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Outline 

•  Devices and device drivers 
•  I/O performance issues 
•  Device driver abstractions 
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So You’ve Got Your Computer . . . 
It’s got memory, a bus, 

a CPU or two 
But there’s usually a lot 

more to it than that 
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Welcome to the Wonderful  
World of Peripheral Devices! 

•  Our computers typically have lots of devices 
attached to them 

•  Each device needs to have some code 
associated with it 
– To perform whatever operations it does 
– To integrate it with the rest of the system 

•  In modern commodity OSes, the code that 
handles these devices dwarfs the rest 



Lecture 12 
Page 5 

CS 111 
Fall 2016  

Peripheral Device Code and the OS 
•  Why are peripheral devices the OS’ problem, 

anyway? 
•  Why can’t they be handled in user-level code? 
•  Maybe they sometimes can, but . . . 
•  Some of them are critical for system correctness 

–  E.g., the disk drive holding swap space 

•  Some of them must be shared among multiple 
processes 
–  Which is often rather complex 

•  Some of them are security-sensitive 
•  Perhaps more appropriate to put the code in the OS 
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Where the Device Driver Fits in 
•  At one end you have an application 

– Like a web browser 

•  At the other end you have a very specific piece 
of hardware 
– Like an Intel Gigabit CT PCI-E Network Adapter 

•  In between is the OS 
•  When the application sends a packet, the OS 

needs to invoke the proper device driver 
•  Which feeds detailed instructions to the 

hardware 
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Device Drivers 
•  Generally, the code for these devices is pretty 

specific to them 
•  It’s basically code that drives the device  

– Makes the device perform the operations it’s 
designed for 

•  So typically each system device is represented 
by its own piece of code 

•  The device driver 
•  A Linux 2.6 kernel came with over 3200 of 

them . . . 
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Typical Properties of  
Device Drivers 

•  Highly specific to the particular device 
–  System only needs drivers for devices it hosts 

•  Inherently modular 
•  Usually interacts with the rest of the system in 

limited, well defined ways 
•  Their correctness is critical 

–  Device behavior correctness and overall correctness 
•  Generally written by programmers who understand 

the device well 
–  But are not necessarily experts on systems issues 
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Abstractions and Device Drivers 
•  OS defines idealized device classes 

– Disk, display, printer, tape, network, serial ports  

•  Classes define expected interfaces/behavior 
– All drivers in class support standard methods 

•  Device drivers implement standard behavior 
– Make diverse devices fit into a common mold 
– Protect applications from device eccentricities 

•  Abstractions regularize and simplify the chaos 
of the world of devices  
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What Can Driver Abstractions  
Help With? 

•  Encapsulate knowledge of how to use the device 
–  Map standard operations into operations on device 
–  Map device states into standard object behavior 
–  Hide irrelevant behavior from users 
–  Correctly coordinate device and application behavior 

•  Encapsulate knowledge of optimization 
–  Efficiently perform standard operations on a device 

•  Encapsulate fault handling 
–  Understanding how to handle recoverable faults 
–  Prevent device faults from becoming OS faults 
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How Do Device Drivers Fit  
Into a Modern OS? 

•  There may be a lot of them 
•  They are each pretty independent 
•  You may need to add new ones later 
•  So a pluggable model is typical 
•  OS provides capabilities to plug in particular 

drivers in well defined ways 
•  Then plug in the ones a given machine needs 
•  Making it easy to change or augment later 
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Layering Device Drivers 
•  The interactions with the bus, down at the 

bottom, are pretty standard 
– How you address devices on the bus, coordination 

of signaling and data transfers, etc. 
– Not too dependent on the device itself 

•  The interactions with the applications, up at 
the top, are also pretty standard 
– Typically using some file-oriented approach 

•  In between are some very device specific 
things 
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A Pictorial View 

App 1 App 2 App 3 

User space 

Kernel  
space 

Hardware 

USB bus 
controller 

PCI bus 
controller 

USB  
bus 

PCI 
bus 

Device 
Drivers 

System 
Call 

Device 
Call 
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Device Drivers Vs. Core OS Code 
•  Device driver code is in the OS, but . . . 
•  What belongs in core OS vs. a device driver? 
•  Common functionality belongs in the OS 

– Caching 
– File systems code not tied to a specific device 
– Network protocols above physical/link layers 

•  Specialized functionality belongs in the drivers 
– Things that differ in different pieces of hardware 
– Things that only pertain to the particular piece of 

hardware 
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Devices and Interrupts 
•  Devices are primarily interrupt-driven 

– Drivers aren’t schedulable processes 

•  They work at different speed than the CPU 
– Typically slower 

•  They can do their own work while CPU does 
something else 

•  They use interrupts to get the CPU’s attention 
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Devices and Busses 

•  Devices are not connected directly to the CPU 
•  Both CPU and devices are connected to a bus 
•  Sometimes the same bus, sometimes a different bus 
•  Devices communicate with CPU across the bus 
•  Bus used both to send/receive interrupts and to 

transfer data and commands 
–  Devices signal controller when they are done/ready 
–  When device finishes, controller puts interrupt on bus 
–  Bus then transfers interrupt to the CPU 
–  Perhaps leading to movement of data 
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CPUs and Interrupts 

•  Interrupts look very much like traps 
– Traps come from CPU 
–  Interrupts are caused externally to CPU 

•  Unlike traps, interrupts can be enabled/
disabled by special CPU instructions 
– Device can be told when they may generate 

interrupts 
–  Interrupt may be held pending until software is 

ready for it 



Lecture 12 
Page 18 

CS 111 
Fall 2016  

The Changing I/O Landscape 
•  To quote a recent Nobel Prize winner, “the times they 

are a’changing” 
•  Storage paradigms 

–  Old: swapping, paging, file systems, data bases 
–  New: NAS, distributed object/key-value stores 

•  I/O traffic 
–  Old: most I/O was disk I/O 
–  New: network and video dominate many systems 

•  Performance goals: 
–  Old: maximize throughput, IOPS 
–  New: low latency, scalability, reliability, availability 
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Device Performance 

•  The importance of good device utilization 
•  How to achieve good utilization 
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Good Device Utilization 
•  Key system devices limit system performance 

–  File system I/O, swapping, network communication 
•  If device sits idle, its throughput drops 

– This may result in lower system throughput 
– Longer service queues, slower response times 

•  Delays can disrupt real-time data flows 
– Resulting in unacceptable performance 
–  Possible loss of irreplaceable data 

•  It is very important to keep key devices busy 
–  Start request n+1 immediately when n finishes 
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Poor I/O Device Utilization 
IDLE 

BUSY 

I/O 
device 

process 

1.  process waits to run 

2.  process does computation in preparation for I/O operation 

3.  process issues read system call, blocks awaiting completion 

4.  device performs requested operation 

5.  completion interrupt awakens blocked process 

6.  process runs again, finishes read system call 

7.  process does more computation 

8.  Process issues read system call, blocks awaiting completion 
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How To Do Better 

•  The usual way: 
– Exploit parallelism 

•  Devices operate independently of the CPU 
•  So a device and the CPU can operate in 

parallel 
•  But often devices need to access RAM 

– As does the CPU 

•  How to handle that? 
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What’s Really Happening on the 
CPU? 

•  Modern CPUs try to avoid going to RAM 
– Working with registers 
– Caching on the CPU chip itself 

•  If things go well, the CPU doesn’t use the 
memory bus that much 
–  If not, life will be slow, anyway 

•  So one way to parallelize activities is to let a 
device use the bus instead of the CPU 
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Direct Memory Access (DMA) 
•  Allows any two devices attached to the 

memory bus to move data directly 
– Without passing it through the CPU first 

•  Bus can only be used for one thing at a time 
•  So if it’s doing DMA, it’s not servicing CPU 

requests 
•  But often the CPU doesn’t need it, anyway 
•  With DMA, data moves from device to 

memory at bus/device/memory speed 
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Keeping Key Devices Busy 
•  Allow multiple requests to be pending at a time 

–  Queue them, just like processes in the ready queue 
–  Requesters block to await eventual completions 

•  Use DMA to perform the actual data transfers 
–  Data transferred, with no delay, at device speed 
–  Minimal overhead imposed on CPU 

•  When the currently active request completes 
–  Device controller generates a completion interrupt 
–  OS accepts interrupt and calls appropriate handler 
–  Interrupt handler posts completion to requester 
–  Interrupt handler selects and initiates next transfer   
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Interrupt Driven Chain Scheduled I/O 
xx_read/write() { 

 allocate a new request descriptor 
 fill in type, address, count, location 
 insert request into service queue 
 if (device is idle) { 
   disable_device_interrupt();  
   xx_start();  
   enable_device_interrupt(); 
 } 
 await completion of request 
 extract completion info for caller 

} 

xx_start() { 
  get next request from queue 
  get address, count, disk address 
  load request parameters into controller 

 start the DMA operation 
 mark device busy 

} 

xx_intr() { 
 extract completion info from controller 
 update completion info in current req 
 wakeup current request 
 if (more requests in queue) 
   xx_start() 
 else 
   mark device idle 

} 
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Multi-Tasking & Interrupt Driven I/O 
device 1A 

 process 1 1A 

1.  P1 runs, requests a read, and blocks 

2.  P2 runs, requests a read, and blocks 

3.  P3 runs until interrupted 

4.  Awaken P1 and start next read operation 

5.  P1 runs, requests a read, and blocks  

6.  P3 runs until interrupted  

 process 2 

 process 3 

2A 1B 2B 

1B 1C 

2A 2B 

7.   Awaken P2 and start next read operation 

8.   P2 runs, requests a read, and blocks  

9.   P3 runs until interrupted  

10. Awaken P1 and start next read operation 

11. P1 runs, requests a read, and blocks 
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Bigger Transfers are Better 
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(Bigger Transfers are Better) 

•  Disks have high seek/rotation overheads 
– Larger transfers amortize down the cost/byte 

•  All transfers have per-operation overhead 
–  Instructions to set up operation 
– Device time to start new operation 
– Time and cycles to service completion interrupt 

•  Larger transfers have lower overhead/byte 
– This is not limited to software implementations 
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I/O and Buffering 

•  Most I/O requests cause data to come into the 
memory or to be copied to a device 

•  That data requires a place in memory 
– Commonly called a buffer 

•  Data in buffers is ready to send to a device 
•  An existing empty buffer is ready to receive 

data from a device 
•  OS needs to make sure buffers are available 

when devices are ready to use them 
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OS Buffering Issues 

•  Fewer/larger transfers are more efficient 
– They may not be convenient for applications 
– Natural record sizes tend to be relatively small 

•  Operating system can consolidate I/O requests 
– Maintain a cache of recently used disk blocks 
– Accumulate small writes, flush out as blocks fill 
– Read whole blocks, deliver data as requested 

•  Enables read-ahead 
– OS reads/caches blocks not yet requested 
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Deep Request Queues 
•  Having many I/O operations queued is good 

– Maintains high device utilization (little idle time) 
– Reduces mean seek distance/rotational delay 
– May be possible to combine adjacent requests 
– Can sometimes avoid performing a write at all 

•  Ways to achieve deep queues: 
– Many processes making requests 
–  Individual processes making parallel requests 
– Read-ahead for expected data requests 
– Write-back cache flushing 
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Double-Buffered Output 

buffer 
#1 

buffer 
#2 

application 

device 
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Performing Double-Buffered 
Output 

•  Have multiple buffers queued up, ready to write 
–  Each write completion interrupt starts the next write 

•  Application and device I/O proceed in parallel 
–  Application queues successive writes  

•  Don’t bother waiting for previous operation to finish 
–  Device picks up next buffer as soon as it is ready 

•  If we're CPU-bound (more CPU than output) 
–  Application speeds up because it doesn’t wait for I/O 

•  If we're I/O-bound (more output than CPU) 
–  Device is kept busy, which improves throughput 
–  But eventually we may have to block the process 
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Double-Buffered Input 

buffer 
#1 

buffer 
#2 

application 

device 
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Performing Double Buffered Input 

•  Have multiple reads queued up, ready to go 
– Read completion interrupt starts read into next buffer 

•  Filled buffers wait until application asks for them 
– Application doesn't have to wait for data to be read 

•  When can we do chain-scheduled reads? 
– Each app will probably block until its read completes 

•  So we won’t get multiple reads from one application 
– We can queue reads from multiple processes 
– We can do predictive read-ahead 
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Scatter/Gather I/O 
•  Many device controllers support DMA transfers 

– Entire transfer must be contiguous in physical memory 
•  User buffers are in paged virtual memory 

– User buffers may be spread all over physical memory 
–  Scatter: read from device to multiple pages 
– Gather: writing from multiple pages to device 

•  Three basic approaches apply 
1.  Copy all user data into contiguous physical buffer 
2.  Split logical request into chain-scheduled page 

requests 
3.  I/O MMU may automatically handle scatter/gather 



Lecture 12 
Page 38 

CS 111 
Fall 2016  

“Gather” Writes From Paged Memory 

process virtual 
address space 

physical 
memory  

DMA I/O stream 

user I/O  
buffer 
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“Scatter” Reads Into Paged 
Memory 

process virtual 
address space 

physical 
memory  

DMA I/O stream 

user I/O  
buffer 
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Memory Mapped I/O 
•  DMA may not be the best way to do I/O 

–  Designed for large contiguous transfers 
–  Some devices have many small sparse transfers 

•  E.g., consider a video game display adaptor 

•  Instead, treat registers/memory in device as part of the regular 
memory space 
–  Accessed by reading/writing those locations 

•  For example, a bit-mapped display adaptor 
–  1Mpixel display controller, on the CPU memory bus 
–  Each word of memory corresponds to one pixel 
–  Application uses ordinary stores to update display 

•  Low overhead per update, no interrupts to service 
•  Relatively easy to program 
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Trade-off: Memory Mapping vs. DMA 

•  DMA performs large transfers efficiently 
– Better utilization of both the devices and the CPU 

•  Device doesn't have to wait for CPU to do transfers 
– But there is considerable per transfer overhead 

•  Setting up the operation, processing completion interrupt 
•  Memory-mapped I/O has no per-op overhead 

– But every byte is transferred by a CPU instruction 
•  No waiting because device accepts data at memory speed 

•  DMA better for occasional large transfers 
•  Memory-mapped better frequent small transfers 
•  Memory-mapped devices more difficult to share 
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Generalizing Abstractions for 
Device Drivers 

•  Every device type is unique 
–  To some extent, at least in hardware details 

•  Implying each requires its own unique device driver 
•  But there are many commonalities 
•  Particularly among classes of devices 

–  All disk drives, all network cards, all graphics cards, etc. 

•  Can we simplify the OS by leveraging these 
commonalities? 

•  By defining simplifying abstractions? 
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Providing the Abstractions 

•  The OS defines idealized device classes 
– Disk, display, printer, tape, network, serial ports  

•  Classes define expected interfaces/behavior 
– All drivers in class support standard methods 

•  Device drivers implement standard behavior 
– Make diverse devices fit into a common mold 
– Protect applications from device eccentricities 

•  Interfaces (as usual) are key to providing 
abstractions  



Lecture 12 
Page 44 

CS 111 
Fall 2016  

Device Driver Interface (DDI) 
•  Standard (top-end) device driver entry-points 

–  “Top-end” – from the OS to the driver 
– Basis for device-independent applications 
– Enables system to exploit new devices 
– A critical interface contract for 3rd party developers 

•  Some entry points correspond directly to system 
calls 
– E.g., open, close, read, write 

•  Some are associated with OS frameworks 
– Disk drivers are meant to be called by block I/O 
– Network drivers are meant to be called by protocols 
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DDIs and sub-DDIs 

Basic I/O 
read, write, 
seek, ioctl, 

select 

Life Cycle 
initialize, cleanup 

open, release 

Common DDI 
Disk 

request 
revalidate 

fsync 

Network 
receive,  
transmit 
set MAC 

stats 

Serial 
receive character 

start write 
line parms 
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Standard Driver Classes & Clients 

file & directory 
operations 

networking & IPC 
operations 

direct device 
access 

system calls 

U
N

IX
 FS

 

D
O

S
 FS

 

C
D

 FS
 

block I/O 

TC
P

/IP 

X
.25 

P
P

P 

data Link  
provider 

display class 

serial class 

tape class 

disk class 
CD 

drivers 
disk 

drivers 
tape 

drivers 
display 
drivers 

serial 
drivers 

NIC 
drivers 

device driver interfaces (*-ddi) 
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Drivers – Simplifying Abstractions 
•  Encapsulate knowledge of how to use a device 

– Map standard operations into operations onto device 
– Map device states into standard object behavior 
– Hide irrelevant behavior from users 
– Correctly coordinate device and application behavior 

•  Encapsulate knowledge of optimization 
– Efficiently perform standard operations on a device 

•  Encapsulation of fault handling 
– Knowledge of how to handle recoverable faults 
–  Prevent device faults from becoming OS faults 
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Kernel Services for device drivers 
sub-class DDI 

device driver 

common DDI 

memory 
allocation 

synchronization error reporting 

run-time 
loader 

I/O resource 
management 

DMA 

buffering 

DKI – driver/kernel interface 

configuration 
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Driver/Kernel Interface 
•  Specifies bottom-end services OS provides to drivers 

–  Things drivers can ask the kernel to do 
–  Analogous to an ABI for device driver writers 

•  Must be very well-defined and stable 
–  To enable 3rd party driver writers to build drivers 
–  So old drivers continue to work on new OS versions 

•  Each OS has its own DKI, but they are all similar 
–  Memory allocation, data transfer and buffering 
–  I/O resource (e.g. ports, interrupts) mgt, DMA 
–  Synchronization, error reporting 
–  Dynamic module support, configuration, plumbing 
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Criticality of Stable Interfaces 

•  Drivers are largely independent from the OS 
– They are built by different organizations 
– They might not be co-packaged with the OS 

•  OS and drivers have interface dependencies 
– OS depends on driver implementations of DDI 
– Drivers depends on kernel DKI implementations 

•  These interfaces must be carefully managed 
– Well defined and well tested 
– Upwards-compatible evolution 
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Linux Device Driver Abstractions 
•  An example of how an OS handles device 

drivers 
•  Basically inherited from earlier Unix systems 
•  A class-based system 
•  Several super-classes 

– Block devices 
– Character devices 
– Some regard network devices as a third major class 

•  Other divisions within each super-class 



Lecture 12 
Page 52 

CS 111 
Fall 2016  

Why Classes of Drivers? 
•  Classes provide a good organization for 

abstraction 
•  They provide a common framework to reduce 

amount of code required for each new device 
•  The framework ensure all devices in class 

provide certain minimal functionality 
•  But a lot of driver functionality is very specific 

to the device   
–  Implying that class abstractions don’t cover 

everything 



Lecture 12 
Page 53 

CS 111 
Fall 2016  

Character Device Superclass 
•  Devices that read/write one byte at a time 

– “Character” means byte, not ASCII 

•  May be either stream or record structured 
•  May be sequential or random access 
•  Support direct, synchronous reads and writes 
•  Common examples: 

– Keyboards 
– Monitors 
– Most other devices 
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Block Device Superclass 
•  Devices that deal with a block of data at a time 
•  Usually a fixed size block 
•  Most common example is a disk drive 
•  Reads or writes a single sized block (e.g., 4K 

bytes) of data at a time 
•  Random access devices, accessible one block 

at a time 
•  Support queued, asynchronous reads and 

writes 
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Why a Separate Superclass  
for Block Devices? 

•  Block devices span all forms of block-addressable 
random access storage  
–  Hard disks, CDs, flash, and even some tapes 

•  Such devices require some very elaborate services  
–  Buffer allocation, LRU management of a buffer cache, data 

copying services for those buffers, scheduled I/O, 
asynchronous completion, etc. 

•  Important system functionality (file systems and 
swapping/paging) implemented on top of block I/O 

•  Block I/O services are designed to provide very high 
performance for critical functions 
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Network Device Superclass 
•  Devices that send/receive data in packets 
•  Originally treated as character devices 
•  But sufficiently different from other character 

devices that some regard as distinct 
•  Only used in the context of network protocols 

– Unlike other devices 
– Which leads to special characteristics 

•  Typical examples are Ethernet cards, 802.11 
cards, Bluetooth devices 
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Identifying Device Drivers 

•  The major device number specifies which 
device driver to use for it 

•  Might have several distinct devices using the 
same drivers 
– E.g., multiple disk drives of the same type 
– Or one disk drive divided into logically distinct 

pieces 
•  Minor device number distinguishes between 

those 
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Accessing Linux Device Drivers 
•  Done through the file system 
•  Special files 

–  Files that are associated with a device instance 
–  UNIX/LINUX uses <block/character, major, minor> 

•  Major number corresponds to a particular device driver 
•  Minor number identifies an instance under that driver 

•  Opening a special file opens the associated device 
–  Open/close/read/write/etc. calls map to calls to appropriate 

entry-points of the selected driver 

brw-r-----  1 root    operator   14,   0 Apr 11 18:03 disk0 
brw-r-----  1 root    operator   14,   1 Apr 11 18:03 disk0s1 
brw-r-----  1 root    operator   14,   2 Apr 11 18:03 disk0s2 
br--r-----  1 reiher  reiher     14,   3 Apr 15 16:19 disk2 
br--r-----  1 reiher  reiher     14,   4 Apr 15 16:19 disk2s1 
br--r-----  1 reiher  reiher     14,   5 Apr 15 16:19 disk2s2 

A block 
special 
device 

Major 
number 
is 14 

Minor 
number 
is 0 


