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Outline 

•  What are processes? 
•  How does an operating system handle 

processes? 
•  How do we manage the state of processes? 
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What Is a Process? 
•  An executing instance of a program 

– How is this different from a program? 

•  A virtual private computer 
– What does a virtual computer look like? 
– How is a process different from a virtual machine? 

•  A process is an object 
– Characterized by its properties (state) 
– Characterized by its operations 
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What is “State”? 
•  One dictionary definition of “state” is 

– “A mode or condition of being” 
– An object may have a wide range of possible states 

•  All persistent objects have “state” 
– Distinguishing it from other objects 
– Characterizing object's current condition 

•  Contents of state depends on object 
– Complex operations often mean complex state 
– We can save/restore the aggregate/total state 
– We can talk of a subset (e.g., scheduling state) 



Lecture 3 
Page 5 

CS 111 
Fall 2016  

0x00000000 

0xFFFFFFFF 

shared code private data 

private stack 

Program vs. Process Address Space 
section 1 header 
type:  code 
load adr:  0xxx 
length:  ### 

section 3 header 
type:  sym 
length:  ### 

compiled 
code 

initialized 
data 

values 

symbol 
table 

ELF header 
target ISA 
# load sections 
# info sections 

section 2 header 
type:  data 
load adr:  0xxx 
length:  ### 

shared lib1 shared lib2 

shared lib3 

0x0100000 0x0110000 

0x0120000 

Program 

Process 
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Process Address Spaces 

•  Each process has some memory addresses 
reserved for its private use 

•  That set of addresses is called its address space 
•  A process’ address space is made up of all 

memory locations that the process can address 
•  Modern OSes provide the illusion that the 

process has all of memory in its address space 
– But that’s not true, under the covers 
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Process Address Space Layout 

•  All required memory elements for a process 
must be put somewhere in a its address space 

•  Different types of memory elements have 
different requirements 
– Code is not writable but must be executable 
– Stacks are readable and writable but not executable 
– Etc. 

•  Each operating system has some strategy for 
where to put these process memory segments 
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Layout of Unix Processes in 
Memory 

•  In Unix systems1,  
– Code segments are statically sized 
– Data segment grows up 
– Stack segment grows down 

•  They aren’t allowed to meet 

0x00000000 0xFFFFFFFF 

code data stack 

1 Linux is one type of Unix system 
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Address Space: Code Segments 
•  Load module (output of linkage editor) 

– All external references have been resolved 
– All modules combined into a few segments 
–  Includes multiple segments (text, data, BSS) 

•  Code must be loaded into memory 
– A virtual code segment must be created 
– Code must be read in from the load module 
– Map segment into virtual address space 

•  Code segments are read/only and sharable 
– Many processes can use the same code segments 
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Address Space: Data Segments 

•  Data too must be initialized in address space 
– Process data segment must be created 
–  Initial contents must be copied from load module  
– BSS: segments to be initialized to all zeroes 
– Map segment into virtual address space 

•  Data segments 
– Are read/write, and process private 
– Program can grow or shrink it (using the sbrk 

system call) 
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Processes and Stack Frames 

•  Modern programming languages are stack-based 
– Greatly simplified procedure storage management 

•  Each procedure call allocates a new stack frame 
–  Storage for procedure local (vs. global) variables 
–  Storage for invocation parameters 
–  Save and restore registers 

•   Popped off stack when call returns 

•  Most modern computers also have stack support 
–  Stack too must be preserved as part of process state 



Lecture 3 
Page 12 

CS 111 
Fall 2016  

Address Space: Stack Segment 

•  Size of stack depends on program activities 
– Grows larger as calls nest more deeply 
– Amount of local storage allocated by each procedure 
– After calls return, their stack frames can be recycled 

•  OS manages the process's stack segment 
–  Stack segment created at same time as data segment 
–  Some allocate fixed sized stack at program load time 
–  Some dynamically extend stack as program needs it 

•  Stack segments are read/write and process private 
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Address Space: Shared Libraries 

•  Static libraries are added to load module 
– Each load module has its own copy of each library 
– Program must be re-linked to get new version 

•  Make each library a sharable code segment 
– One in-memory copy, shared by all processes  
– Keep the library separate from the load modules 
– Operating system loads library along with program 

•  Reduced memory use, faster program loads 
•  Easier and better library upgrades 
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Other Process State 

•  Registers 
– General registers 
– Program counter, processor status 
– Stack pointer, frame pointer 

•  Processes own OS resources 
– Open files, current working directory, locks 

•  But also OS-related state information 
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OS State For a Process 
•  The state of process's virtual computer 
•  Registers 

– Program counter, processor status word 
– Stack pointer, general registers 

•  Address space 
– Text, data, and stack segments 
– Sizes, locations, and contents 

•  The OS needs some data structure to keep 
track of a process’ state 
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Process Descriptors 
•  Basic OS data structure for dealing with 

processes 
•  Stores all information relevant to the process 

– State to restore when process is dispatched 
– References to allocated resources 
–  Information to support process operations 

•  Kept in an OS data structure 
•  Used for scheduling, security decisions, 

allocation issues 
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Linux Process Control Block 
•  The data structure Linux (and other Unix 

systems) use to handle processes 
– AKA PCB 

•  An example of a process descriptor 
•  Keeps track of: 

– Unique process ID 
– State of the process (e.g., running) 
– Parent process ID 
– Address space information 
– And various other things 
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Other Process State 
•  Not all process state is stored directly in the 

process descriptor 
•  Other process state is in multiple other places 

– Application execution state is on the stack and in 
registers 

– Linux processes also have a supervisor-mode stack 
•  To retain the state of in-progress system calls 
•  To save the state of an interrupt preempted process 

•  A lot of process state is stored in the other 
memory areas 
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Handling Processes 

•  Creating processes 
•  Destroying processes 
•  Running processes 
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Where Do Processes Come From? 
•  Created by the operating system 

–  Using some method to initialize their state 
–  In particular, to set up a particular program to run 

•  At the request of other processes 
–  Which specify the program to run 
–  And other aspects of their initial state 

•  Parent processes 
–  The process that created your process 

•  Child processes 
–  The processes your process created 
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Creating a Process Descriptor 

•  The process descriptor is the OS’ basic per-
process data structure 

•  So a new process needs a new descriptor 
•  What does the OS do with the descriptor? 
•  Typically puts it into a process table 

– The data structure the OS uses to organize all 
currently active processes 
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What Else Does a  
New Process Need? 

•  An address space 
•  To hold all of the segments it will need 
•  So the OS needs to create one 

– And allocate memory for code, data and stack 
•  OS then loads program code and data into new 

segments 
•  Initializes a stack segment 
•  Sets up initial registers (PC, PS, SP) 
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Choices for Process Creation 
1.  Start with a “blank” process 

–  No initial state or resources 
–  Have some way of filling in the vital stuff 

•  Code 
•  Program counter, etc. 

–  This is the basic Windows approach 
2.  Use the calling process as a template 

–  Give new process the same stuff as the old one 
–  Including code, PC, etc. 
–  This is the basic Unix/Linux approach 
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Starting With a Blank Process 

•  Basically, create a brand new process 
•  The system call that creates it obviously needs 

to provide some information 
– Everything needed to set up the process properly 
– At the minimum, what code is to be run 
– Generally a lot more than that 

•  Other than bootstrapping, the new process is 
created by command of an existing process 
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Windows Process Creation 

•  The CreateProcess() system call 
•  A very flexible way to create a new process 

– Many parameters with many possible values 

•  Generally, the system call includes the name of 
the program to run 
–  In one of a couple of parameter locations 

•  Different parameters fill out other critical 
information for the new process 
– Environment information, priorities, etc. 
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Process Forking 

•  The way Unix/Linux creates processes 
•  Essentially clones the existing process 
•  On assumption that the new process is a lot 

like the old one 
– Most likely to be true for some kinds of parallel 

programming 
– Not so likely for more typical user computing 
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Why Did Unix Use Forking? 
•  Avoids costs of copying a lot of code 

–  If it’s the same code as the parents’ . . .  

•  Historical reasons 
– Parallel processing literature used a cloning fork 
– Fork allowed parallelism before threads invented 

•  Practical reasons 
– Easy to manage shared resources 

•  Like stdin, stdout, stderr 
– Easy to set up process pipe-lines (e.g. ls | more) 
– Eases design of command shells 
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What Happens After a Fork? 
•  There are now two processes 

– With different IDs 
– But otherwise mostly exactly the same 

•  How do I profitably use that? 
•  Program executes a fork 
•  Now there are two programs 

– With the same code and program counter  

•  Write code to figure out which is which 
– Usually, parent goes “one way” and child goes 

“the other” 
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Forking and the Data Segments 

•  Forked child shares the parent’s code 
•  But not its stack 

–  It has its own stack, initialized to match the 
parent’s 

– Just as if a second process running the same 
program had reached the same point in its run 

•  Child should have its own data segment, 
though 
– Forked processes do not share their data segments 
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Forking and Copy on Write 

•  If the parent had a big data area, setting up a 
separate copy for the child is expensive 
– And fork was supposed to be cheap 

•  If neither parent nor child write the parent’s 
data area, though, no copy necessary 

•  So set it up as copy-on-write 
•  If one of them writes it, then make a copy and 

let the process write the copy 
– The other process keeps the original 
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But Fork Isn’t What  
I Usually Want! 

•  Indeed, you usually don’t want another copy of 
the same process 

•  You want a process to do something entirely 
different 

•  Handled with exec 
– A Unix system call to “remake” a process 
– Changes the code associated with a process 
– Resets much of the rest of its state, too 

•  Like open files 
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The exec Call 

•  A Linux/Unix system call to handle the 
common case 

•  Replaces a process’ existing program with a 
different one 
– New code 
– Different set of other resources 
– Different PC and stack 

•  Essentially, called after you do a fork 
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How Does the OS Handle Exec? 

•  Must get rid of the child’s old code 
– And its stack and data areas 
– Latter is easy if you are using copy-on-write 

•  Must load a brand new set of code for that 
process 

•  Must initialize child’s stack, PC, and other 
relevant control structure 
– To start a fresh program run for the child process 
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Loading Programs Into Processes 

•  Whether you did a Windows 
CreateProcess() or a Unix exec()  
– You need to go from program to runnable process 

•  To get from the code to the running version, 
you need to perform the loading step 
–  Initializing the various memory domains we 

discussed earlier 
•  Code, stack, data segment, etc. 
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Loading Programs 
•  You have a load module  

– The output of linkage editor 
– All external references have been resolved 
– All modules combined into a few segments 
–  Includes multiple segments (code, data, etc.) 

•  A computer cannot “execute” a load module 
– Computers execute instructions in memory 
– Memory must be allocated for each segment 
– Code must be copied from load module to memory 
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Program to Process Transition 
section 1 header 
type:  code 
load adr:  0xxx 
length:  ### 

section 3 header 
type:  sym 
length:  ### 

compiled 
code 

initialized 
data 

values 

symbol 
table 

ELF header 
target ISA 
# load sections 
# info sections 

section 2 header 
type:  data 
load adr:  0xxx 
length:  ### Program 

0x00000000 

0xFFFFFFFF 

shared code private data 

private stack 

shared lib1 shared lib2 

shared lib3 

0x0100000 0x0110000 

0x0120000 

Process 

This is the job of the 
loader and linkage 

editor 



Lecture 3 
Page 37 

CS 111 
Fall 2016  

Destroying Processes 

•  Most processes terminate 
– All do, of course, when the machine goes down 
– But most do some work and then exit before that 
– Others are killed by the OS or another process 

•  When a process terminates, the OS needs to 
clean it up 
– Essentially, getting rid of all of its resources 
–  In a way that allows simple reclamation 
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What Must the OS Do to  
Terminate a Process? 

•  Reclaim any resources it may be holding 
– Memory 
– Locks 
– Access to hardware devices 

•  Inform any other process that needs to know 
– Those waiting for interprocess communications 
– Parent (and maybe child) processes 

•  Remove process descriptor from the process 
table 
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Running Processes 

•  Processes must execute code to do their job 
•  Which means the OS must give them access to 

a processor core 
•  But there are usually more processes than 

cores 
•  So processes will need to share the cores 

– And they can’t all execute instructions at once 

•  Sooner or later, a process not running on a core 
needs to be put onto one 
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Loading a Process 
•  To run a process on a core, the hardware must 

be initialized 
– Either to initial state or whatever state it was in the 

last time it ran 
•  Must load the core’s registers 
•  Must initialize the stack and set the stack 

pointer 
•  Must set up any memory control structures 
•  Must set the program counter 
•  Then what? 
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How a Process Runs on an OS 

•  It uses an execution model called limited direct 
execution 

•  Most instructions are executed directly by the 
process on the core 

•  Some instructions instead cause a trap to the 
operating system 
– Privileged instructions that can only execute in 

supervisor mode 
– The OS takes care of things from there 



Lecture 3 
Page 42 

CS 111 
Fall 2016  

Limited Direct Execution 

•  CPU directly executes all application code 
– Punctuated by occasional traps (for system calls) 
– With occasional timer interrupts (for time sharing) 

•  Maximizing direct execution is always the goal 
– For Linux user mode processes 
– For OS emulation (e.g., Windows on Linux) 
– For virtual machines 

•  Enter the OS as seldom as possible 
– Get back to the application as quickly as possible 
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Exceptions 

•  The technical term for what happens when the 
process can’t (or shouldn’t) run an instruction 

•  Some exceptions are routine 
– End-of-file, arithmetic overflow, conversion error 
– We should check for these after each operation 

•  Some exceptions occur unpredictably 
– Segmentation fault (e.g. dereferencing NULL) 
– User abort (^C), hang-up, power-failure 
– These are asynchronous exceptions 
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Asynchronous Exceptions 

•  Inherently unpredictable 
•  Programs can’t check for them, since no way of 

knowing when and if they happen 
•  Some languages support try/catch operations 
•  Hardware and OS support traps 

– Which catch these exceptions and transfer control to 
the OS 

•  Operating systems also use these for system calls 
– Requests from a program for OS services 
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Using Traps for System Calls 

•  Reserve one illegal instruction for system calls 
– Most computers specifically define such instructions 

•  Define system call linkage conventions 
– Call: r0 = system call number, r1 points to arguments 
– Return: r0 = return code, cc indicates success/failure 

•  Prepare arguments for the desired system call 
•  Execute the designated system call instruction 
•  OS recognizes & performs requested operation 
•  Returns to instruction after the system call 
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System Call Trap Gates 

1st level trap handler 

2nd level handler 
(system service 
implementation) 

return to 
user mode 

Application Program 

user mode 
supervisor mode PS/PC 

TRAP vector table 

PS/PC 
PS/PC 
PS/PC 

instr ;  instr ;  instr ;  trap ;  instr ;  instr ;  

system call dispatch 
table 

This specifies 
the trap gate 
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Trap Handling 
•  Hardware portion of trap handling 

– Trap cause as index into trap vector table for PC/PS 
– Load new processor status word, switch to supervisor 

mode 
–  Push PC/PS of program that caused trap onto stack 
– Load PC (with address of 1st level handler) 

•  Software portion of trap handling 
–  1st level handler pushes all other registers 
–  1st level handler gathers info, selects 2nd level handler 
–  2nd level handler actually deals with the problem 

•  Handle the event, kill the process, return ... 
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Stacking and Unstacking a System Call 

stack frames 
 from 

application 
computation 

User-mode Stack Supervisor-mode Stack 

direction 
of growth 

user mode 
PC & PS 

saved 
user mode 
registers 

parameters 
to system 

call handler 

return PC 

system call 
handler 

stack frame 

resumed 
computation 



Lecture 3 
Page 49 

CS 111 
Fall 2016  

Returning to User-Mode 

•  Return is opposite of interrupt/trap entry 
– 2nd level handler returns to 1st level handler 
– 1st level handler restores all registers from stack 
– Use privileged return instruction to restore PC/PS 
– Resume user-mode execution at next instruction 

•  Saved registers can be changed before return 
– Change stacked user r0 to reflect return code 
– Change stacked user PS to reflect success/failure 
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Asynchronous Events 
•  Some things are worth waiting for 

– When I read(), I want to wait for the data 
•  Sometimes waiting doesn’t make sense 

–  I want to do something else while waiting 
–  I have multiple operations outstanding 
–  Some events demand very prompt attention 

•  We need event completion call-backs 
– This is a common programming paradigm 
– Computers support interrupts (similar to traps) 
– Commonly associated with I/O devices and timers 
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User-Mode Signal Handling 

•  OS defines numerous types of signals 
– Exceptions, operator actions, communication 

•  Processes can control their handling 
–  Ignore this signal (pretend it never happened) 
– Designate a handler for this signal 
– Default action (typically kill or coredump process) 

•  Analogous to hardware traps/interrupts 
– But implemented by the operating system 
– Delivered to user mode processes 
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Managing Process State 

•  A shared responsibility 
•  The process itself takes care of its own stack 
•  And the contents of its memory  
•  The OS keeps track of resources that have 

been allocated to the process 
– Which memory 
– Open files and devices 
– Supervisor stack 
– And many other things 
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Blocked Processes 

•  One important process state element is whether 
a process is ready to run 
– No point in dispatching it if it isn’t 

•  Why might it not be? 
•  Perhaps it’s waiting for I/O  
•  Or for some resource request to be satisfied 
•  The OS keeps track of whether a process is 

blocked 
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Blocking and Unblocking 
Processes 

•  Why do we block processes? 
–  Blocked/unblocked are merely notes to scheduler 
–  So the scheduler knows not to choose them 
–  And so other parts of OS know if they later need to unblock 

•  Any part of OS can set blocks, any part can change them 
–  And a process can ask to be blocked itself 

•  Usually happens in a resource manager 
–  When process needs an unavailable resource 

•  Change process's scheduling state to "blocked” 
•  Call the scheduler and yield the CPU 

–  When the required resource becomes available 
•  Change process's scheduling state to "ready” 
•  Notify scheduler that a change has occurred  
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Swapping Processes 

•  Processes can only run out of main memory 
– CPU can only execute instructions stored in that 

memory 
•  Sometimes we move processes out of main 

memory to secondary storage 
– E.g., a disk drive 
– Expecting that we’ll move them back later 

•  Usually because of resource shortages 
– Particularly memory 



Lecture 3 
Page 56 

CS 111 
Fall 2016  

Why We Swap 

•  To make best use of a limited amount of memory 
– A process can only execute if it is in memory 
– Max number of processes is limited by memory size 
–  If it isn't READY, it doesn't need to be in memory 
–  Swap it out and make room for some other process 

•  We don’t swap out all blocked processes 
–  Swapping is expensive 
– And also expensive to bring them back 
– Typically only done when resources are tight 
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Basic Mechanics of Swapping 

•  Process’ state is stored in parts of main 
memory 

•  Copy them out to secondary storage 
–  If you’re lucky and careful, some don’t need to be 

copied 
•  Alter the process descriptor to indicate what 

you did 
•  Give the freed resources to another process 
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Swapping Back 
•  When whatever blocked the process you swapped is 

cleared, you can swap back 
–  Assuming there’s space 

•  Reallocate required memory and copy state back 
from secondary storage 
–  Both stack and heap 

•  Unblock the process’ descriptor to make it eligible for 
scheduling 

•  Ready swapped processes need not be brought back 
immediately 
–  But they won’t get any cycles till you do 


