-

Operating System Principles:
Accessing Remote Data
CS 111
Operating Systems
Peter Rether

/ [Outline} \

 Data on other machines

* Remote file access architectures
* Challenges in remote data access

— Security
— Relhiability and availability
— Performance

— Scalability

\ /

CS 111 Lecture 17
Fall 2016 Page 2

7 Remote Data: A
Goals and Challenges

« Sometimes the data we want 1sn’t on our
machine

— A file
— A database
— A web page
* We’d like to be able to access it, anyway
* How do we provide access to remote data?

\

CS 111

Fall 2016

Lecture 17
Page 3

/ Basic Goals \

* Transparency
— Indistinguishable from local files for all uses
— All clients see all files from anywhere

e Performance
— Per-client: at least as fast as local disk
— Scalability: unaffected by the number of clients

* Cost
— Capital: less than local (per client) disk storage

— Operational: zero, 1t requires no administration

* Capacity: unlimited, 1t 1s never full
\- Availability: 100%, no failures or service down-time /

CS 111 Lecture 17
Fall 2016 Page 4

/~ Key Characteristics of Remote ™\

Data Access Solutions
* APIs and transparency
— How do users and processes access remote data?

— How closely does remote data mimic local data?
* Performance and robustness

— Is remote data as fast and reliable as local data?

 Architecture

— How 1s solution integrated into clients and servers?

* Protocol and work partitioning

\

..., —How do client and server cooperate? Locture 17

Fall 2016 Page 5

/ Remote File Systems \

 Provide files to local user that are stored on
remote machine

* Using the same or similar model as file access

* Not the only case for remote data access

— Remote storage devices
* Accessed by low level device operations over network

— Remote databases
* Accessed by database queries on remote nodes

\ /

CS 111 Lecture 17
Fall 2016 Page 6

/ Remote Data Access and \
Networking

 ALL forms of remote data access rely on
networking

* Which is provided by the operating system as
previously discussed

* Remote data access must take networking
realities into account

— Unreliability

— Performance
\ — Security /

CS 111 Lecture 17
Fall 2016 Page 7

/ [Remote File Access Architectures}

e Client/server
e Remote file transfer
e Remote disk access

e Remote file access
* Cloud model

\ /

CS 111 Lecture 17
Fall 2016 Page 8

/ Client/Server Models \

* Peer-to-peer
— Most systems have resources (e.g. disks, printers)
— They cooperate/share with one-another

* Thin client
— Few local resources (e.g. CPU, NIC, display)

— Most resources on work-group or domain servers

 Cloud Services

— Clients access services rather than resources

\ — Clients do not see individual servers /

CS 111 Lecture 17
Fall 2016 Page 9

/ Remote File Transfer \

* Explicit commands to copy remote files
— OS specific: scp(1), rsync(1), S3 tools
— IETF protocols: FTP, SFTP

* Implicit remote data transfers
— Browsers (transfer files with HTTP)
— Email clients (move files with IMAP/POP/SMTP)

* Advantages: efficient, requires no OS support

* Disadvantages: latency, lack of transparency

\ /

CS 111 Lecture 17
Fall 2016 Page 10

/ Remote Disk Access \

* Goal: complete transparency
— Normal file system calls work on remote files
— All programs “just work™ with remote files

* Typical architectures
— Storage Area Network (SCSI over Fibre Chanel)

* Very fast, very expensive, moderately scalable

— 1SCSI (SCSI over ethernet)

* Client driver turns reads/writes into network requests
* Server daemon receives/serves requests
* Moderate performance, inexpensive, highly scalable

\ /

CS 111 Lecture 17
Fall 2016 Page 11

ﬁ{emote Disk Access Architecture\

client

block 1/0

\

CS 111

v
remote
disk
client

Server

remote disk server

MAC
driver

riyer
U

devyice
110

Fall 2016

Lecture 17
Page 12

/ Rating Remote Disk Access \

* Advantages:
— Provides excellent transparency

— Decouples client hardware from storage capacity
— Performance/reliability/availability per back-end

* Disadvantages
— Inefficient fixed partition space allocation

— Can’t support file sharing by multiple client systems
— Message losses can cause file system errors

 This 1s THE model for Virtual Machines

\ /

CS 111 Lecture 17
Fall 2016 Page 13

/ Remote File Access \

* Goal: complete transparency
— Normal file system calls work on remote files
— Support file sharing by multiple clients
— Performance, availability, reliability, scalability

* Typical architecture
— Exploits plug-in file system architecture
— Client-side file system 1s a local proxy
— Translates file operations into network requests
— Server-side daemon receives/process requests
\ — Translates them 1nto real file system operations)

CS 111 Lecture 17
Fall 2016 Page 14

/Remote File Access Architecture\

client server

remote FS server

I = I
()
o
@

block 1/0 MAC MAC
driver driver

21Z = 2 0w

\ /

CS 111 Lecture 17
Fall 2016 Page 15

block I/O

/" Rating Remote File Access ™\

* Advantages
— Very good application level transparency
— Very good functional encapsulation
— Able to support multi-client file sharing
— Potential for good performance and robustness

* Disadvantages
— At least part of implementation must be in the OS
— Client and server sides tend to be fairly complex

* This 1s THE model for client/server storage

CS 111 Lecture 17
Fall 2016 Page 16

/ Cloud Model

* Alogical extension of client/server model
— All services accessed via standard protocols

* Opaque encapsulation of servers/resources
— Resources are abstract/logical, thin-provisioned
— One highly available IP address for all services
— Mirroring/migration happen under the covers

* Protocols likely to be WAN-scale optimized

* Advantages:
— Simple, scalable, highly available, low cost
— A very compelling business model

\

CS 111

Fall 2016

/

Lecture 17
Page 17

/ Remote Disk/File Access

CS 111
Fall 2016

client

primary

—————————————————————

Distributed File System

client

v

v

v

v

server

server

server

server

server

OO OO CS

\

/

Lecture 17

Page 18

/ Remote vs. Distributed FS \

* Remote file access (e.g., NFS, CIFS)
— Client talks to (per FS) primary server

— Secondary server may take over if primary fails
— Advantages: simplicity

* Distributed file system (e.g., Ceph,
RAMCloud)

— Data 1s spread across numerous servers
— Client may talk directly to many/all of them

— Advantages: performance, scalability

\

., — Disadvantages: complexity++ e 17

Fall 2016 Page 19

@ecurity For Remote File Systemm

* Major 1ssues:
— Privacy and integrity for data on the network
* Solution: encrypt all data sent over network
— Authentication of remote users
* Solution: various approaches

— Trustworthiness of remote sites

* Solution: various approaches

\ /

CS 111 Lecture 17
Fall 2016 Page 20

/ Authentication Approaches \

* Anonymous access
* Peer-to-peer approaches
* Server authentication approaches

* Domain authentication approaches

\ /

CS 111 Lecture 17
Fall 2016 Page 21

/ Anonymous Access \

* All files are available to all users
— No authentication required
— May be limited to read-only access
— Examples: anonymous FTP, HTTP

* Advantages
— Simple implementation
* Disadvantages

— Can’t provide information privacy

— Usually unacceptable for write access
\ * Which 1s often managed by other means /

CS 111 Lecture 17
Fall 2016 Page 22

/ Peer-to-Peer Security \

All participating nodes are trusted peers

* (Client-side authentication/authorization
— All users are known to all systems

— All systems are trusted to enforce access control
— Example: basic NFS

Advantages:
— Simple implementation

Disadvantages:
— You can’t always trust all remote machines
— Doesn’t work 1n heterogeneous OS environment
— Universal user registry is not scalable

\ /

CS 111 Lecture 17
Fall 2016 Page 23

/Server Authenticated Approaches\

* Client agent authenticates to each server
— Authentication used for entire session

— Authorization based on credentials produced by server
— Example: CIFS

* Advantages
— Simple implementation

* Disadvantages
— May not work 1n heterogeneous OS environment
— Universal user registry 1s not scalable
— No automatic fail-over if server dies

\ /

CS 111 Lecture 17
Fall 2016 Page 24

6omain Authentication Approachg

* Independent authentication of client & server

— Each authenticates with independent authentication
Service

— Each knows/trusts only the authentication service

* Authentication service may issue signed “tickets”
— Assuring each of the others’ identity and rights
— May be revocable or timed lease

* May establish secure two-way session
— Privacy — nobody else can snoop on conversation
— Integrity — nobody can generate fake messages

* Kerberos 1s one example

\ /

CS 111 Lecture 17
Fall 2016 Page 25

/ Distributed Authorization \

1. Authentication service returns credentials
— Which server checks against Access Control List

— Advantage: auth service doesn’t know about ACLs

2. Authentication service returns capabilities
— Which server can verify (by signature)
— Advantage: servers do not know about clients

* Both approaches are commonly used

— Credentials: 1f subsequent authorization required

\ — Capabilities: 1f access can be granted all-at-once m/ ;
CS 111 e 26
Fall 2016 ree s

/" [Reliability and Availability]

* Reliability 1s high degree of assurance that service
works properly

— Challenging 1n distributed systems, because of partial
failures

— Data 1s not lost despite failures
* Availability 1s high degree of assurance that service 1s
available whenever needed
— Failures of some system elements don’t prevent data access

— Certain kinds of distributed systems can greatly improve
availability

\- Both, here, 1n the context of accessing remote files /

CS 111 Lecture 17
Fall 2016 Page 27

/" Achieving Reliability

* Must reduce probability of data loss
* Typically by some form of redundancy

— Disk/server failures don’t result in data loss
* RAID (mirroring, parity, erasure coding)
* copies on multiple servers
* Also important to automatically recover after
failure

— Remote copies of data become available again

— Any redundancy loss due to failure must be made

L up /

CS 111 Lecture 17
Fall 2016 Page 28

/ Reliability: Data Mirroring \

client primary

\

CS 111
Fall 2016

Front-side Mirroring

————————

client

------ 1 -
[T S ——— 3
11 :

______ L S

Snn— >

I 1

I 1

N)

C—— >

————————

/

Lecture 17
Page 29

K/Iirroring, Parity, and Erasure Coding\

Similar to trade-offs we made in RAID
— Extra copies of some data prevent data loss
— In this case on another machine
— But the extra copies mean more network I/0
Mirroring — multiple copies
— Fast, but requires a great deal of space
Parity — able to recover from one/two errors
— Lower space overhead
— Requires full strip write buffering
Erasure coding — recover with N/M copies
— Very space efficient
— Very slow/expensive reads and writes

\ /

CS 111 Lecture 17
Fall 2016 Page 30

/" Availability and Fail-Over

* Fail-over means transferring work/requests from failed
server to some other server

* Data must be mirrored to secondary server
* Failure of primary server must be detected
* Client must be failed-over to secondary

e Session state must be reestablished
— Client authentication/credentials
— Session parameters (e.g. working directory, offset)

* In-progress operations must be retransmitted
— Client must expect timeouts, retransmit requests
— Client responsible for writes until server ACKs

\ /

CS 111 Lecture 17
Fall 2016 Page 31

/Availability: Failure Detect/Rebind\

\

CS 111
Fall 2016

If a server fails, need to detect 1t and rebind to a different
SCTVCT
Client driven recovery

— Client detects server failure (connection error)

— Client reconnects to (successor) server

— Client reestablishes session

Transparent failure recovery
— System detects server failure (health monitoring)

— Successor assumes primary’s IP address (or other redirection)

— State reestablishment
* Successor recovers last primary state check-point
* Stateless protocol

/

Lecture 17
Page 32

/~ Availability: Stateless Protocols ™

* Stateful protocols (e.g., TCP)

— Operations occur within a context
* Server must save state

— Each operation depends on previous operations
— Replacement server must obtain session state to operate
properly
* Stateless protocols (e.g., HTTP)
— Client supplies necessary context with each request
— Each operation 1s self-contained and unambiguous
— Successor server needs no memory of past events

* Stateless protocols make fail-over easy

\ /

CS 111 Lecture 17
Fall 2016 Page 33

ﬁvailability: Idempotent Operations\

* Idempotent operations can be repeated many
times with same effect

— Read block 100 of file X
— Write block 100 of file X with contents Y
— Delete file X version 3
— Non-1dempotent operations
* Read next block of current file
* Append contents Y to end of file X
 If client gets no response, resend request
— If server gets multiple requests, no harm done

— Works for server failure, lost request, lost response
* But no ACK does not mean operation did not happen

\ /

CS 111 Lecture 17
Fall 2016 Page 34

@emote File System Performance}\

* Disk bandwidth and performance

* Performance for reads

* Performance for writes

* Overheads particular to remote file systems
* Performance and availability

\ /

CS 111 Lecture 17
Fall 2016 Page 35

/ Disk Bandwidth Implications \

\

CS 111
Fall 2016

a single server has limited throughput

client
client > primary ‘ \
client
I ———]
—> primary
I ————]
client primary
I ————]
—> primary

striping files across
multiple servers
provides scalable
throughput

/

Lecture 17
Page 36

/N etwork Impacts on Performance\

e Bandwidth limitations

— Implications for client

— Implications for server
* Delay implications

— Particularly important 1f acknowledgements
required

* Packet loss implications

— If loss rate high, will require acknowledgements

\ /

CS 111 Lecture 17
Fall 2016 Page 37

/ Cost of Reads \

* Most file system operations are reads, so read
performance 1s critical

 Common way to improve read performance 1s
through caching

* Can use read-ahead, but costs of being wrong
are higher than for local disk

\ /

CS 111 Lecture 17
Fall 2016 Page 38

/ Caching For Reads \

* Client-side caching

— Cache data permanently stored at the server at the
client

— Eliminates waits for remote read requests
— Reduces network traffic
— Reduces per-client load on server

* Server-side caching

— Typically performed similarly to single machine
caching

— Reduces disk delays, but not network problems /

ture 17

CS 111 Lec
Fall 2016 Page 39

/ Whole File Vs. Block Caching \

* Many distributed file systems use whole file
caching

—E.g., AFS

* Higher network latency justifies whole file
pulls

* Stored 1n local (cache-only) file system
* Satisty early reads before entire file arrives

* Block caching is also common (NFS)

\ /

< — Typically integrated into shared block cache Lecture 17

Fall 2016 Page 40

/ Cost of Writes \

* Writes at clients need to get to server(s) that
store the data

— And what about other clients caching that data?
* Not caching the writes 1s very expensive
— Since they need to traverse the network

— And probably be acknowledged
* Caching approaches improve performance at

potential cost of consistency

\ /

CS 111 Lecture 17
Fall 2016 Page 41

faching Writes For Distributed Fi@

| Systems
 Write-back cache

— Create the 1llusion of fast writes
— Combine small writes into larger writes
— Fewer, larger network and disk writes

— Enable local read-after-write consistency

* Whole-file updates
— No writes sent to server until close(2) or fsync(2)
— Reduce many successive updates to final result
— Possible file will be deleted before 1t 1s written

\ — Enable atomic updates, close-to-open consistency /

cs11 — But may lead to more potential problems of inconsistency Lecture 17
Fall 2016 Page 42

/ Cost of Consistency \

* Caching 1s essential in distributed systems
— For both performance and scalability

* Caching 1s easy 1n a single-writer system
— Force all writes to go through the cache

* Multi-writer distributed caching 1s hard

— Time To Live 1s a cute 1dea that doesn’t work

— Constant validity checks defeat the purpose

— One-writer-at-a-time 1s too restrictive for most FS

\ — Change notifications are a reasonable alternative m/ ;
CS 111 g0 43
Fall 2016 ree

/ Cost of Mirroring \

* Multi-host vs. multi-disk mirroring
— Protects against host and disk failures
— Creates much additional network traffic
* Mirroring by primary
— Primary becomes throughput bottleneck
— Move replication traffic to back-side network
* Mirroring by client
— Data flows directly from client to storage servers
— Replication traffic goes through client NIC
— Parity/erasure code computation on client CPU

\ /

CS 111 Lecture 17
Fall 2016 Page 44

/ Mirroring Through Primary \

[s) s Y

server

server

server

server

1

1

1

)

\

CS 111

primary

client

all data flows through primary

Fall 2016

Lecture 17
Page 45

/~Mirroring Through Direct Data ™\

\

CS 111
Fall 2016

Flow

Primary directs client to storage
nodes

Data flows direct to storage nodes

client
v v v v v
server server primary server server

] N

/

Lecture 17
Page 46

/ Benetits of Direct Data Path \

* Architecture

— Primary tells clients where which data resides

— Client communicates directly with storage servers
* Throughput

— Data can be striped across multiple storage servers
* Latency

— No intermediate relay through primary server
* Scalability

— Fewer messages on network
— Much less data flowing through primary servers

\ /

CS 111 Lecture 17
Fall 2016 Page 47

/" Reliability and Availability ™\
Performance
* Distributed systems must expect some failures

* Distributed file systems are expected to offer
good service despite those failures

 How do we characterize that performance
characteristic?

* How do we improve 1t?

\ /

CS 111 Lecture 17
Fall 2016 Page 48

/ Recovery Time \

Availability = MTTF
MTTF + MTTR

Mean Time To Failur

h/w, s/w, external

Mean Time To Repair

clients re-bind

1. detect failure

2. promote 2Md-ary
degraded 3. journal recovery
service 4.

d.

reestablish session

\ state /

CS 111 Lecture 17
Fall 2016

Page 49

/" Improving Availability

e Reduce MTTF

— Use more reliable components
— Get rid of bugs

e Orreduce MTTR

— Use architectures that provide service quickly once
recovery starts

— There are several places where you can improve
MTTR

\ /

CS 111 Lecture 17
Fall 2016 Page 50

/ Availability Performance \

* Improving MTTR
— Detect failures more quickly
— Promote secondary to primary role quickly
— Recover recent/in-progress operations quickly
— Inform and rebind clients quickly

— Re-establish session state (if any) quickly
* Degraded service may persist longer

— Restoring lost redundancy may take a while

\ — Heavily loading servers, disks, and network /

CS 111 Lecture 17
Fall 2016 Page 51

/~ Scalability and Performance: ™\
Network Traffic

* Network messages are expensive
— NIC and network capacity to carry them

— Server CPU cycles to process them
— Client delays awaiting responses

* Minimize messages/client/second
— Cache results to eliminate requests entirely

— Enable complex operations with single request
— Buffer up large writes in write-back cache

— Pre-fetch large reads into local cache

\

CS 111 Lecture 17
Fall 2016 Page 52

/" Scalability Performance: ™\
Bottlenecks

* Avoid single control points
— Partition responsibility over many nodes

* Separated data- and control-planes

— Control nodes choreograph the flow of data
* Where data should be stored or obtained from
* Ensuring coherency and correct serialization

— Data flows directly from producer to consumer
* Data paths are optimized for throughput/efficiency

* Dynamic re-partitioning of responsibilities
\ — In response to failures and/or load changes /

CS 111 Lecture 17
Fall 2016 Page 53

/ Control and Data Planes \

e, - —————

control plane

data plane

CS 111 Lecture 17
Fall 2016 Page 54

/Scalability Performance: Cluster\

Protocols
* Consensus protocols do not scale well

— They only work fast for small numbers of nodes

* Minimize number of consensus operations
— Elect a single master who makes decisions
— Partitioned and delegated responsibility

* Avoid large-consensus/transaction groups

— Partition work among numerous small groups

* Avoid high communications fan-in/fan-out

\

.\, — Hierarchical information gathering/distribution ...

Fall 2016 Page 55

ﬁierarchical Communication Structu&

~
S~
S~
~
s

-
-
-
-
-
-
-

-~

-~

-~
-~
-~
-~
~

-

-
-
-
- -

CS 111 Lecture 17
Page 56

Fall 2016

