
Lecture 2
Page 1

CS 111
Fall 2016

Operating System Principles:
Services, Resources, and

Interfaces
CS 111

Operating Systems
Peter Reiher

Lecture 2
Page 2

CS 111
Fall 2016

Outline

•  Operating systems services
•  System service layers and mechanisms
•  Service interfaces and standards
•  Service and interface abstractions

Lecture 2
Page 3

CS 111
Fall 2016

Key OS Services

•  Generally offered as abstractions
•  Important basic categories:

– CPU/Memory abstractions
•  Processes, threads, virtual machines
•  Virtual address spaces, shared segments

–  Persistent storage abstractions
•  Files and file systems

– Other I/O abstractions
•  Virtual terminal sessions, windows
•  Sockets, pipes, VPNs, signals (as interrupts)

Lecture 2
Page 4

CS 111
Fall 2016

Services: Higher Level Abstractions

•  Cooperating parallel processes
– Locks, condition variables
– Distributed transactions, leases

•  Security
– User authentication
– Secure sessions, at-rest encryption

•  User interface
– GUI widgetry, desktop and window management
– Multi-media

Lecture 2
Page 5

CS 111
Fall 2016

Services: Under the Covers
•  Not directly visible to users
•  Enclosure management

– Hot-plug, power, fans, fault handling

•  Software updates and configuration registry
•  Dynamic resource allocation and scheduling

– CPU, memory, bus resources, disk, network
•  Networks, protocols and domain services

– USB, BlueTooth
– TCP/IP, DHCP, LDAP, SNMP
–  iSCSI, CIFS, NFS

Lecture 2
Page 6

CS 111
Fall 2016

Software Layering

privileged	
instruc/on	set	

general	instruc/on	set	

Opera/ng	System	kernel	

	general	libraries	

Opera/ng	System	
services	

middleware	
services	

(user	and	system)	applica/ons	

devices	

Application Binary Interface

Instruction Set Architecture
drivers	

Lecture 2
Page 7

CS 111
Fall 2016

How Can the OS Deliver These
Services?

•  Applications could just call subroutines
•  Applications could make system calls
•  Applications could send messages to software

that performs the services
•  At which layer does each of these options

work?

Lecture 2
Page 8

CS 111
Fall 2016

Service Delivery via Subroutines

•  Access services via direct subroutine calls
–  Push parameters, jump to subroutine, return values in

registers on on the stack
•  Advantages

– Extremely fast (nano-seconds)
– DLLs enable run-time implementation binding

•  Disadvantages
– All services implemented in same address space
– Limited ability to combine different languages
– Can’t usually use privileged instructions

Lecture 2
Page 9

CS 111
Fall 2016

OS Layering

•  Modern OSes offer services via layers of
software and hardware

•  High level abstract services offered at high
software layers

•  Lower level abstract services offered deeper in
the OS

•  Ultimately, everything mapped down to
relatively simple hardware

Lecture 2
Page 10

CS 111
Fall 2016

Layers: Libraries

•  Programmers need not write all code for programs
–  Standard utility functions can be found in libraries

•  A library is a collection of object modules
–  A single file that contains many files (like a zip or jar)
–  These modules can be used directly, w/o recompilation

•  Most systems come with many standard libraries
–  System services, encryption, statistics, etc.
–  Additional libraries may come with add-on products

•  Programmers can build their own libraries
–  Functions commonly needed by parts of a product

Lecture 2
Page 11

CS 111
Fall 2016

The Library Layer

privileged	
instruc/on	set	

general	instruc/on	set	

Opera/ng	System	kernel	

	general	libraries	

Opera/ng	System	
services	

middleware	
services	

(user	and	system)	applica/ons	

devices	

Application Binary Interface

Instruction Set Architecture
drivers	

Lecture 2
Page 12

CS 111
Fall 2016

Characteristics of Libraries
•  Many advantages

– Reusable code makes programming easier
– A single well written/maintained copy
– Encapsulates complexity … better building blocks

•  Multiple bind-time options
– Static … include in load module at link time
– Shared … map into address space at exec time
– Dynamic … choose and load at run-time

•  It is only code … it has no special privileges

Lecture 2
Page 13

CS 111
Fall 2016

Shared Libraries
•  Library modules are usually added to a program’s

load module
– Each load module has its own copy of each library

•  This dramatically increases the size of each process
–  Program must be re-linked to incorporate new library

•  Existing load modules don't benefit from bug fixes
•  Instead, make each library a sharable code

segment
– One in memory copy, shared by all processes
– Keep the library separate from the load modules
– Operating system loads library along with program

Lecture 2
Page 14

CS 111
Fall 2016

Advantages of Shared Libraries
•  Reduced memory consumption

–  One copy can be shared by multiple processes/programs
•  Faster program start-ups

–  If it’s already in memory, it need not be loaded again
•  Simplified updates

–  Library modules are not included in program load modules
–  Library can be updated (e.g., a new version with bug fixes)
–  Programs automatically get the newest version when they

are restarted

Lecture 2
Page 15

CS 111
Fall 2016

Limitations of Shared Libraries

•  Not all modules will work in a shared library
– They cannot define/include global data storage

•  They are read into program memory
– Whether they are actually needed or not

•  Called routines must be known at compile-time
– Only the fetching of the code is delayed 'til run-time
–  Symbols known at compile time, bound at link time

•  Dynamically Loadable Libraries are more general
– They eliminate all of these limitations ... at a price

Lecture 2
Page 16

CS 111
Fall 2016

Service Delivery via System Calls

•  Force an entry into the operating system
– Parameters/returns similar to subroutine
–  Implementation is in shared/trusted kernel

•  Advantages
– Able to allocate/use new/privileged resources
– Able to share/communicate with other processes

•  Disadvantages
– All implemented on the local node
– 100x-1000x slower than subroutine calls

Lecture 2
Page 17

CS 111
Fall 2016

Layers: The Kernel

•  Primarily functions that require privilege
– Privileged instructions (e.g., interrupts, I/O)
– Allocation of physical resources (e.g., memory)
– Ensuring process privacy and containment
– Ensuring the integrity of critical resources

•  Some operations may be out-sourced
– System daemons, server processes

•  Some plug-ins may be less-trusted
– Device drivers, file systems, network protocols

Lecture 2
Page 18

CS 111
Fall 2016

The Kernel Layer

privileged	
instruc/on	set	

general	instruc/on	set	

	general	libraries	

Opera/ng	System	
services	

middleware	
services	

(user	and	system)	applica/ons	

devices	

Application Binary Interface

Instruction Set Architecture
drivers	 Opera/ng	System	kernel	

Lecture 2
Page 19

CS 111
Fall 2016

Layers: System Services
•  Not all trusted code must be in the kernel

–  It may not need to access kernel data structures
–  It may not need to execute privileged instructions

•  Some are actually somewhat privileged
processes
– Login can create/set user credentials
– Some can directly execute I/O operations

•  Some are merely trusted
– sendmail is trusted to properly label messages
– NFS server is trusted to honor access control data

Lecture 2
Page 20

CS 111
Fall 2016

System Service Layer

privileged	
instruc/on	set	

general	instruc/on	set	

Opera/ng	System	kernel	

	general	libraries	

middleware	
services	

(user	and	system)	applica/ons	

devices	

Application Binary Interface

Instruction Set Architecture
drivers	

Opera/ng	System	
services	

Lecture 2
Page 21

CS 111
Fall 2016

Service Delivery via Messages

•  Exchange messages with a server (via syscalls)
– Parameters in request, returns in response

•  Advantages:
– Server can be anywhere on earth
– Service can be highly scalable and available
– Service can be implemented in user-mode code

•  Disadvantages:
– 1,000x-100,000x slower than subroutine
– Limited ability to operate on process resources

Lecture 2
Page 22

CS 111
Fall 2016

Layers: Middleware

•  Software that is a key part of the application or
service platform, but not part of the OS
– Database, pub/sub messaging system
– Apache, Nginx
– Hadoop, Zookeeper, Beowulf, OpenStack
– Cassandra, RAMCloud, Ceph, Gluster

•  Kernel code is very expensive and dangerous
– User-mode code is easier to build, test and debug
– User-mode code is much more portable
– User-mode code can crash and be restarted

Lecture 2
Page 23

CS 111
Fall 2016

The Middleware Layer

privileged	
instruc/on	set	

general	instruc/on	set	

Opera/ng	System	kernel	

	general	libraries	

Opera/ng	System	
services	

middleware	
services	

(user	and	system)	applica/ons	

devices	

Application Binary Interface

Instruction Set Architecture
drivers	

Lecture 2
Page 24

CS 111
Fall 2016

OS Interfaces

•  Nobody buys a computer to run the OS
•  The OS is meant to support other programs

– Via its abstract services

•  Usually intended to be very general
– Supporting many different programs

•  Interfaces are required between the OS and
other programs to offer general services

Lecture 2
Page 25

CS 111
Fall 2016

Interfaces: APIs
•  Application Program Interfaces

– A source level interface, specifying:
•  Include files, data types, constants
•  Macros, routines and their parameters

•  A basis for software portability
– Recompile program for the desired architecture
– Linkage edit with OS-specific libraries
– Resulting binary runs on that architecture and OS

•  An API compliant program will compile & run
on any compliant system
– APIs are primarily for programmers

Lecture 2
Page 26

CS 111
Fall 2016

Interfaces: ABIs
•  Application Binary Interfaces

– A binary interface, specifying:
•  Dynamically loadable libraries (DLLs)
•  Data formats, calling sequences, linkage conventions

– The binding of an API to a hardware architecture
•  A basis for binary compatibility

– One binary serves all customers for that hardware
•  E.g. all x86 Linux/BSD/MacOS/Solaris/…

•  An ABI compliant program will run
(unmodified) on any compliant system

•  ABIs are primarily for users

Lecture 2
Page 27

CS 111
Fall 2016

Why Does My OS Need
to Support an ABI?

•  Why not just support an API?
•  Users would not like that much
•  API-only compatibility requires them to

obtain and compile their applications’ sources
–  If it doesn’t build, they have to debug it

•  ABI compatibility allows merely loading and
running the application (binary)

–  Of course, if it doesn’t run, they’re out of luck

Lecture 2
Page 28

CS 111
Fall 2016

User Mode Instruction Set vs. ABI
•  Why distinguish the user mode instruction set from the

Application Binary?
•  The user mode instruction set is defined and implemented by

hardware
–  It is thus ISA specific

•  The Application Binary Interface is defined and implemented
by software
–  It is thus OS specific

•  Compilers generate code from the user-mode instruction set
•  Code that exploits features in the Application Binary Interface

is written by people (or higher level tools)

Lecture 2
Page 29

CS 111
Fall 2016

Other Important OS Interfaces

•  Data formats and information encodings
– Multi-media content (e.g. MP3, JPG)
– Archival (e.g. tar, gzip)
– File systems (e.g. DOS/FAT, ISO 9660)

•  Protocols
– Networking (e.g. ethernet, WLAN, TCP/IP)
– Domain services (e.g. IMAP, LPD)
– System management (e.g. DHCP, SNMP, LDAP)
– Remote data access (e.g. FTP, HTTP, CIFS, S3)

Lecture 2
Page 30

CS 111
Fall 2016

Interfaces and Interoperability

•  Strong, stable interfaces are key to allowing
programs to operate together

•  Also key to allowing OS evolution
•  You don’t want an OS upgrade to break your

existing programs
•  Which means the interface between the OS and

those programs better not change

Lecture 2
Page 31

CS 111
Fall 2016

Interoperability Requires Stability
•  No program is an island

– Programs use system calls
– Programs call library routines
– Programs operate on external files
– Programs exchange messages with other software
–  If interfaces change, programs fail

•  API requirements are frozen at compile time
– Execution platform must support those interfaces
– All partners/services must support those protocols
– All future upgrades must support older interfaces

Lecture 2
Page 32

CS 111
Fall 2016

Interoperability Requires Compliance

•  Complete interoperability testing is impossible
– Cannot test all applications on all platforms
– Cannot test interoperability of all implementations
– New apps and platforms are added continuously

•  Instead, we focus on the interfaces
–  Interfaces are completely and rigorously specified
– Standards bodies manage the interface definitions
– Compliance suites validate the implementations

•  And hope that sampled testing will suffice

Lecture 2
Page 33

CS 111
Fall 2016

Compatibility Taxonomy

•  Upwards compatible (with …)
– New version still supports previous interfaces

•  Backwards compatible (with …)
– Will correctly interact with old protocol versions

•  Versioned interface, version negotiation
–  Parties negotiate a mutually acceptable version

•  Compatibility layer
– A cross-version translator

•  Non-disruptive upgrade

Lecture 2
Page 34

CS 111
Fall 2016

Side Effects
•  A side effect occurs when an action one

object has non-obvious consequences
–  Perhaps even to other objects
–  Effects not specified by interfaces

•  Often due to shared state between seemingly
independent modules and functions

•  Side effects lead to unexpected behaviors
•  And the resulting bugs can be hard to find
•  In other words, not good

Lecture 2
Page 35

CS 111
Fall 2016

Standards

•  Different than interfaces
•  Interfaces can differ from OS to OS

– And machine to machine

•  Standards are more global
•  Either you follow a standard or you don’t

–  If you do, others can work with you
–  If you don’t, they can’t

•  Where did standards come from?

Lecture 2
Page 36

CS 111
Fall 2016

Standards in the Dark Ages (1965)
•  No software industry as we now know it
•  All the money was made on hardware

– But hardware is useless without software
– All software built by hardware suppliers
– Platforms were distinguished by software

•  Software portability was an anti-goal
– Keep customers captive to your hardware
– Portability means they could go elsewhere

•  Standards were few and weak

Lecture 2
Page 37

CS 111
Fall 2016

The Software Reformation (1985)
•  The advent of the "killer application”

– Desk-top publishing, spreadsheets, ...
– The rise of the Independent Software Vendor

•  Fundamental changes to platform industry
– The “applications, demand, volume” cycle
– Application capture became strategic

•  Applications portability became strategic
– Standards are the key to portability
– Standards compliance became strategic

Lecture 2
Page 38

CS 111
Fall 2016

The Role of Standards Today
•  There are many software standards

– Subroutines, protocols and data formats, …
– Both portability and interoperability
– Some are general (e.g. POSIX 1003, TCP/IP)
– Some are very domain specific (e.g. MPEG2)

•  Key standards are widely required
– Non-compliance reduces application capture
– Non-compliance raises price to customers

•  Bottom line: if you don’t meet the standard, your
system isn’t used

Lecture 2
Page 39

CS 111
Fall 2016

Where Do Standards Stop?

•  Why not just one browser for everyone?
•  And just one image format?
•  And just one email program?
•  Those could be standards themselves
•  Why not?
•  Why not just bundle everything into the OS?

?

Lecture 2
Page 40

CS 111
Fall 2016

Abstractions

•  Many things an operating system handles are
complex
– Often due to varieties of hardware, software,

configurations
•  Life is easy for application programmers and

users if they work with a simple abstraction
•  The operating system creates, manages, and

exports such abstractions

Lecture 2
Page 41

CS 111
Fall 2016

Abstractions: An Object-Oriented View

•  My execution platform implements objects
– They may be bytes, longs, and strings
– They may be processes, files, and sessions

•  An object is defined by
–  Its properties, methods, and their semantics

•  What makes a particular set of objects good?
– They are powerful enough to do what I need
– They don’t force me to do a lot of extra work
– They are simple enough for me to understand

Lecture 2
Page 42

CS 111
Fall 2016

Simplifying Abstractions

•  Hardware is fast, but complex and limited
– Using it correctly is extremely complex
–  It may not support the desired functionality
–  It is not a solution, but merely a building block

•  Encapsulate implementation details
– Error handling, performance optimization
– Eliminate behavior that is irrelevant to the user

•  More convenient or powerful behavior
– Operations better suited to user needs

Lecture 2
Page 43

CS 111
Fall 2016

Critical OS Abstractions

•  The OS provides some core abstractions that
our computational model relies on
– And builds others on top of those

•  Memory abstractions
•  Processor abstractions
•  Communications abstractions

Lecture 2
Page 44

CS 111
Fall 2016

Abstractions of Memory

•  Many resources used by programs and people
relate to data storage
– Variables
– Chunks of allocated memory
– Files
– Database records
– Messages to be sent and received

•  These all have some similar properties

Lecture 2
Page 45

CS 111
Fall 2016

The Basic Memory Operations

•  Regardless of level or type, memory
abstractions support a couple of operations
– WRITE(name, value)

•  Put a value into a memory location specified by name

– value <- READ(name)
•  Get a value out of a memory location specified by name

•  Seems pretty simple
•  But going from a nice abstraction to a physical

implementation can be complex

Lecture 2
Page 46

CS 111
Fall 2016

Some Complicating Factors
•  Persistent vs. transient memory
•  Size of operations

– Size the user/application wants to work with
– Size the physical device actually works with

•  Coherence and atomicity
•  Latency
•  Same abstraction might be implemented with

many different physical devices
– Possibly of very different types

Lecture 2
Page 47

CS 111
Fall 2016

Where Do the Complications
Come From?

•  At the bottom, the OS doesn’t have abstract
devices with arbitrary properties

•  It has particular physical devices
– With unchangeable, often inconvenient, properties

•  The core OS abstraction problem:
– Creating the abstract device with the desirable

properties from the physical device without them

Lecture 2
Page 48

CS 111
Fall 2016

An Example
•  A typical file
•  We can read or write the file
•  We can read or write arbitrary amounts of data
•  If we write the file, we expect our next read to

reflect the results of the write
– Coherence

•  If there are several reads/writes to the file, we
expect each to occur in some order
– With respect to the others

Lecture 2
Page 49

CS 111
Fall 2016

What Is Implementing the File?
•  Commonly a hard disk drive
•  Disk drives have peculiar characteristics

– Long, and worse, variable access latencies
– Accesses performed in chunks of fixed size

•  Atomicity only for accesses of that size

– Highly variable performance depending on exactly
what gets put where

– Unpleasant failure modes
•  So the operating system needs to smooth out

these oddities

Lecture 2
Page 50

CS 111
Fall 2016

What Does That Lead To?
•  Great effort by file system component of OS to

put things in the right place on a disk
•  Reordering of disk operations to improve

performance
– Which complicates providing atomicity

•  Optimizations based on caching and read-
ahead
– Which complicates maintaining consistency

•  Sophisticated organizations to handle failures

Lecture 2
Page 51

CS 111
Fall 2016

Abstractions of Interpreters

•  An interpreter is something that performs
commands

•  Basically, the element of a computer (abstract
or physical) that gets things done

•  At the physical level, we have a processor
•  That level is not easy to use
•  The OS provides us with higher level

interpreter abstractions

Lecture 2
Page 52

CS 111
Fall 2016

Basic Interpreter Components
•  An instruction reference

– Tells the interpreter which instruction to do next

•  A repertoire
– The set of things the interpreter can do

•  An environment reference
– Describes the current state on which the next

instruction should be performed
•  Interrupts

– Situations in which the instruction reference
pointer is overridden

Lecture 2
Page 53

CS 111
Fall 2016

An Example
•  A process
•  The OS maintains a program counter for the

process
– An instruction reference

•  Its source code specifies its repertoire
•  Its stack, heap, and register contents are its

environment
– With the OS maintaining pointers to all of them

•  No other interpreters should be able to mess up
the process’ resources

Lecture 2
Page 54

CS 111
Fall 2016

Implementing the Process
Abstraction in the OS

•  Easy if there’s only one process
•  But there almost always are multiple processes
•  The OS has a certain amount of physical

memory
– To hold the environment information

•  There is usually only one set of registers
•  The process doesn’t have exclusive access to

the CPU
– Due to other processes

Lecture 2
Page 55

CS 111
Fall 2016

What Does That Lead To?

•  Schedulers to share the CPU among various
processes

•  Memory management hardware and software
– To multiplex memory use among the processes
– Giving each the illusion of full exclusive use of

memory
•  Access control mechanisms for other memory

abstractions
– So other processes can’t fiddle with my files

Lecture 2
Page 56

CS 111
Fall 2016

Abstractions of
Communications

•  A communication link allows one interpreter to
talk to another
– On the same or different machines

•  At the physical level, memory and cables
•  At more abstract levels, networks and

interprocess communication mechanisms
•  Some similarities to memory abstractions

– But also differences

Lecture 2
Page 57

CS 111
Fall 2016

Basic Communication Link
Operations

•  SEND(link_name, outgoing_message_buffer)
– Send some information contained in the buffer on

the named link
•  RECEIVE(link_name,

incoming_message_buffer)
– Read some information off the named link and put

it into the buffer
•  Like WRITE and READ, in some respects

Lecture 2
Page 58

CS 111
Fall 2016

Why Are Communication Links
Distinct From Memory?

•  Highly variable performance
•  Often asynchronous

– And usually issues with synchronizing the parties

•  Receiver may only perform the operation
because the SEND occurred
– Unlike a typical READ

•  Additional complications when working with a
remote machine

Lecture 2
Page 59

CS 111
Fall 2016

An Example Communications Link
•  A Unix-style socket
•  SEND interface:

– send(int sockfd, const void *buf,
size_t len, int flags)

– The sockfd is the link name
– The buf is the outgoing message buffer

•  RECEIVE interface:
– recv(int sockfd, void *buf, size_t
len, int flags)

– Same parameters as for send

Lecture 2
Page 60

CS 111
Fall 2016

Implementing the Communications
Link Abstraction in the OS

•  Easy if both ends are on the same machine
– Not so easy if they aren’t

•  On same machine, use memory to perform the
transfer
– Either copy the message from sender’s memory to

receiver’s
– Or transfer control of memory containing the

message from sender to receiver
•  Again, more complicated when remote

Lecture 2
Page 61

CS 111
Fall 2016

What Are the Implications?
•  Greater uncertainty about the outcome of an

operation
– Things fail for reasons our OS can’t see or learn
– Even on local machine, since OS doesn’t control

most of receiver’s behavior
•  Greater asynchrony

– Even on a single machine
•  Higher possibilities for security problems

– Particularly when receiver is remote
•  You’ve heard that a lot

Lecture 2
Page 62

CS 111
Fall 2016

What Do We Do About
Those Issues?

•  OS must be prepared for likely failures
•  And high degrees of asynchrony

– Bad idea to block entire system while waiting for
message delivery

•  OS shouldn’t have complete trust in what
comes in from the network
– But often the OS is in no position to determine its

trustworthiness

Lecture 2
Page 63

CS 111
Fall 2016

Generalizing Abstractions

•  How can applications deal with many varied
resources?

•  Make many different things appear the same
– Applications can all deal with a single class
– Often Lowest Common Denominator + sub-classes

•  Requires a common/unifying model
– Portable document format for printed output
– SCSI/SATA/SAS standard for disks, CDs, SSDs

•  Usually involves a federation framework

Lecture 2
Page 64

CS 111
Fall 2016

Federation Frameworks

•  A structure that allows many similar, but
somewhat different things to be treated
uniformly

•  By creating one interface that all must meet
•  Then plugging in implementations for the

particular things you have
•  E.g., make all hard disk drives accept the same

commands
– Even though you have 5 different models installed

Lecture 2
Page 65

CS 111
Fall 2016

Are Federation Frameworks
Too Limiting?

•  Does the common model have to be the
“lowest common denominator”?

•  Not necessarily
– The model can include “optional features”,

•  Which (if present) are implemented in a standard way
•  But may not always be present (and can be tested for)

•  Many devices will have features that cannot be
exploited through the common model
– There are arguments for and against the value of

such features

Lecture 2
Page 66

CS 111
Fall 2016

Abstractions and Layering
•  It’s common to create increasingly complex

services by layering abstractions
– E.g., a file system layers on top of an abstract disk,

which layers on top of a real disk
•  Layering allows good modularity

– Easy to build multiple services on a lower layer
•  E.g., multiple file systems on one disk

– Easy to use multiple underlying services to support
a higher layer

– E.g., file system can have either a single disk or a
RAID below it

Lecture 2
Page 67

CS 111
Fall 2016

A Downside of Layering
•  Layers typically add performance penalties
•  Often expensive to go from one layer to the

next
– Since it frequently requires changing data

structures or representations
– At least involves extra instructions

•  Another downside is that lower layer may limit
what the upper layer can do
– E.g., an abstract disk prevents disk operation

reorderings to maximize performance

Lecture 2
Page 68

CS 111
Fall 2016

Layer Bypassing

•  Often necessary to allow a high layer to access
much lower layers
– Not going through one or more intermediaries

•  Most commonly for performance reasons
•  If the higher layer plans to use the very low

level layer’s services,
– Why pay the cost of the intermediate layer?

•  Layer bypassing has its downsides, too
–  Intermediate layer can’t help or understand

Lecture 2
Page 69

CS 111
Fall 2016

Other OS Abstractions
•  There are many other abstractions offered by

the OS
•  Often they provide different ways of achieving

similar goals
– Some higher level, some lower level

•  The OS must do work to provide each
abstraction
– The higher level, the more work

•  Programmers and users have to choose the
right abstractions to work with

