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Outline 

•  Data on other machines 
•  Remote file access architectures 
•  Challenges in remote data access 

– Security 
– Reliability and availability 
– Performance 
– Scalability 
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Remote Data:  
Goals and Challenges 

•  Sometimes the data we want isn’t on our 
machine 
– A file 
– A database 
– A web page 

•  We’d like to be able to access it, anyway 
•  How do we provide access to remote data? 
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Basic Goals 
•  Transparency 

–  Indistinguishable from local files for all uses 
–  All clients see all files from anywhere 

•  Performance 
–  Per-client: at least as fast as local disk 
–  Scalability:  unaffected by the number of clients  

•  Cost 
–  Capital:  less than local (per client) disk storage 
–  Operational:  zero, it requires no administration 

•  Capacity:  unlimited, it is never full 
•  Availability:  100%, no failures or service down-time 
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Key Characteristics of Remote 
Data Access Solutions 

•  APIs and transparency 
– How do users and processes access remote data? 
– How closely does remote data mimic local data? 

•  Performance and robustness 
–  Is remote data as fast and reliable as local data? 

•  Architecture 
– How is solution integrated into clients and servers? 

•  Protocol and work partitioning 
– How do client and server cooperate? 
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Remote File Systems 

•  Provide files to local user that are stored on 
remote machine 

•  Using the same or similar model as file access 
•  Not the only case for remote data access 

– Remote storage devices  
•  Accessed by low level device operations over network 

– Remote databases 
•  Accessed by database queries on remote nodes 
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Remote Data Access and 
Networking 

•  ALL forms of remote data access rely on 
networking 

•  Which is provided by the operating system as 
previously discussed 

•  Remote data access must take networking 
realities into account 
– Unreliability 
– Performance 
– Security 
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Remote File Access Architectures 

•  Client/server 
•  Remote file transfer 
•  Remote disk access 
•  Remote file access 
•  Cloud model 
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Client/Server Models 

•  Peer-to-peer 
– Most systems have resources (e.g. disks, printers) 
– They cooperate/share with one-another 

•  Thin client 
– Few local resources (e.g. CPU, NIC, display) 
– Most resources on work-group or domain servers 

•  Cloud Services 
– Clients access services rather than resources 
– Clients do not see individual servers 
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Remote File Transfer 

•  Explicit commands to copy remote files 
– OS specific: scp(1), rsync(1), S3 tools 
–  IETF protocols: FTP, SFTP 

•  Implicit remote data transfers 
– Browsers (transfer files with HTTP) 
– Email clients (move files with IMAP/POP/SMTP) 

•  Advantages: efficient, requires no OS support 
•  Disadvantages: latency, lack of transparency 
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Remote Disk Access 

•  Goal: complete transparency 
– Normal file system calls work on remote files 
– All programs “just work” with remote files 

•  Typical architectures 
–  Storage Area Network (SCSI over Fibre Chanel) 

•  Very fast, very expensive, moderately scalable 
–  iSCSI (SCSI over ethernet) 

•  Client driver turns reads/writes into network requests 
•  Server daemon receives/serves requests 
•  Moderate performance, inexpensive, highly scalable 



Lecture 17 
Page 12 

CS 111 
Fall 2016  

Remote Disk Access Architecture 
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Rating Remote Disk Access 
•  Advantages: 

– Provides excellent transparency 
– Decouples client hardware from storage capacity 
– Performance/reliability/availability per back-end 

•  Disadvantages 
–  Inefficient fixed partition space allocation 
– Can’t support file sharing by multiple client systems 
– Message losses can cause file system errors 

•  This is THE model for Virtual Machines 
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Remote File Access 
•  Goal: complete transparency 

– Normal file system calls work on remote files 
– Support file sharing by multiple clients 
– Performance, availability, reliability, scalability 

•  Typical architecture 
– Exploits plug-in file system architecture 
– Client-side file system is a local proxy 
– Translates file operations into network requests 
– Server-side daemon receives/process requests 
– Translates them into real file system operations 
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Remote File Access Architecture 
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Rating Remote File Access 
•  Advantages 

– Very good application level transparency 
– Very good functional encapsulation 
– Able to support multi-client file sharing 
– Potential for good performance and robustness 

•  Disadvantages 
– At least part of implementation must be in the OS 
– Client and server sides tend to be fairly complex 

•  This is THE model for client/server storage 
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Cloud Model 
•  A logical extension of client/server model 

– All services accessed via standard protocols 
•  Opaque encapsulation of servers/resources 

– Resources are abstract/logical, thin-provisioned 
– One highly available IP address for all services 
– Mirroring/migration happen under the covers 

•  Protocols likely to be WAN-scale optimized 
•  Advantages:  

–  Simple, scalable, highly available, low cost 
– A very compelling business model 
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Remote Disk/File Access 
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Remote vs. Distributed FS 
•  Remote file access (e.g., NFS, CIFS) 

– Client talks to (per FS) primary server 
– Secondary server may take over if primary fails 
– Advantages: simplicity 

•  Distributed file system (e.g., Ceph, 
RAMCloud) 
– Data is spread across numerous servers 
– Client may talk directly to many/all of them 
– Advantages: performance, scalability 
– Disadvantages: complexity++ 
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Security For Remote File Systems 

•  Major issues: 
–   Privacy and integrity for data on the network 

•  Solution: encrypt all data sent over network 
– Authentication of remote users 

•  Solution: various approaches 
– Trustworthiness of remote sites 

•  Solution: various approaches 
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Authentication Approaches 

•  Anonymous access 
•  Peer-to-peer approaches 
•  Server authentication approaches 
•  Domain authentication approaches 
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Anonymous Access 

•  All files are available to all users 
– No authentication required 
– May be limited to read-only access 
– Examples: anonymous FTP, HTTP 

•  Advantages 
–  Simple implementation 

•  Disadvantages 
– Can’t provide information privacy 
– Usually unacceptable for write access  

•  Which is often managed by other means 
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Peer-to-Peer Security 
•  All participating nodes are trusted peers 
•  Client-side authentication/authorization 

–  All users are known to all systems 
–  All systems are trusted to enforce access control 
–  Example: basic NFS 

•  Advantages: 
–  Simple implementation 

•  Disadvantages: 
–  You can’t always trust all remote machines 
–  Doesn’t work in heterogeneous OS environment 
–  Universal user registry is not scalable 
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Server Authenticated Approaches 
•  Client agent authenticates to each server 

– Authentication used for entire session 
– Authorization based on credentials produced by server 
– Example: CIFS 

•  Advantages 
–  Simple implementation 

•  Disadvantages 
– May not work in heterogeneous OS environment 
– Universal user registry is not scalable 
– No automatic fail-over if server dies 
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Domain Authentication Approaches 
•  Independent authentication of client & server 

– Each authenticates with independent authentication 
service 

– Each knows/trusts only the authentication service 
•  Authentication service may issue signed “tickets” 

– Assuring each of the others’ identity and rights 
– May be revocable or timed lease 

•  May establish secure two-way session 
–  Privacy – nobody else can snoop on conversation 
–  Integrity – nobody can generate fake messages 

•  Kerberos is one example 
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Distributed Authorization 

1.  Authentication service returns credentials 
– Which server checks against Access Control List 
– Advantage: auth service doesn’t know about ACLs 

2.  Authentication service returns capabilities 
– Which server can verify (by signature) 
– Advantage:  servers do not know about clients 

•  Both approaches are commonly used 
– Credentials: if subsequent authorization required 
– Capabilities: if access can be granted all-at-once 
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Reliability and Availability 
•  Reliability is high degree of assurance that service 

works properly 
–  Challenging in distributed systems, because of partial 

failures 
–  Data is not lost despite failures 

•  Availability is high degree of assurance that service is 
available whenever needed 
–  Failures of some system elements don’t prevent data access 
–  Certain kinds of distributed systems can greatly improve 

availability 

•  Both, here, in the context of accessing remote files 
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Achieving Reliability 
•  Must reduce probability of data loss 
•  Typically by some form of redundancy 

– Disk/server failures don’t result in data loss 
•  RAID (mirroring, parity, erasure coding) 
•  copies on multiple servers 

•  Also important to automatically recover after 
failure 
– Remote copies of data become available again 
– Any redundancy loss due to failure must be made 

up 
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Reliability: Data Mirroring 
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Mirroring, Parity, and Erasure Coding 

•  Similar to trade-offs we made in RAID 
–  Extra copies of some data prevent data loss 
–  In this case on another machine 
–  But the extra copies mean more network I/O 

•  Mirroring – multiple copies 
–  Fast, but requires a great deal of space 

•  Parity – able to recover from one/two errors 
–  Lower space overhead 
–  Requires full strip write buffering 

•  Erasure coding – recover with N/M copies 
–  Very space efficient 
–  Very slow/expensive reads and writes 
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Availability and Fail-Over 
•  Fail-over means transferring work/requests from failed 

server to some other server 
•  Data must be mirrored to secondary server 
•  Failure of primary server must be detected 
•  Client must be failed-over to secondary 
•  Session state must be reestablished 

–  Client authentication/credentials 
–  Session parameters (e.g. working directory, offset) 

•  In-progress operations must be retransmitted 
–  Client must expect timeouts, retransmit requests 
–  Client responsible for writes until server ACKs 
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Availability: Failure Detect/Rebind 
•  If a server fails, need to detect it and rebind to a different 

server 
•  Client driven recovery 

–  Client detects server failure (connection error) 
–  Client reconnects to (successor) server 
–  Client reestablishes session 

•  Transparent failure recovery 
–  System detects server failure (health monitoring) 
–  Successor assumes primary’s IP address (or other redirection) 
–  State reestablishment 

•  Successor recovers last primary state check-point 
•  Stateless protocol 
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Availability: Stateless Protocols 
•  Stateful protocols (e.g., TCP) 

– Operations occur within a context  
•  Server must save state 

– Each operation depends on previous operations 
– Replacement server must obtain session state to operate 

properly 
•  Stateless protocols (e.g., HTTP) 

– Client supplies necessary context with each request 
– Each operation is self-contained and unambiguous 
–  Successor server needs no memory of past events 

•  Stateless protocols make fail-over easy 
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Availability: Idempotent Operations 

•  Idempotent operations can be repeated many 
times with same effect 
– Read block 100 of file X 
– Write block 100 of file X with contents Y 
– Delete file X version 3 
– Non-idempotent operations 

•  Read next block of current file 
•  Append contents Y to end of file X 

•  If client gets no response, resend request 
–  If server gets multiple requests, no harm done 
– Works for server failure, lost request, lost response 

•  But no ACK does not mean operation did not happen 
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Remote File System Performance 

•  Disk bandwidth and performance 
•  Performance for reads 
•  Performance for writes 
•  Overheads particular to remote file systems 
•  Performance and availability 
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Disk Bandwidth Implications 
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Network Impacts on Performance 

•  Bandwidth limitations 
–  Implications for client 
–  Implications for server 

•  Delay implications 
– Particularly important if acknowledgements 

required 
•  Packet loss implications 

–  If loss rate high, will require acknowledgements 
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Cost of Reads 
•  Most file system operations are reads, so read 

performance is critical 
•  Common way to improve read performance is 

through caching 
•  Can use read-ahead, but costs of being wrong 

are higher than for local disk 
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Caching For Reads 
•  Client-side caching 

– Cache data permanently stored at the server at the 
client 

– Eliminates waits for remote read requests 
– Reduces network traffic 
– Reduces per-client load on server 

•  Server-side caching 
– Typically performed similarly to single machine 

caching 
– Reduces disk delays, but not network problems 
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Whole File Vs. Block Caching 

•  Many distributed file systems use whole file 
caching 
– E.g., AFS 

•  Higher network latency justifies whole file 
pulls 

•  Stored in local (cache-only) file system 
•  Satisfy early reads before entire file arrives 
•  Block caching is also common (NFS) 

– Typically integrated into shared block cache 
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Cost of Writes 
•  Writes at clients need to get to server(s) that 

store the data 
– And what about other clients caching that data? 

•  Not caching the writes is very expensive 
– Since they need to traverse the network  
– And probably be acknowledged 

•  Caching approaches improve performance at 
potential cost of consistency  
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Caching Writes For Distributed File 
Systems 

•  Write-back cache 
–  Create the illusion of fast writes 
–  Combine small writes into larger writes 
–  Fewer, larger network and disk writes 
–  Enable local read-after-write consistency 

•  Whole-file updates 
–  No writes sent to server until close(2) or fsync(2) 
–  Reduce many successive updates to final result 
–  Possible file will be deleted before it is written 
–  Enable atomic updates, close-to-open consistency 
–  But may lead to more potential problems of inconsistency 
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Cost of Consistency 

•  Caching is essential in distributed systems 
– For both performance and scalability 

•  Caching is easy in a single-writer system 
– Force all writes to go through the cache 

•  Multi-writer distributed caching is hard 
– Time To Live is a cute idea that doesn’t work 
– Constant validity checks defeat the purpose 
– One-writer-at-a-time is too restrictive for most FS 
– Change notifications are a reasonable alternative 
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Cost of Mirroring 
•  Multi-host vs. multi-disk mirroring 

–  Protects against host and disk failures 
– Creates much additional network traffic 

•  Mirroring by primary 
–  Primary becomes throughput bottleneck 
– Move replication traffic to back-side network 

•  Mirroring by client 
– Data flows directly from client to storage servers 
– Replication traffic goes through client NIC 
–  Parity/erasure code computation on client CPU 
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Mirroring Through Primary 

server	 server	

primary	

server	 server	

all data flows through primary 

client	



Lecture 17 
Page 46 

CS 111 
Fall 2016  

Mirroring Through Direct Data 
Flow 
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Benefits of Direct Data Path 
•  Architecture 

–  Primary tells clients where which data resides 
– Client communicates directly with storage servers 

•  Throughput 
– Data can be striped across multiple storage servers 

•  Latency 
– No intermediate relay through primary server 

•  Scalability 
–  Fewer messages on network 
– Much less data flowing through primary servers 
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Reliability and Availability 
Performance 

•  Distributed systems must expect some failures 
•  Distributed file systems are expected to offer 

good service despite those failures 
•  How do we characterize that performance 

characteristic? 
•  How do we improve it? 
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Recovery Time 
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Improving Availability 

•  Reduce MTTF 
– Use more reliable components 
– Get rid of bugs 

•  Or reduce MTTR 
– Use architectures that provide service quickly once 

recovery starts 
– There are several places where you can improve 

MTTR 
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Availability Performance 

•  Improving MTTR 
– Detect failures more quickly 
– Promote secondary to primary role quickly 
– Recover recent/in-progress operations quickly 
–  Inform and rebind clients quickly 
– Re-establish session state (if any) quickly 

•  Degraded service may persist longer 
– Restoring lost redundancy may take a while 
– Heavily loading servers, disks, and network 
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Scalability and Performance: 
Network Traffic 

•  Network messages are expensive 
– NIC and network capacity to carry them 
– Server CPU cycles to process them 
– Client delays awaiting responses 

•  Minimize messages/client/second 
– Cache results to eliminate requests entirely 
– Enable complex operations with single request 
– Buffer up large writes in write-back cache 
– Pre-fetch large reads into local cache 
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Scalability Performance: 
Bottlenecks 

•  Avoid single control points 
–  Partition responsibility over many nodes 

•  Separated data- and control-planes 
– Control nodes choreograph the flow of data 

•  Where data should be stored or obtained from 
•  Ensuring coherency and correct serialization 

– Data flows directly from producer to consumer 
•  Data paths are optimized for throughput/efficiency 

•  Dynamic re-partitioning of responsibilities 
–  In response to failures and/or load changes 
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Control and Data Planes 
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Scalability Performance: Cluster 
Protocols 

•  Consensus protocols do not scale well 
– They only work fast for small numbers of nodes 

•  Minimize number of consensus operations 
– Elect a single master who makes decisions 
– Partitioned and delegated responsibility 

•  Avoid large-consensus/transaction groups 
– Partition work among numerous small groups 

•  Avoid high communications fan-in/fan-out 
– Hierarchical information gathering/distribution 
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Hierarchical Communication Structure 


