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 Introduction

* Distributed system paradigms

* Remote procedure calls

* Distributed synchronization and consensus

* Distributed system security
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/ Goals of Distributed Systems \

Scalability and performance

— Apps require more resources than one computer has
— Grow system capacity /bandwidth to meet demand

* Improved reliability and availability
— 24x7 service despite disk/computer/software failures

* Ease of use, with reduced operating expenses
— Centralized management of all services and systems
— Buy (better) services rather than computer equipment

* Enable new collaboration and business models
\ — Collaborations that span system (or national) boundaries /

-, — Aglobal free market for a wide range of new services .16
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/ Transparency \

* Ideally, a distributed system would be just like
a single machine system

 But better
— More resources
— More reliable

— Faster

* Transparent distributed systems look as much
like single machine systems as possible

\ /
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/ Deutsch's “Seven Fallacies of \
Network Computing”

. The network 1s reliable

. There 1s no latency (instant response time)

. The available bandwidth 1s infinite

. The network 1s secure

. The topology of the network does not change

AN D B~ W N

. There 1s one administrator for the whole network

7. The cost of transporting additional data 1s zero

Bottom Line: true transparency 1s not achievable

\ /
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/" Heterogeneity in Distributed ™\

\

CS 111
Fall 2016

Systems

Distributed systems aren’t uniform

Heterogeneous clients
— Different instruction set architectures
— Different operating systems and versions

Heterogeneous servers
— Different implementations
— Offered by competing service providers

Heterogeneous networks

— Public and private
— Managed by different orgs in different countries

Another problem for achieving transparency

— And sometimes correctness

/

Lecture 16
Page 6



ﬁ undamental Building Blocks Chan@

 The old model:

— Programs run 1n processes

— Programs use APIs to access system resources

— API services implemented by OS and libraries
* The new model:

— Clients and servers run on nodes

— Clients use APIs to access services

— API services are exchanged via protocols

\° Local 1s a (very important) special case y
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/ Changing Paradigms \

* Network connectivity becomes “a given”
— New applications assume/exploit connectivity
— New distributed programming paradigms emerge
— New functionality depends on network services

* Applications demand new kinds of services:
— Location independent operations

— Rendezvous between cooperating processes

— WAN scale communication, synchronization

\ /
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/ {Distributed System Paradigms J\

* Parallel processing

— Relying on special hardware

* Single system images
— Make all the nodes look like one big computer
— Somewhere between hard and impossible

* Loosely coupled systems

— Work with difficulties as best as you can
— Typical modern approach to distributed systems

\' Cloud computing )

s — A recent variant Lecture 16
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___________________________________________________________________________________________

* Characterization:
— A parallel group of independent computers
— Serving similar but independent requests
— Minimal coordination and cooperation required

* Motivation:
— Scalability and price performance

— Availability — 1f protocol permits stateless servers
— Ease of management, reconfigurable capacity

\' Examples: )
< — Web servers, app servers, cloud computing Lecture 16
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/" Horizontal Scalability

* Each node largely independent

* So you can add capacity just by adding a node
“on the side”

* Scalability can be limited by network, instead
of hardware or algorithms

— Or, perhaps, by a load balancer
« Reliability is high

— Failure of one of N nodes just reduces capacity

Lecture 16
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/Horizontal Scalability Architectula

If I need more WAN to chients
web server ﬁ
‘ . load balancing switch
capacity, with fail-over
web web web web web app app app app app
server | | server || server || server || server server | | server | | server | | server | | server
content HA
distribution database
server server
CS 111 Lecture 16
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/" Elements of Loosely Coupled ™\
Architecture

* Farm of independent servers
— Servers run same software, serve different requests

— May share a common back-end database

* Front-end switch
— Distributes incoming requests among available servers

— Can do both load balancing and fail-over

* Service protocol

— Stateless servers and idempotent operations

— Successive requests may be sent to different servers

\ /
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/Horizontally Scaled Performance\

* Individual servers are very inexpensive
— Blade servers may be only $100-$200 each

* Scalability 1s excellent
— 100 servers deliver approximately 100x performance

* Service availability 1s excellent
— Front-end automatically bypasses failed servers
— Stateless servers and client retries fail-over easily
* The challenge 1s managing thousands of servers

— Automated installation, global configuration services

— Self monitoring, self-healing systems

\ — Scaling limited by management, not HW or algorithms /
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/" Cloud Computing

* The most recent twist on distributed computing

* Set up a large number of machines all
1dentically configured

* Connect them to a high speed LAN

— And to the Internet

* Accept arbitrary jobs from remote users

* Run each job on one or more nodes

* Entire facility probably running mix of single
\_ machine and distributed jobs, stmultaneously /
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/~ Distributed Computing and ™\
Cloud Computing

* In one sense, these are orthogonal

* Each job submitted might or might not be
distributed

* Many of the hard problems of the distributed
jobs are the user’s problem, not the system’s

— E.g., proper synchronization and locking

* But the cloud facility must make
communications e€asy

\ /
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/ What Runs 1n a Cloud? \

* In principle, anything
* But general distributed computing 1s hard
* So much of the work 1s run using special tools

* These tools support particular kinds of parallel/
distributed processing

* Either embarrassingly parallel jobs

* Or those using a method like map-reduce

* Things where the user need not be a distributed
\ systems expert /
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/ Embarrassingly Parallel Jobs \

* Problems where 1t’s really, really easy to
parallelize them

* Probably because the data sets are easily
divisible

* And exactly the same things are done on each
piece

* So you just parcel them out among the nodes
and let each go independently

\o Everyone finishes at more or less same time /
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/ MapReduce \

* Perhaps the most common cloud computing
software tool/technique

* A method of dividing large problems into
compartmentalized pieces

* Each of which can be performed on a
separate node

 With an eventual combined set of results

\ /
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/ The Idea Behind MapReduce \

* There 1s a single function you want to
perform on a lot of data

— Such as searching 1t for a string

* Divide the data into disjoint pieces

* Perform the function on each piece on a
separate node (171Ap)

* Combine the results to obtain output
(reduce)

\
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/ An Example \

* We have 64 megabytes of text data

* Count how many times each word occurs 1n
the text

* Divide 1t into 4 chunks of 16 Mbytes

* Assign each chunk to one processor

* Perform the map function of “count words™ on
each

\ /
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/ The Example Continued \

1/ @ @ [4]
8 08 08 Ejf[

Foo Zoo | [ Foo [/ Zoo [ [ Foo || Zoo

1 6 7 2

Bar 4 Yes Bar 3 Yes Bar 6 Yes Bar 7 Yes 3

Baz 3 12 Baz 9 17 Baz 2 10 Baz 5 Too 7
Too 5 Too 8 Too 4

That’s the map stage

ccture
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/ On To Reduce \

* We might have two more nodes assigned to
doing the reduce operation

* They will each receive a share of data from a
map node

* The reduce node performs a reduce operation
to “combine” the shares

* QOutputting its own result

\ /
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/ Continuing the Example
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ﬁl’ he Reduce Nodes Do Their J ob\

Write out the results to files
And MapReduce is done!

Foo Z00o

14 16

Bar 20 Yes
Baz 42

19 Too 24
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/ But I Wanted A Combined List \

* No problem

* Run another (slightly different) MapReduce on
the outputs

e Have one reduce node that combines
everything

\ /
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/ Synchronization in MapReduce\

* Each map node produces an output file for
each reduce node

* It 1s produced atomically

 The reduce node can’t work on this data
until the whole file 1s written

* Forcing a synchronization point between the
map and reduce phases

\ /

CS 111 Lecture 16
Fall 2016 Page 27




\

CS 111
Fall 2016

/ [ Remote Procedure Calls J \

RPC, for short
One way of building a distributed system

Procedure calls are a fundamental paradigm
— Primary unit of computation in most languages
— Unit of information hiding in most methodologies
— Primary level of interface specification
A natural boundary between client and server
— Turn procedure calls into message send/receives
A few limitations

— No implicit parameters/returns (e.g. global variables)

— No call-by-reference parameters
— Much slower than procedure calls (TANSTAAFL)

/
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/Remote Procedure Call Concepts\

* Interface Specification
— Methods, parameter types, return types

* ¢Xternal Data Representation
— Machine independent data-type representations
— May have optimizations for like client/server

* Client stub
— Client-side proxy for a method in the API

* Server stub (or skeleton)
\ — Server-side recipient for API invocations /
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RPC Tool Chain

RPC
interface
specification

\

client

code

\

CS 111
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. External Data server
Client RPC Representation RPC
stubs access functions skeleton
' server
application implementation
\ / code
client cerver }
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/ Key Features of RPC \

* Client application links against local procedures
— Calls local procedures, gets results

* All RPC implementation inside those procedures

* Client application does not know about RPC
— Does not know about formats of messages
— Does not worry about sends, timeouts, resents
— Does not know about external data representation

* All of this 1s generated automatically by RPC
tools

* The key to the tools 1s the interface specification

\ /
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/ RPC Is Not a Complete Solution\

* Requires client/server binding model
— Expects to be given a live connection
* Threading model implementation
— A single thread service requests one-at-a-time
— Numerous one-per-request worker threads
* Limited failure handling
— Client must arrange for timeout and recovery

* Higher level abstractions improve RPC
\ — e.g. Microsoft DCOM, Java RMI, DRb, Pyro /
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/" (Distributed Synchronization |

5 and Consensus )

* Why i1s 1t hard to synchronize distributed
systems?

* What tools do we use to synchronize them?

* How can a group of cooperating nodes agree
on something?

\ /
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/7 What's Hard About
Distributed Synchromzatlon‘7

. Spéiti'él"'s"ép'éiféﬁbﬁ """""""""""""""""""""""""""""""""
— Different processes run on different systems
— No shared memory for (atomic instruction) locks

— They are controlled by different operating systems
* Temporal separation

— Can’t “totally order” spatially separated events

— Before/simultaneous/after lose their meaning

* Independent modes of failure
\ — One partner can die, while others continue /
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/ [eases — More Robust Locks \

* Obtained from resource manager
— Gives client exclusive right to update the file
— Lease “cookie” must be passed to server on update

— Lease can be released at end of critical section

* Only valid for a limited period of time

— After which the lease cookie expires
* Updates with stale cookies are not permitted

— After which new leases can be granted

* Handles a wide range of failures

\ — Process, client node, server node, network /
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/ Lock Breaking and Recovery \

* Revoking an expired lease is fairly easy

— Lease cookie includes a “good until” time

 Based on server’s clock

— Any operation involving a “stale cookie” fails

* This makes it safe to 1ssue a new lease
— Old lease-holder can no longer access object
— Was object left in a “reasonable” state?

* Object must be restored to last “good” state

— Roll back to state prior to the aborted lease

\ — Implement all-or-none transactions Leeture 16

CS 111
Fall 2016 Page 36




* Achieving simultaneous, unanimous agreement
— Even in the presence of node & network failures
— Required: agreement, termination, validity, integrity
— Desired: bounded time
— Provably impossible in fully general case

— But can be done 1n useful special cases, or if some
requirements are relaxed

* Consensus algorithms tend to be complex
— And may take a long time to converge
* They tend to be used sparingly

— E.g., use consensus to elect a leader
\ — Who makes all subsequent decisions by fiat

CS 111
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/ Typical Consensus Algorithm \

1. Each interested member broadcasts his nomination.

2. All parties evaluate the received proposals according to a
fixed and well known rule.

3. After allowing a reasonable time for proposals, each voter
acknowledges the best proposal it has seen.

4. If a proposal has a majority of the votes, the proposing
member broadcasts a claim that the question has been
resolved.

5. Each party that agrees with the winner’s claim
acknowledges the announced resolution.

6. Election 1s over when a quorum acknowledges the result.

\ /
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/[Security for Distributed Systems}\

* Security 1s hard 1n single machines

* It’s even harder in distributed systems
* Why?

\ /
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/Ensuring Single Machine Security\

* All key resources are kept inside of the OS
— Protected by hardware (mode, memory management)
— Processes cannot access them directly

* All users are authenticated to the OS
— By a trusted agent that 1s (essentially) part of the OS

* All access control decisions are made by the OS
— The only way to access resources 1s through the OS
— We trust the OS to ensure privacy and proper sharing

\ /
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/ Distributed Security Is Harder \

* Your OS cannot guarantee privacy and integrity
— Network transactions happen outside of the OS

* Authentication is harder
— All possible agents may not be in local password file

* The wire connecting the user to the system 1s insecure
— Eavesdropping, replays, man-in-the-middle attacks

* Even with honest partners, hard to coordinate distributed

security

* The Internet 1s an open network for all
— Many sites on the Internet try to serve all comers
— Core Internet makes no judgments on what’s acceptable
— Even supposedly private systems may be on Internet

\ /
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/ Goals of Network Security \

* Secure conversations
— Privacy: only you and your partner know what 1s said
— Integrity: nobody can tamper with your messages

* Positive identification of both parties
— Authentication of the 1dentity of message sender
— Assurance that a message 1s not a replay or forgery
— Non-repudiation: he cannot claim “I didn't say that”
* Availability
— The network and other nodes must be reachable when
\ they need to be /
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/ Elements of Network Security \

* Cryptography
— Symmetric cryptography for protecting bulk transport
of data

— Public key cryptography primarily for authentication
— Cryptographic hashes to detect message alterations

* Digital signatures and public key certificates
— Powertul tools to authenticate a message’s sender

* Filtering technologies

— Firewalls and the like
\ — To keep bad stuff from reaching our machines /
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/ Symmetric Encryption

* Simple fast algorithms

— Encryption and decryption use the same key

— Requires sender and receiver to both know the key

— If you know who shares the key, you also get authentication
* Symmetric encryption provides privacy

— In order to decrypt the data, you must know the key
* Symmetric encryption provides integrity

— In order to generate false messages, you must know the key
* Symmetric encryption relies on key secrecy

— Challenging to achieve in many circumstances

— Large step between theoretical key secrecy and actual key

\ secrecy 1n real systems
CS 111

\

/
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ﬁ amper Detection: Cryptographic Hasheh

* Check-sums often used to detect data corruption
— Add up all bytes in a block, send sum along with data
— Recipient adds up all the received bytes
— If check-sums agree, the data 1s probably OK
— Check-sum (parity, CRC, ECC) algorithms are weak

* Cryptographic hashes are very strong check-sums

— Unique —two messages vanishingly unlikely to
produce same hash

* Particularly hard to find two messages with the same hash
— One way — cannot infer original input from output
— Well distributed — any change to input changes output

\ /
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/ Using Cryptographic Hashes \

* Start with a message you want to protect
* Compute a cryptographic hash for that message
— E.g., using the Secure Hash Algorithm 3 (SHA-3)
* Transmit the hash securely
* Recipient does same computation on received text
— If both hash results agree, the message 1s intact

— If not, the message has been corrupted/
compromised

\ /
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/ Secure Hash Transport \

* Why must hash be transmitted securely?

— Cryptographic hashes aren’t keyed, so anyone can
produce them (including a bad guy)

* How to transmit hash securely?
— Typically encrypt it with symmetric cryptography

— Unless secrecy required, cheaper than encrypting
entire message

— If you have a secure channel, could transmit 1t that
way

\ * But if you have secure channel, why not use it for /

cs i everything? Lecture 16
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/ Public Key Cryptography \

* Uses two keys 1nstead of one
* A secret key known only to the owner encrypts

* The public key known to everyone
(potentially) decrypts

* Or you can reverse the keys and operations
— With different effects

* The two keys are related by mathematical
roperties
\ T /

., — But must be hard to derive from each other Lecture 16
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/ Practical Use of PK \

* Public key cryptography algorithms are
computationally expensive

— 10x to 100x as expensive as symmetric ones

* We use PK only when we can’t use symmetric
cryptography

* When i1s that?

— Typically to communicate to someone we don’t share a
symmetric key with

— We can share a new symmetric key using PK (session key)

\ — Not very expensive, since the symmetric key 1s small /
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/ A Principle of Key Use \

* Both symmetric and PK cryptography rely on a secret
key for their properties

* The more you use one key, the less secure
— The key stays around 1n various places longer
— There are more opportunities for an attacker to get it
— There 1s more incentive for attacker to get it
— Brute force attacks may eventually succeed

 Therefore:

— Use a given key as little as possible

\ — Change them often

/

T Within the limits of practicality and required performance 7
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Putting It Together:
Secure Socket Layer (SSL)

* A general solution for securing network communication
* Built on top of existing socket [PC
» Establishes secure link between two parties
— Privacy — nobody can snoop on conversation
— Integrity — nobody can generate fake messages
* Certificate-based authentication of server
— Typically, but not necessarily
— Client knows what server he 1s talking to
* Optional certificate-based authentication of client
— If server requires authentication and non-repudiation
* PK used to distribute a symmetric session key
— New key for each new socket
* Rest of data transport switches to symmetric crypto

\ — Giving safety of public key and efficiency of symmetric

CS 111
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/ Digital Signatures \

* Encrypting a message with private key signs it
— Only you could have encrypted it, 1t must be from you
— It has not been tampered with since you wrote 1t

* Encrypting everything with your private key 1s a
bad 1dea

— Asymmetric encryption 1s extremely slow
* If you only care about integrity, you don’t need to
encrypt it all
— Compute a cryptographic hash of your message
— Encrypt the cryptographic hash with your private key
\ — Faster than encrypting whole message /
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/ Signed Load Modules \

* How do we know we can trust a program?

— Is 1t really the new update to Windows, or actually evil
code that will screw me?

— Dagital signatures can answer this question
* Designate a certification authority
— Perhaps the OS manufacturer (Microsoft, Apple, ...)
* They verify the reliability of the software
— By code review, by testing, etc.
— They sign a certified module with their private key
* We can verify signature with their public key
— Proves the module was certified by them
\ — Proves the module has not been tampered with /
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/ An Important Public Key Issue \

* If I have a public key
— I can authenticate received messages

— I know they were sent by the owner of the private key

* But how can I be sure who that person 1s?
— How do I know that this 1s really my bank's public key?
— Could some swindler have sent me his key instead?

* [ can get Microsoft’s public key when I first buy their OS
— So I can verify their load modules and updates

— But how to handle the more general case?

* I would like a certificate of authenticity

\ — Guaranteeing who the real owner of a public key 1s /
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/ What Is a PK Certificate? \

* Essentially a data structure

* Containing an identity and a matching public
key

— And perhaps other information

* Also containing a digital signature of those
items

* Signature usually signed by someone I trust

— And whose public key I already have
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/ Using Public Key Certificates \

* If I know public key of the authority who signed it
— I can validate the signature 1s correct
— I can tell the certificate has not been tampered with

* If I trust the authority who signed the certificate
— I can trust they authenticated the certificate owner
— E.g., we trust drivers licenses and passports

* But first I must know and trust signing authority
— Which really means I know and trust their public key

\ /
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/ A Chicken and Egg Problem \

* [ can learn the public key of a new partner using his
certificate

* But to use his certificate, I need the public key of
whoever signed it

* So how do I get that public key?
* Ultimately, out of band
* Which means through some other means

* Commonly by having the key in a trusted program,
like a web browser

\° Or hand delivered (as in project 4) /
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/ Conclusion \

* Distributed systems offer us much greater
power than one machine can provide

* They do so at costs of complexity and security
risk

* We handle the complexity by using distributed
systems 1n a few carefully defined ways

* We handle the security risk by proper use of
cryptography and other tools

\ /
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