
Lecture 3
Page 1

CS 111
Fall 2016

Operating System Principles:
Processes, Execution, and State

CS 111
Operating Systems

Peter Reiher

Lecture 3
Page 2

CS 111
Fall 2016

Outline

•  What are processes?
•  How does an operating system handle

processes?
•  How do we manage the state of processes?

Lecture 3
Page 3

CS 111
Fall 2016

What Is a Process?
•  An executing instance of a program

– How is this different from a program?

•  A virtual private computer
– What does a virtual computer look like?
– How is a process different from a virtual machine?

•  A process is an object
– Characterized by its properties (state)
– Characterized by its operations

Lecture 3
Page 4

CS 111
Fall 2016

What is “State”?
•  One dictionary definition of “state” is

– “A mode or condition of being”
– An object may have a wide range of possible states

•  All persistent objects have “state”
– Distinguishing it from other objects
– Characterizing object's current condition

•  Contents of state depends on object
– Complex operations often mean complex state
– We can save/restore the aggregate/total state
– We can talk of a subset (e.g., scheduling state)

Lecture 3
Page 5

CS 111
Fall 2016

0x00000000

0xFFFFFFFF

shared code private data

private stack

Program vs. Process Address Space
section 1 header
type: code
load adr: 0xxx
length: ###

section 3 header
type: sym
length: ###

compiled
code

initialized
data

values

symbol
table

ELF header
target ISA
load sections
info sections

section 2 header
type: data
load adr: 0xxx
length: ###

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Program

Process

Lecture 3
Page 6

CS 111
Fall 2016

Process Address Spaces

•  Each process has some memory addresses
reserved for its private use

•  That set of addresses is called its address space
•  A process’ address space is made up of all

memory locations that the process can address
•  Modern OSes provide the illusion that the

process has all of memory in its address space
– But that’s not true, under the covers

Lecture 3
Page 7

CS 111
Fall 2016

Process Address Space Layout

•  All required memory elements for a process
must be put somewhere in a its address space

•  Different types of memory elements have
different requirements
– Code is not writable but must be executable
– Stacks are readable and writable but not executable
– Etc.

•  Each operating system has some strategy for
where to put these process memory segments

Lecture 3
Page 8

CS 111
Fall 2016

Layout of Unix Processes in
Memory

•  In Unix systems1,
– Code segments are statically sized
– Data segment grows up
– Stack segment grows down

•  They aren’t allowed to meet

0x00000000 0xFFFFFFFF

code data stack

1 Linux is one type of Unix system

Lecture 3
Page 9

CS 111
Fall 2016

Address Space: Code Segments
•  Load module (output of linkage editor)

– All external references have been resolved
– All modules combined into a few segments
–  Includes multiple segments (text, data, BSS)

•  Code must be loaded into memory
– A virtual code segment must be created
– Code must be read in from the load module
– Map segment into virtual address space

•  Code segments are read/only and sharable
– Many processes can use the same code segments

Lecture 3
Page 10

CS 111
Fall 2016

Address Space: Data Segments

•  Data too must be initialized in address space
– Process data segment must be created
–  Initial contents must be copied from load module
– BSS: segments to be initialized to all zeroes
– Map segment into virtual address space

•  Data segments
– Are read/write, and process private
– Program can grow or shrink it (using the sbrk

system call)

Lecture 3
Page 11

CS 111
Fall 2016

Processes and Stack Frames

•  Modern programming languages are stack-based
– Greatly simplified procedure storage management

•  Each procedure call allocates a new stack frame
–  Storage for procedure local (vs. global) variables
–  Storage for invocation parameters
–  Save and restore registers

•  Popped off stack when call returns

•  Most modern computers also have stack support
–  Stack too must be preserved as part of process state

Lecture 3
Page 12

CS 111
Fall 2016

Address Space: Stack Segment

•  Size of stack depends on program activities
– Grows larger as calls nest more deeply
– Amount of local storage allocated by each procedure
– After calls return, their stack frames can be recycled

•  OS manages the process's stack segment
–  Stack segment created at same time as data segment
–  Some allocate fixed sized stack at program load time
–  Some dynamically extend stack as program needs it

•  Stack segments are read/write and process private

Lecture 3
Page 13

CS 111
Fall 2016

Address Space: Shared Libraries

•  Static libraries are added to load module
– Each load module has its own copy of each library
– Program must be re-linked to get new version

•  Make each library a sharable code segment
– One in-memory copy, shared by all processes
– Keep the library separate from the load modules
– Operating system loads library along with program

•  Reduced memory use, faster program loads
•  Easier and better library upgrades

Lecture 3
Page 14

CS 111
Fall 2016

Other Process State

•  Registers
– General registers
– Program counter, processor status
– Stack pointer, frame pointer

•  Processes own OS resources
– Open files, current working directory, locks

•  But also OS-related state information

Lecture 3
Page 15

CS 111
Fall 2016

OS State For a Process
•  The state of process's virtual computer
•  Registers

– Program counter, processor status word
– Stack pointer, general registers

•  Address space
– Text, data, and stack segments
– Sizes, locations, and contents

•  The OS needs some data structure to keep
track of a process’ state

Lecture 3
Page 16

CS 111
Fall 2016

Process Descriptors
•  Basic OS data structure for dealing with

processes
•  Stores all information relevant to the process

– State to restore when process is dispatched
– References to allocated resources
–  Information to support process operations

•  Kept in an OS data structure
•  Used for scheduling, security decisions,

allocation issues

Lecture 3
Page 17

CS 111
Fall 2016

Linux Process Control Block
•  The data structure Linux (and other Unix

systems) use to handle processes
– AKA PCB

•  An example of a process descriptor
•  Keeps track of:

– Unique process ID
– State of the process (e.g., running)
– Parent process ID
– Address space information
– And various other things

Lecture 3
Page 18

CS 111
Fall 2016

Other Process State
•  Not all process state is stored directly in the

process descriptor
•  Other process state is in multiple other places

– Application execution state is on the stack and in
registers

– Linux processes also have a supervisor-mode stack
•  To retain the state of in-progress system calls
•  To save the state of an interrupt preempted process

•  A lot of process state is stored in the other
memory areas

Lecture 3
Page 19

CS 111
Fall 2016

Handling Processes

•  Creating processes
•  Destroying processes
•  Running processes

Lecture 3
Page 20

CS 111
Fall 2016

Where Do Processes Come From?
•  Created by the operating system

–  Using some method to initialize their state
–  In particular, to set up a particular program to run

•  At the request of other processes
–  Which specify the program to run
–  And other aspects of their initial state

•  Parent processes
–  The process that created your process

•  Child processes
–  The processes your process created

Lecture 3
Page 21

CS 111
Fall 2016

Creating a Process Descriptor

•  The process descriptor is the OS’ basic per-
process data structure

•  So a new process needs a new descriptor
•  What does the OS do with the descriptor?
•  Typically puts it into a process table

– The data structure the OS uses to organize all
currently active processes

Lecture 3
Page 22

CS 111
Fall 2016

What Else Does a
New Process Need?

•  An address space
•  To hold all of the segments it will need
•  So the OS needs to create one

– And allocate memory for code, data and stack
•  OS then loads program code and data into new

segments
•  Initializes a stack segment
•  Sets up initial registers (PC, PS, SP)

Lecture 3
Page 23

CS 111
Fall 2016

Choices for Process Creation
1.  Start with a “blank” process

–  No initial state or resources
–  Have some way of filling in the vital stuff

•  Code
•  Program counter, etc.

–  This is the basic Windows approach
2.  Use the calling process as a template

–  Give new process the same stuff as the old one
–  Including code, PC, etc.
–  This is the basic Unix/Linux approach

Lecture 3
Page 24

CS 111
Fall 2016

Starting With a Blank Process

•  Basically, create a brand new process
•  The system call that creates it obviously needs

to provide some information
– Everything needed to set up the process properly
– At the minimum, what code is to be run
– Generally a lot more than that

•  Other than bootstrapping, the new process is
created by command of an existing process

Lecture 3
Page 25

CS 111
Fall 2016

Windows Process Creation

•  The CreateProcess() system call
•  A very flexible way to create a new process

– Many parameters with many possible values

•  Generally, the system call includes the name of
the program to run
–  In one of a couple of parameter locations

•  Different parameters fill out other critical
information for the new process
– Environment information, priorities, etc.

Lecture 3
Page 26

CS 111
Fall 2016

Process Forking

•  The way Unix/Linux creates processes
•  Essentially clones the existing process
•  On assumption that the new process is a lot

like the old one
– Most likely to be true for some kinds of parallel

programming
– Not so likely for more typical user computing

Lecture 3
Page 27

CS 111
Fall 2016

Why Did Unix Use Forking?
•  Avoids costs of copying a lot of code

–  If it’s the same code as the parents’ . . .

•  Historical reasons
– Parallel processing literature used a cloning fork
– Fork allowed parallelism before threads invented

•  Practical reasons
– Easy to manage shared resources

•  Like stdin, stdout, stderr
– Easy to set up process pipe-lines (e.g. ls | more)
– Eases design of command shells

Lecture 3
Page 28

CS 111
Fall 2016

What Happens After a Fork?
•  There are now two processes

– With different IDs
– But otherwise mostly exactly the same

•  How do I profitably use that?
•  Program executes a fork
•  Now there are two programs

– With the same code and program counter

•  Write code to figure out which is which
– Usually, parent goes “one way” and child goes

“the other”

Lecture 3
Page 29

CS 111
Fall 2016

Forking and the Data Segments

•  Forked child shares the parent’s code
•  But not its stack

–  It has its own stack, initialized to match the
parent’s

– Just as if a second process running the same
program had reached the same point in its run

•  Child should have its own data segment,
though
– Forked processes do not share their data segments

Lecture 3
Page 30

CS 111
Fall 2016

Forking and Copy on Write

•  If the parent had a big data area, setting up a
separate copy for the child is expensive
– And fork was supposed to be cheap

•  If neither parent nor child write the parent’s
data area, though, no copy necessary

•  So set it up as copy-on-write
•  If one of them writes it, then make a copy and

let the process write the copy
– The other process keeps the original

Lecture 3
Page 31

CS 111
Fall 2016

But Fork Isn’t What
I Usually Want!

•  Indeed, you usually don’t want another copy of
the same process

•  You want a process to do something entirely
different

•  Handled with exec
– A Unix system call to “remake” a process
– Changes the code associated with a process
– Resets much of the rest of its state, too

•  Like open files

Lecture 3
Page 32

CS 111
Fall 2016

The exec Call

•  A Linux/Unix system call to handle the
common case

•  Replaces a process’ existing program with a
different one
– New code
– Different set of other resources
– Different PC and stack

•  Essentially, called after you do a fork

Lecture 3
Page 33

CS 111
Fall 2016

How Does the OS Handle Exec?

•  Must get rid of the child’s old code
– And its stack and data areas
– Latter is easy if you are using copy-on-write

•  Must load a brand new set of code for that
process

•  Must initialize child’s stack, PC, and other
relevant control structure
– To start a fresh program run for the child process

Lecture 3
Page 34

CS 111
Fall 2016

Loading Programs Into Processes

•  Whether you did a Windows
CreateProcess() or a Unix exec()
– You need to go from program to runnable process

•  To get from the code to the running version,
you need to perform the loading step
–  Initializing the various memory domains we

discussed earlier
•  Code, stack, data segment, etc.

Lecture 3
Page 35

CS 111
Fall 2016

Loading Programs
•  You have a load module

– The output of linkage editor
– All external references have been resolved
– All modules combined into a few segments
–  Includes multiple segments (code, data, etc.)

•  A computer cannot “execute” a load module
– Computers execute instructions in memory
– Memory must be allocated for each segment
– Code must be copied from load module to memory

Lecture 3
Page 36

CS 111
Fall 2016

Program to Process Transition
section 1 header
type: code
load adr: 0xxx
length: ###

section 3 header
type: sym
length: ###

compiled
code

initialized
data

values

symbol
table

ELF header
target ISA
load sections
info sections

section 2 header
type: data
load adr: 0xxx
length: ### Program

0x00000000

0xFFFFFFFF

shared code private data

private stack

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Process

This is the job of the
loader and linkage

editor

Lecture 3
Page 37

CS 111
Fall 2016

Destroying Processes

•  Most processes terminate
– All do, of course, when the machine goes down
– But most do some work and then exit before that
– Others are killed by the OS or another process

•  When a process terminates, the OS needs to
clean it up
– Essentially, getting rid of all of its resources
–  In a way that allows simple reclamation

Lecture 3
Page 38

CS 111
Fall 2016

What Must the OS Do to
Terminate a Process?

•  Reclaim any resources it may be holding
– Memory
– Locks
– Access to hardware devices

•  Inform any other process that needs to know
– Those waiting for interprocess communications
– Parent (and maybe child) processes

•  Remove process descriptor from the process
table

Lecture 3
Page 39

CS 111
Fall 2016

Running Processes

•  Processes must execute code to do their job
•  Which means the OS must give them access to

a processor core
•  But there are usually more processes than

cores
•  So processes will need to share the cores

– And they can’t all execute instructions at once

•  Sooner or later, a process not running on a core
needs to be put onto one

Lecture 3
Page 40

CS 111
Fall 2016

Loading a Process
•  To run a process on a core, the hardware must

be initialized
– Either to initial state or whatever state it was in the

last time it ran
•  Must load the core’s registers
•  Must initialize the stack and set the stack

pointer
•  Must set up any memory control structures
•  Must set the program counter
•  Then what?

Lecture 3
Page 41

CS 111
Fall 2016

How a Process Runs on an OS

•  It uses an execution model called limited direct
execution

•  Most instructions are executed directly by the
process on the core

•  Some instructions instead cause a trap to the
operating system
– Privileged instructions that can only execute in

supervisor mode
– The OS takes care of things from there

Lecture 3
Page 42

CS 111
Fall 2016

Limited Direct Execution

•  CPU directly executes all application code
– Punctuated by occasional traps (for system calls)
– With occasional timer interrupts (for time sharing)

•  Maximizing direct execution is always the goal
– For Linux user mode processes
– For OS emulation (e.g., Windows on Linux)
– For virtual machines

•  Enter the OS as seldom as possible
– Get back to the application as quickly as possible

Lecture 3
Page 43

CS 111
Fall 2016

Exceptions

•  The technical term for what happens when the
process can’t (or shouldn’t) run an instruction

•  Some exceptions are routine
– End-of-file, arithmetic overflow, conversion error
– We should check for these after each operation

•  Some exceptions occur unpredictably
– Segmentation fault (e.g. dereferencing NULL)
– User abort (^C), hang-up, power-failure
– These are asynchronous exceptions

Lecture 3
Page 44

CS 111
Fall 2016

Asynchronous Exceptions

•  Inherently unpredictable
•  Programs can’t check for them, since no way of

knowing when and if they happen
•  Some languages support try/catch operations
•  Hardware and OS support traps

– Which catch these exceptions and transfer control to
the OS

•  Operating systems also use these for system calls
– Requests from a program for OS services

Lecture 3
Page 45

CS 111
Fall 2016

Using Traps for System Calls

•  Reserve one illegal instruction for system calls
– Most computers specifically define such instructions

•  Define system call linkage conventions
– Call: r0 = system call number, r1 points to arguments
– Return: r0 = return code, cc indicates success/failure

•  Prepare arguments for the desired system call
•  Execute the designated system call instruction
•  OS recognizes & performs requested operation
•  Returns to instruction after the system call

Lecture 3
Page 46

CS 111
Fall 2016

System Call Trap Gates

1st level trap handler

2nd level handler
(system service
implementation)

return to
user mode

Application Program

user mode
supervisor mode PS/PC

TRAP vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; trap ; instr ; instr ;

system call dispatch
table

This specifies
the trap gate

Lecture 3
Page 47

CS 111
Fall 2016

Trap Handling
•  Hardware portion of trap handling

– Trap cause as index into trap vector table for PC/PS
– Load new processor status word, switch to supervisor

mode
–  Push PC/PS of program that caused trap onto stack
– Load PC (with address of 1st level handler)

•  Software portion of trap handling
–  1st level handler pushes all other registers
–  1st level handler gathers info, selects 2nd level handler
–  2nd level handler actually deals with the problem

•  Handle the event, kill the process, return ...

Lecture 3
Page 48

CS 111
Fall 2016

Stacking and Unstacking a System Call

stack frames
 from

application
computation

User-mode Stack Supervisor-mode Stack

direction
of growth

user mode
PC & PS

saved
user mode
registers

parameters
to system

call handler

return PC

system call
handler

stack frame

resumed
computation

Lecture 3
Page 49

CS 111
Fall 2016

Returning to User-Mode

•  Return is opposite of interrupt/trap entry
– 2nd level handler returns to 1st level handler
– 1st level handler restores all registers from stack
– Use privileged return instruction to restore PC/PS
– Resume user-mode execution at next instruction

•  Saved registers can be changed before return
– Change stacked user r0 to reflect return code
– Change stacked user PS to reflect success/failure

Lecture 3
Page 50

CS 111
Fall 2016

Asynchronous Events
•  Some things are worth waiting for

– When I read(), I want to wait for the data
•  Sometimes waiting doesn’t make sense

–  I want to do something else while waiting
–  I have multiple operations outstanding
–  Some events demand very prompt attention

•  We need event completion call-backs
– This is a common programming paradigm
– Computers support interrupts (similar to traps)
– Commonly associated with I/O devices and timers

Lecture 3
Page 51

CS 111
Fall 2016

User-Mode Signal Handling

•  OS defines numerous types of signals
– Exceptions, operator actions, communication

•  Processes can control their handling
–  Ignore this signal (pretend it never happened)
– Designate a handler for this signal
– Default action (typically kill or coredump process)

•  Analogous to hardware traps/interrupts
– But implemented by the operating system
– Delivered to user mode processes

Lecture 3
Page 52

CS 111
Fall 2016

Managing Process State

•  A shared responsibility
•  The process itself takes care of its own stack
•  And the contents of its memory
•  The OS keeps track of resources that have

been allocated to the process
– Which memory
– Open files and devices
– Supervisor stack
– And many other things

Lecture 3
Page 53

CS 111
Fall 2016

Blocked Processes

•  One important process state element is whether
a process is ready to run
– No point in dispatching it if it isn’t

•  Why might it not be?
•  Perhaps it’s waiting for I/O
•  Or for some resource request to be satisfied
•  The OS keeps track of whether a process is

blocked

Lecture 3
Page 54

CS 111
Fall 2016

Blocking and Unblocking
Processes

•  Why do we block processes?
–  Blocked/unblocked are merely notes to scheduler
–  So the scheduler knows not to choose them
–  And so other parts of OS know if they later need to unblock

•  Any part of OS can set blocks, any part can change them
–  And a process can ask to be blocked itself

•  Usually happens in a resource manager
–  When process needs an unavailable resource

•  Change process's scheduling state to "blocked”
•  Call the scheduler and yield the CPU

–  When the required resource becomes available
•  Change process's scheduling state to "ready”
•  Notify scheduler that a change has occurred

Lecture 3
Page 55

CS 111
Fall 2016

Swapping Processes

•  Processes can only run out of main memory
– CPU can only execute instructions stored in that

memory
•  Sometimes we move processes out of main

memory to secondary storage
– E.g., a disk drive
– Expecting that we’ll move them back later

•  Usually because of resource shortages
– Particularly memory

Lecture 3
Page 56

CS 111
Fall 2016

Why We Swap

•  To make best use of a limited amount of memory
– A process can only execute if it is in memory
– Max number of processes is limited by memory size
–  If it isn't READY, it doesn't need to be in memory
–  Swap it out and make room for some other process

•  We don’t swap out all blocked processes
–  Swapping is expensive
– And also expensive to bring them back
– Typically only done when resources are tight

Lecture 3
Page 57

CS 111
Fall 2016

Basic Mechanics of Swapping

•  Process’ state is stored in parts of main
memory

•  Copy them out to secondary storage
–  If you’re lucky and careful, some don’t need to be

copied
•  Alter the process descriptor to indicate what

you did
•  Give the freed resources to another process

Lecture 3
Page 58

CS 111
Fall 2016

Swapping Back
•  When whatever blocked the process you swapped is

cleared, you can swap back
–  Assuming there’s space

•  Reallocate required memory and copy state back
from secondary storage
–  Both stack and heap

•  Unblock the process’ descriptor to make it eligible for
scheduling

•  Ready swapped processes need not be brought back
immediately
–  But they won’t get any cycles till you do

