high device utilization (little idle time)
– Reduces mean seek distance/rotational delay
– May be possible to combine adjacent requests
– Can sometimes avoid performing a write at all

•  Ways to achieve deep queues:
– Many processes making requests
–  Individual processes making parallel requests
– Read-ahead for expected data requests
– Write-back cache flushing

Lecture 12
Page 33

CS 111
Fall 2016

Double-Buffered Output

buffer
#1

buffer
#2

application

device

Lecture 12
Page 34

CS 111
Fall 2016

Performing Double-Buffered
Output

•  Have multiple buffers queued up, ready to write
–  Each write completion interrupt starts the next write

•  Application and device I/O proceed in parallel
–  Application queues successive writes

•  Don’t bother waiting for previous operation to finish
–  Device picks up next buffer as soon as it is ready

•  If we're CPU-bound (more CPU than output)
–  Application speeds up because it doesn’t wait for I/O

•  If we're I/O-bound (more output than CPU)
–  Device is kept busy, which improves throughput
–  But eventually we may have to block the process

Lecture 12
Page 35

CS 111
Fall 2016

Double-Buffered Input

buffer
#1

buffer
#2

application

device

Lecture 12
Page 36

CS 111
Fall 2016

Performing Double Buffered Input

•  Have multiple reads queued up, ready to go
– Read completion interrupt starts read into next buffer

•  Filled buffers wait until application asks for them
– Application doesn't have to wait for data to be read

•  When can we do chain-scheduled reads?
– Each app will probably block until its read completes

•  So we won’t get multiple reads from one application
– We can queue reads from multiple processes
– We can do predictive read-ahead

Lecture 12
Page 37

CS 111
Fall 2016

Scatter/Gather I/O
•  Many device controllers support DMA transfers

– Entire transfer must be contiguous in physical memory
•  User buffers are in paged virtual memory

– User buffers may be spread all over physical memory
–  Scatter: read from device to multiple pages
– Gather: writing from multiple pages to device

•  Three basic approaches apply
1.  Copy all user data into contiguous physical buffer
2.  Split logical request into chain-scheduled page

requests
3.  I/O MMU may automatically handle scatter/gather

Lecture 12
Page 38

CS 111
Fall 2016

“Gather” Writes From Paged Memory

process virtual
address space

physical
memory

DMA I/O stream

user I/O
buffer

Lecture 12
Page 39

CS 111
Fall 2016

“Scatter” Reads Into Paged
Memory

process virtual
address space

physical
memory

DMA I/O stream

user I/O
buffer

Lecture 12
Page 40

CS 111
Fall 2016

Memory Mapped I/O
•  DMA may not be the best way to do I/O

–  Designed for large contiguous transfers
–  Some devices have many small sparse transfers

•  E.g., consider a video game display adaptor

•  Instead, treat registers/memory in device as part of the regular
memory space
–  Accessed by reading/writing those locations

•  For example, a bit-mapped display adaptor
–  1Mpixel display controller, on the CPU memory bus
–  Each word of memory corresponds to one pixel
–  Application uses ordinary stores to update display

•  Low overhead per update, no interrupts to service
•  Relatively easy to program

Lecture 12
Page 41

CS 111
Fall 2016

Trade-off: Memory Mapping vs. DMA

•  DMA performs large transfers efficiently
– Better utilization of both the devices and the CPU

•  Device doesn't have to wait for CPU to do transfers
– But there is considerable per transfer overhead

•  Setting up the operation, processing completion interrupt
•  Memory-mapped I/O has no per-op overhead

– But every byte is transferred by a CPU instruction
•  No waiting because device accepts data at memory speed

•  DMA better for occasional large transfers
•  Memory-mapped better frequent small transfers
•  Memory-mapped devices more difficult to share

Lecture 12
Page 42

CS 111
Fall 2016

Generalizing Abstractions for
Device Drivers

•  Every device type is unique
–  To some extent, at least in hardware details

•  Implying each requires its own unique device driver
•  But there are many commonalities
•  Particularly among classes of devices

–  All disk drives, all network cards, all graphics cards, etc.

•  Can we simplify the OS by leveraging these
commonalities?

•  By defining simplifying abstractions?

Lecture 12
Page 43

CS 111
Fall 2016

Providing the Abstractions

•  The OS defines idealized device classes
– Disk, display, printer, tape, network, serial ports

•  Classes define expected interfaces/behavior
– All drivers in class support standard methods

•  Device drivers implement standard behavior
– Make diverse devices fit into a common mold
– Protect applications from device eccentricities

•  Interfaces (as usual) are key to providing
abstractions

Lecture 12
Page 44

CS 111
Fall 2016

Device Driver Interface (DDI)
•  Standard (top-end) device driver entry-points

–  “Top-end” – from the OS to the driver
– Basis for device-independent applications
– Enables system to exploit new devices
– A critical interface contract for 3rd party developers

•  Some entry points correspond directly to system
calls
– E.g., open, close, read, write

•  Some are associated with OS frameworks
– Disk drivers are meant to be called by block I/O
– Network drivers are meant to be called by protocols

Lecture 12
Page 45

CS 111
Fall 2016

DDIs and sub-DDIs

Basic I/O
read, write,
seek, ioctl,

select

Life Cycle
initialize, cleanup

open, release

Common DDI
Disk

request
revalidate

fsync

Network
receive,
transmit
set MAC

stats

Serial
receive character

start write
line parms

Lecture 12
Page 46

CS 111
Fall 2016

Standard Driver Classes & Clients

file & directory
operations

networking & IPC
operations

direct device
access

system calls

U
N

IX
 FS

D
O

S
 FS

C
D

 FS

block I/O

TC
P

/IP

X
.25

P
P

P

data Link
provider

display class

serial class

tape class

disk class
CD

drivers
disk

drivers
tape

drivers
display
drivers

serial
drivers

NIC
drivers

device driver interfaces (*-ddi)

Lecture 12
Page 47

CS 111
Fall 2016

Drivers – Simplifying Abstractions
•  Encapsulate knowledge of how to use a device

– Map standard operations into operations onto device
– Map device states into standard object behavior
– Hide irrelevant behavior from users
– Correctly coordinate device and application behavior

•  Encapsulate knowledge of optimization
– Efficiently perform standard operations on a device

•  Encapsulation of fault handling
– Knowledge of how to handle recoverable faults
–  Prevent device faults from becoming OS faults

Lecture 12
Page 48

CS 111
Fall 2016

Kernel Services for device drivers
sub-class DDI

device driver

common DDI

memory
allocation

synchronization error reporting

run-time
loader

I/O resource
management

DMA

buffering

DKI – driver/kernel interface

configuration

Lecture 12
Page 49

CS 111
Fall 2016

Driver/Kernel Interface
•  Specifies bottom-end services OS provides to drivers

–  Things drivers can ask the kernel to do
–  Analogous to an ABI for device driver writers

•  Must be very well-defined and stable
–  To enable 3rd party driver writers to build drivers
–  So old drivers continue to work on new OS versions

•  Each OS has its own DKI, but they are all similar
–  Memory allocation, data transfer and buffering
–  I/O resource (e.g. ports, interrupts) mgt, DMA
–  Synchronization, error reporting
–  Dynamic module support, configuration, plumbing

Lecture 12
Page 50

CS 111
Fall 2016

Criticality of Stable Interfaces

•  Drivers are largely independent from the OS
– They are built by different organizations
– They might not be co-packaged with the OS

•  OS and drivers have interface dependencies
– OS depends on driver implementations of DDI
– Drivers depends on kernel DKI implementations

•  These interfaces must be carefully managed
– Well defined and well tested
– Upwards-compatible evolution

Lecture 12
Page 51

CS 111
Fall 2016

Linux Device Driver Abstractions
•  An example of how an OS handles device

drivers
•  Basically inherited from earlier Unix systems
•  A class-based system
•  Several super-classes

– Block devices
– Character devices
– Some regard network devices as a third major class

•  Other divisions within each super-class

Lecture 12
Page 52

CS 111
Fall 2016

Why Classes of Drivers?
•  Classes provide a good organization for

abstraction
•  They provide a common framework to reduce

amount of code required for each new device
•  The framework ensure all devices in class

provide certain minimal functionality
•  But a lot of driver functionality is very specific

to the device
–  Implying that class abstractions don’t cover

everything

Lecture 12
Page 53

CS 111
Fall 2016

Character Device Superclass
•  Devices that read/write one byte at a time

– “Character” means byte, not ASCII

•  May be either stream or record structured
•  May be sequential or random access
•  Support direct, synchronous reads and writes
•  Common examples:

– Keyboards
– Monitors
– Most other devices

Lecture 12
Page 54

CS 111
Fall 2016

Block Device Superclass
•  Devices that deal with a block of data at a time
•  Usually a fixed size block
•  Most common example is a disk drive
•  Reads or writes a single sized block (e.g., 4K

bytes) of data at a time
•  Random access devices, accessible one block

at a time
•  Support queued, asynchronous reads and

writes

Lecture 12
Page 55

CS 111
Fall 2016

Why a Separate Superclass
for Block Devices?

•  Block devices span all forms of block-addressable
random access storage
–  Hard disks, CDs, flash, and even some tapes

•  Such devices require some very elaborate services
–  Buffer allocation, LRU management of a buffer cache, data

copying services for those buffers, scheduled I/O,
asynchronous completion, etc.

•  Important system functionality (file systems and
swapping/paging) implemented on top of block I/O

•  Block I/O services are designed to provide very high
performance for critical functions

Lecture 12
Page 56

CS 111
Fall 2016

Network Device Superclass
•  Devices that send/receive data in packets
•  Originally treated as character devices
•  But sufficiently different from other character

devices that some regard as distinct
•  Only used in the context of network protocols

– Unlike other devices
– Which leads to special characteristics

•  Typical examples are Ethernet cards, 802.11
cards, Bluetooth devices

Lecture 12
Page 57

CS 111
Fall 2016

Identifying Device Drivers

•  The major device number specifies which
device driver to use for it

•  Might have several distinct devices using the
same drivers
– E.g., multiple disk drives of the same type
– Or one disk drive divided into logically distinct

pieces
•  Minor device number distinguishes between

those

Lecture 12
Page 58

CS 111
Fall 2016

Accessing Linux Device Drivers
•  Done through the file system
•  Special files

–  Files that are associated with a device instance
–  UNIX/LINUX uses <block/character, major, minor>

•  Major number corresponds to a particular device driver
•  Minor number identifies an instance under that driver

•  Opening a special file opens the associated device
–  Open/close/read/write/etc. calls map to calls to appropriate

entry-points of the selected driver

brw-r----- 1 root operator 14, 0 Apr 11 18:03 disk0
brw-r----- 1 root operator 14, 1 Apr 11 18:03 disk0s1
brw-r----- 1 root operator 14, 2 Apr 11 18:03 disk0s2
br--r----- 1 reiher reiher 14, 3 Apr 15 16:19 disk2
br--r----- 1 reiher reiher 14, 4 Apr 15 16:19 disk2s1
br--r----- 1 reiher reiher 14, 5 Apr 15 16:19 disk2s2

A block
special
device

Major
number
is 14

Minor
number
is 0

