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Outline 

•  Allocating and managing file system free 
space 

•  Other performance improvement strategies 
•  File naming and directories 
•  File system reliability issues 
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Free Space and Allocation Issues 

•  How do I keep track of a file system’s free 
space? 

•  How do I allocate new disk blocks when 
needed? 
– And how do I handle deallocation? 
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The Allocation/Deallocation 
Problem 

•  File systems usually aren’t static 
•  You create and destroy files 
•  You change the contents of files 

– Sometimes extending their length in the process 
•  Such changes convert unused disk blocks to 

used blocks (or visa versa) 
•  Need correct, efficient ways to do that 
•  Typically implies a need to maintain a free list 

of unused disk blocks 
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Creating a New File 
•  Allocate a free file control block 

– For UNIX 
•  Search the super-block free I-node list 
•  Take the first free I-node 

– For DOS  
•  Search the parent directory for an unused directory entry  

•  Initialize the new file control block 
– With file type, protection, ownership, ... 

•  Give new file a name  
– Naming issues will be discussed in the next lecture 
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Extending a File 

•  Application requests new data be assigned to a file 
–  May be an explicit allocation/extension request 
–  May be implicit (e.g., write to a currently non-existent 

block – remember sparse files?) 

•  Find a free chunk of space 
–  Traverse the free list to find an appropriate chunk 
–  Remove the chosen chunk from the free list 

•  Associate it with the appropriate address in the file 
–  Go to appropriate place in the file or extent descriptor 
–  Update it to point to the newly allocated chunk 



Lecture 14 
Page 7 

CS 111 
Fall 2016  

Deleting a File 
•  Release all the space that is allocated to the file 

– For UNIX, return each block to the free block list 
– DOS does not free space 

•  It uses garbage collection 
•  So it will search out deallocated blocks and add them to 

the free list at some future time 

•  Deallocate the file control lock 
– For UNIX, zero inode and return it to free list 
– For DOS, zero the first byte of the name in the 

parent directory 
•   Indicating that the directory entry is no longer in use  
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Free Space Maintenance 
•  File system manager manages the free space 
•  Getting/releasing blocks should be fast operations 

–  They are extremely frequent 
–  We'd like to avoid doing I/O as much as possible 

•  Unlike memory, it matters what block we choose 
–  Best to allocate new space in same cylinder as file’s 

existing space 
–  User may ask for contiguous storage 

•  Free-list organization must address both concerns 
–  Speed of allocation and deallocation 
–  Ability to allocate contiguous or near-by space 
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The BSD File System  
Free Space Management 

•  BSD is another version of Unix 
•  The details of its inodes are similar to those of 

Unix System V 
– As previously discussed 

•  Other aspects are somewhat different 
–  Including free space management 
– Typically more advanced 

•  Uses bit map approach to managing free space 
– Keeping cylinder issues in mind 
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Disk Drives and Geometry 

cylinder 
(10 corresponding tracks) 

platter 

surface 

track 

sectors 

Usually of fixed 
size (e.g., 4K) 
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The BSD Approach 
•  Instead of all control information at start of disk, 
•  Divide file system into cylinder groups 

–  Each cylinder group has its own control information 
•  The cylinder group summary 

–  Active cylinder group summaries are kept in memory 
–  Each cylinder group has its own inodes and blocks 
–  Free block list is a bit-map in cylinder group summary 

•  Enables significant reductions in head motion 
–  Data blocks in file can be allocated in same cylinder 
–  Inode and its data blocks in same cylinder group 
–  Directories and their files in same cylinder group 
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BSD Cylinder Groups  
and Free Space 

I-nodes data blocks 

file system & 
cylinder group 
parameters 

free block 
bit-map 

free I-node 
bit-map 

cylinders 

cylinder 
groups 

0                 100                200               300             400 



Lecture 14 
Page 13 

CS 111 
Fall 2016  

Bit Map Free Lists 

block #1 
(in use) 

block #2 
(in use) 

block #3 
(free) 

block #4 
(in use) 

block #5 
(free) 

block #6 
(free) 

1 0 0 0 1 1 … 

Actual data blocks 

BSD Unix file systems use bit-maps to keep 
track of both free blocks and free I-nodes in 

each cylinder group 
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Extending a BSD/Unix File 
•  Determine the cylinder group for the file’s inode 

–  Calculated from the inode’s identifying number 
•  Find the cylinder for the previous block in the file 
•  Find a free block in the desired cylinder 

–  Search the free-block bit-map for a free block in the right 
cylinder 

–  Update the bit-map to show the block has been allocated 

•  Update the inode to point to the new block 
–  Go to appropriate block pointer in inode/indirect block 
–  If new indirect block is needed, allocate/assign it first 
–  Update inode/indirect to point to new block 
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Unix File Extension 
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Other Performance  
Improvement Strategies 

•  Beyond disk layout issues 
– Which are only relevant for hard drives, not flash 

or other solid state devices 
•  Transfer size 
•  Caching 
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Allocation/Transfer Size 
•  Per operation overheads are high 

– DMA startup, seek, rotation, interrupt service 

•  Larger transfer units more efficient 
– Amortize fixed per-op costs over more bytes/op 
– Multi-megabyte transfers are very good 

•  This requires space allocation units 
– Allocate space to files in much larger chunks 
– Large fixed size chunks -> internal fragmentation 
– Therefore we need variable partition allocation 
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Efficient Disk Allocation 

•  Allocate space in large, contiguous extents 
– Few seeks, large DMA transfers 

•  Variable partition disk allocation is difficult 
– More complicated to find something that fits than 

to always use a single allocation size 
– Many files are allocated for a very long time 

•  External fragmentation eventually wins 
– New files get smaller chunks, farther apart 
– File system performance degrades with age 
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Caching 

•  Caching for reads 
•  Caching for writes 
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Read Caching 

•  Disk I/O takes a very long time 
– Deep queues, large transfers improve efficiency 
– They do not make it significantly faster 

•  We must eliminate much of our disk I/O 
– Maintain an in-memory cache 
– Depend on locality, reuse of the same blocks 
– Check cache before scheduling I/O 
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Read-Ahead 
•  Request blocks from the disk before any 

process asked for them 
•  Reduces process wait time 
•  When does it make sense? 

– When client specifically requests sequential access 
– When client seems to be reading sequentially 

•  What are the risks? 
– May waste disk access time reading unwanted 

blocks 
– May waste buffer space on unneeded blocks 
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Write Caching 
•  Most disk writes go to a write-back cache 

– They will be flushed out to disk later 

•  Aggregates small writes into large writes 
–  If application does less than full block writes 

•  Eliminates moot writes 
–  If application subsequently rewrites the same data 
–  If application subsequently deletes the file 

•  Accumulates large batches of writes 
– A deeper queue to enable better disk scheduling 
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Common Types of Disk Caching 
•  General block caching 

– Popular files that are read frequently 
– Files that are written and then promptly re-read 
– Provides buffers for read-ahead and deferred write 

•  Special purpose caches 
– Directory caches speed up searches of same dirs 
–  Inode caches speed up re-uses of same file 

•  Special purpose caches are more complex 
– But they often work much better by matching 

cache granularities to actual needs 
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Performance Gain For Different 
Types of Caches 

General Block Cache 

Special Purpose Cache 

Cache size (bytes) 

 Performance 



Lecture 14 
Page 25 

CS 111 
Fall 2016  

Naming in File Systems  

•  Each file needs some kind of handle to allow 
us to refer to it 

•  Low level names (like inode numbers) aren’t 
usable by people or even programs 

•  We need a better way to name our files 
– User friendly 
– Allowing for easy organization of large numbers of 

files 
– Readily realizable in file systems 
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File Names and Binding 
•  File system knows files by descriptor structures 
•  We must provide more useful names for users 
•  The file system must handle name-to-file mapping 

–  Associating names with new files 
–  Finding the underlying representation for a given name 
–  Changing names associated with existing files 
–  Allowing users to organize files using names 

•  Name spaces – the total collection of all names 
known by some naming mechanism 
– Sometimes all names that could be created by the 

mechanism 
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Name Space Structure 
•  There are many ways to structure a name space 

– Flat name spaces 
•  All names exist in a single level 

– Hierarchical name spaces 
•  A graph approach 
•  Can be a strict tree 
•  Or a more general graph (usually directed) 

•  Are all files on the machine under the same 
name structure? 

•  Or are there several independent name spaces? 
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Some Issues in Name  
Space Structure 

•  How many files can have the same name? 
–  One per file system ... flat name spaces 
–  One per directory ... hierarchical name spaces 

•  How many different names can one file have? 
–  A single “true name” 
–  Only one “true name”, but aliases are allowed 
–  Arbitrarily many 
–  What’s different about “true names”? 

•  Do different names have different characteristics? 
–  Does deleting one name make others disappear too? 
–  Do all names see the same access permissions? 
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Hierarchical Name Spaces 
•  Essentially a graphical organization 
•  Typically organized using directories  

–  A file containing references to other files 
–  A non-leaf node in the graph 
–  It can be used as a naming context 

•  Each process has a current directory 
•  File names are interpreted relative to that directory 

•  Nested directories can form a tree 
–  A file name describes a path through that tree 
–  The directory tree expands from a “root” node 

•  A name beginning from root is called “fully qualified” 
–  May actually form a directed graph 

•  If files are allowed to have multiple names 
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A Rooted Directory Tree 
root 

user_1 user_2 user_3 

file_a 

(/user_1/file_a) 

file_b 

(/user_2/file_b) 

file_c 

(/user_3/file_c) 

dir_a 

(/user_1/dir_a) 

dir_a 

(/user_3/dir_a) 

file_a 

(/user_1/dir_a/file_a) 
file_b 

(/user_3/dir_a/file_b) 



Lecture 14 
Page 31 

CS 111 
Fall 2016  

Directories Are Files 
•  Directories are a special type of file 

–  Used by OS to map file names into the associated files 
•  A directory contains multiple directory entries  

–  Each directory entry describes one file and its name 

•  User applications are allowed to read directories 
–  To get information about each file 
–  To find out what files exist 

•  Usually only the OS is allowed to write them 
–  Users can cause writes through special system calls 
–  The file system depends on the integrity of directories 
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Traversing the Directory Tree 
•  Some entries in directories point to child 

directories 
– Describing a lower level in the hierarchy 

•  To name a file at that level, name the parent 
directory and the child directory, then the file 
– With some kind of delimiter separating the file 

name components 
•  Moving up the hierarchy is often useful 

– Directories usually have special entry for parent 
– Many file systems use the name “..” for that 
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File Names Vs. Path Names 
•  In some name space systems, files had “true names” 

–  Only one possible name for a file, 
–  Kept in a record somewhere 

•  E.g., in DOS, a file is described by a directory entry 
–  Local name is specified in that directory entry 
–  Fully qualified name is the path to that directory entry 

•  E.g., start from root, to user_3, to dir_a, to file_b 

•  What if files had no intrinsic names of their own? 
–  All names came from directory paths 
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Example:  Unix Directories 
•  A file system that allows multiple file names 

–  So there is no single “true” file name, unlike DOS 

•  File names separated by slashes 
–  E.g., /user_3/dir_a/file_b 

•  The actual file descriptors are the inodes 
–  Directory entries only point to inodes 
–  Association of a name with an inode is called a hard link 
–  Multiple directory entries can point to the same inode 

•  Contents of a Unix directory entry 
–  Name (relative to this directory) 
–  Pointer to the inode of the associated file 
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Unix Directories 

user_1 9 

file name inode # 

user_2 31 

user_3 114 

Directory /user_3, inode #114 

dir_a 

file_c 

. 1 

.. 1 

Root directory, inode #1 

194 

307 

. 114 

.. 1 

file name inode # 

Here’s a “..” entry, 
pointing to the parent 
directory 

But what’s this “.” 
entry? 

It’s a directory entry 
that points to the 
directory itself! 

We’ll see why that’s 
useful later 
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Multiple File Names In Unix 
•  How do links relate to files? 

–  They’re the names only 

•  All other metadata is stored in the file inode 
–  File owner sets file protection (e.g., read-only) 

•  All links provide the same access to the file 
–  Anyone with read access to file can create new link 
–  But directories are protected files too 

•  Not everyone has read or search access to every directory 

•  All links are equal 
–  There is nothing special about the first (or owner's) link 
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Links and De-allocation 
•  Files exist under multiple names 
•  What do we do if one name is removed? 
•  If we also removed the file itself, what about 

the other names? 
– Do they now point to something non-existent? 

•  The Unix solution says the file exists as long 
as at least one name exists 

•  Implying we must keep and maintain a 
reference count of links 
–  In the file inode, not in a directory 
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Unix Hard Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 

Note that we now 
associate names with links 
rather than with files. 

/user_1/file_a and 

/user_3/dir_a/file_b 

are both links to the same 
inode 
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Hard Links, Directories, and Files 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

29 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 
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Symbolic Links 
•  A different way of giving files multiple names 
•  Symbolic links implemented as a special type of file 

–  An indirect reference to some other file 
–  Contents is a path name to another file 

•  OS recognizes symbolic links 
–  Automatically opens associated file instead 
–  If file is inaccessible or non-existent, the open fails 

•  Symbolic link is not a reference to the inode 
–  Symbolic links will not prevent deletion 
–  Do not guarantee ability to follow the specified path 
–  Internet URLs are similar to symbolic links 
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Symbolic Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 
(/user_1/file_a) 

The link count for 
this file is still 1, 
though 
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Symbolic Links, Files, and 
Directories 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

46 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 

/user_1/file_a 

inode #46, symlink Link count 
still equals 1! 
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File Systems Reliability 
•  What can go wrong in a file system? 
•  Data loss 

–  File or data is no longer present 
–  Some/all of data cannot be correctly read back 

•  File system corruption 
–  Lost free space 
–  References to non-existent files 
–  Corrupted free-list multiply allocates space 
–  File contents over-written by something else 
–  Corrupted directories make files un-findable 
–  Corrupted inodes lose file info/pointers 
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Storage Device Failures 
•  Unrecoverable read errors 

–  Signal degrades beyond ECC ability to correct 
– Background scrubbing can greatly reduce 

•  Misdirected or incomplete writes 
– Detectable with independent checksums 

•  Complete mechanical/electronic failures 
•  All are correctable with redundant copies 

– Mirroring, parity, or erasure coding 
–  Individual block or whole volume recovery 
– At worst, backup 
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File Systems – System Failures 

•  Caused by system crashes or OS bugs 
•  Queued writes that don’t get completed 

– Client writes that will not be persisted 
– Client creates that will not be persisted 
– Partial multi-block file system updates 

•  Can also be caused by power failures 
– Solution: NVRAM disk controllers 
– Solution: Uninterruptable Power Supply (UPS) 
– Solution: super-caps and fast flush 
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Deferred Writes –  
A Worst Case Scenario 

•  Process allocates a new block to file A 
– We get a new block (x) from the free list 
– We write out the updated inode for file A 
– We defer free-list write-back (happens all the time) 

•  The system crashes, and after it reboots 
– A new process wants a new block for file B 
– We get block x from the (stale) free list 

•  Two different files now contain the same block 
– When file A is written, file B gets corrupted 
– When file B is written, file A gets corrupted 



Lecture 14 
Page 47 

CS 111 
Fall 2016  

Robustness – Ordered Writes 
•  Carefully ordered writes can reduce potential 

damage 
•  Write out data before writing pointers to it 

– Unreferenced objects can be garbage collected 
– Pointers to incorrect info are more serious 

•  Write out deallocations before allocations 
– Disassociate resources from old files ASAP 
– Free list can be corrected by garbage collection 
– Shared data is more serious than missing data 
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Practicality of Ordered Writes 

•  Greatly reduced I/O performance 
– Eliminates head/disk motion scheduling 
– Eliminates accumulation of near-by operations 
– Eliminates consolidation of updates to same block 

•  May not be possible 
– Modern disk drives re-order queued requests 

•  Doesn’t actually solve the problem 
– Does not eliminate incomplete writes 
–  It chooses minor problems over major ones 
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Robustness – Audit and Repair 
•  Design file system structures for audit and repair 

– Redundant information in multiple distinct places 
•  Maintain reference counts in each object 
•  Children have pointers back to their parents 
•  Transaction logs of all updates 

– All resources can be garbage collected 
•  Discover and recover unreferenced objects 

•  Audit file system for correctness (prior to mount) 
– All objects are well formatted 
– All references and free-lists are correct and consistent 

•  Use redundant info to enable automatic repair 
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Practicality of Audit and Repair 

•  Integrity checking a file system after a crash 
– Verifying check-sums, reference counts, etc. 
– Automatically correct any inconsistencies 
– A standard practice for many years (see fsck(8)) 

•  No longer practical 
– Checking a 2TB FS at 100MB/second = 5.5 hours 

•  We need more efficient partial write solutions 
– File systems that are immune to them 
– File systems that enable very fast recovery 
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Journaling 
•  Create a circular buffer journaling device 

– Journal writes are always sequential 
– Journal writes can be batched 
– Journal is relatively small, may use NVRAM 

•  Journal all intended file system updates 
–  Inode updates, block write/alloc/free 

•  Efficiently schedule actual file system updates 
– Write-back cache, batching, motion-scheduling 

•  Journal completions when real writes happen 
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Batched Journal Entries 
•  Operation is safe after journal entry persisted 

– Caller must wait for this to happen 

•  Small writes are still inefficient 
•  Accumulate batch until full or max wait time 

writer: 
        if there is no current in-memory journal page 
                allocate a new page 
        add my transaction to the current journal page 
        if current journal page is now full 
                 do the write, await completion 
                 wake up processes waiting for this page 
         else 
                 start timer, sleep until I/O is done 

flusher: 
        while true 
               sleep() 
               if current-in-memory page is due 
                      close page to further updates 
                      do the write, await completion 
                      wake up processes waiting for page 
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Journal Recovery 

•  Journal is a circular buffer 
–  It can be recycled after old ops have completed 
– Time-stamps distinguish new entries from old 

•  After system restart 
– Review entire (relatively small) journal 
– Note which ops are known to have completed 
–  Perform all writes not known to have completed 

•  Data and destination are both in the journal 
•  All of these write operations are idempotent 

– Truncate journal and resume normal operation 
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Why Does Journaling Work? 
•  Journal writes much faster than data writes 

– All journal writes are sequential 
– There is no competing head motion 

•  In normal operation, journal is write-only 
– File system never reads/processes the journal 

•  Scanning the journal on restart is very fast 
–  It is very small (compared to the file system) 
–  It can read (sequentially) with huge (efficient) 

reads 
– All recovery processing is done in memory 
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Meta-Data Only Journaling 
•  Why journal meta-data? 

–  It is small and random (very I/O inefficient) 
–  It is integrity-critical (huge potential data loss) 

•  Why not journal data? 
–  It is often large and sequential (I/O efficient) 
–  It would consume most of journal capacity bandwidth 
–  It is less order sensitive (just precede meta-data) 

•  Safe meta-data journaling 
– Allocate new space, write the data 
– Then journal the meta-data updates 
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Log Structured File Systems 
•  The journal is the file system 

– All inodes and data updates written to the log 
– Updates are Redirect-on-Write 
–  In-memory index caches inode locations 

•  Becoming a dominant architecture 
–  Flash file systems 
– Key/value stores 

•  Issues 
– Recovery time (to reconstruct index/cache) 
– Log defragmentation and garbage collection 
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Navigating a Logging File System 
•  Inodes point at data segments in the log 

– Sequential writes may be contiguous in log 
– Random updates can be spread all over the log 

•  Updated inodes are added to end of the log 
•  Index points to latest version of each inode 

–  Index is periodically appended to the log 

•  Recovery 
– Find and recover the latest index 
– Replay all log updates since then 
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Redirect on Write 
•  Many modern file systems now do this 

– Once written, blocks and inodes are immutable 
– Add new info to the log, and update the index 

•  The old inodes and data remain in the log 
–  If we have an old index, we can access them 
– Clones and snapshots are almost free 

•  Price is management and garbage collection 
– We must inventory and manage old versions 
– We must eventually recycle old log entries 


