
Lecture 16
Page 1 CS 136, Winter 2008

Secure Programming, Continued
CS 136

Computer Security
Peter Reiher

March 11, 2008

Lecture 16
Page 2 CS 136, Winter 2008

Outline

•  Introduction
• Principles for secure software
• Choosing technologies
• Major problem areas
• Evaluating program security

Lecture 16
Page 3 CS 136, Winter 2008

Race Conditions
• Another common cause of security

bugs
• Usually involve multiprogramming or

multithreaded programs
• Caused by different threads of control

operating in unpredictable fashion
– When programmer thought they’d

work in a particular order

Lecture 16
Page 4 CS 136, Winter 2008

What Is a Race Condition?
• A situation in which two (or more)

threads of control are cooperating or
sharing something

•  If their events happen in one order, one
thing happens

•  If their events happen in another order,
something else happens

• Often the results are unforeseen

Lecture 16
Page 5 CS 136, Winter 2008

Security Implications of Race
Conditions

• Usually you checked privileges at one
point

• You thought the next lines of code
would run next
– So privileges still apply

• But multiprogramming allows things to
happen in between

Lecture 16
Page 6 CS 136, Winter 2008

The TOCTOU Issue

• Time of Check to Time of Use
• Have security conditions changed

between when you checked?
• And when you used it?
• Multiprogramming issues can make

that happen
• Sometimes under attacker control

Lecture 16
Page 7 CS 136, Winter 2008

An Example

• Code from Unix involving a temporary
file

res = access(“/tmp/userfile”, R_OK);

If (res != 0)

 die(“access”);

fd = open(“/tmp/userfile,O_RDONLY);

Lecture 16
Page 8 CS 136, Winter 2008

A Short Detour

•  In Unix, processes can have two associated user
IDs
– Effective ID
– Real ID

•  Real ID is the ID of the user who actually ran it
•  Effective ID is current ID for access control

purposes
•  Setuid programs run this way
•  System calls allow you to manipulate it

Lecture 16
Page 9 CS 136, Winter 2008

Effective UID and Access
Permissions

• Unix checks accesses against effective
UID, not real UID

• So setuid program uses permissions for
the program’s owner
– Unless relinquished

• Remember, root has universal access
privileges

Lecture 16
Page 10 CS 136, Winter 2008

What’s (Supposed to Be) Going
on Here?

•  Code ran as setuid root
•  Checked access on /tmp/userfile to make sure user

was allowed to read it
– User can use links to control what this file is

•  access() checks real user ID, not effective one
– So checks access permissions not as root, but as actual

user
•  So if user can read it, open file for read

– Which root is definitely allowed to do
•  Otherwise exit

Lecture 16
Page 11 CS 136, Winter 2008

What’s Really Going On Here?

• This program might not run
uninterrupted

• OS might schedule something else in
the middle

•  In particular, between those two lines
of code

Lecture 16
Page 12 CS 136, Winter 2008

How the Attack Works

• Attacker puts innocuous file in
 /tmp/userfile

• Calls the program
• Quickly deletes file and replaces it

with link to secret file
– One only readable by root

•  If timing works, he gets secret contents

Lecture 16
Page 13 CS 136, Winter 2008

The Dynamics of the Attack

 /tmp/userfile

 res = access(“/tmp/userfile”, R_OK);
 if (res != 0)
 die(“access”);
 fd = open(“/tmp/userfile,O_RDONLY);

/etc/secretfile

1.  Run program

2. Change file

Let’s try
that again!
One more
time!

Success!

Lecture 16
Page 14 CS 136, Winter 2008

How Likely Was That?
•  Not very

– The timing had to be just right
•  But the attacker can try it many times

– And may be able to influence system to make it
more likely

•  And he only needs to get it right once
•  Timing attacks of this kind can work
•  The longer between check and use, the more

dangerous

Lecture 16
Page 15 CS 136, Winter 2008

Some Types of Race Conditions
•  File races

– Which file you access gets changed
•  Permissions races

– File permissions are changed
• Ownership races

– Who owns a file changes
• Directory races

– Directory hierarchy structure changes

Lecture 16
Page 16 CS 136, Winter 2008

Preventing Race Conditions
• Minimize time between security

checks and when action is taken
• Be especially careful with files that

users can change
• Use locking and features that prevent

interruption, when possible
• Avoid designs that require actions

where races can occur

Lecture 16
Page 17 CS 136, Winter 2008

Randomness and Determinism

• Many pieces of code require some
randomness in behavior

• Where do they get it?
• As key discussion showed, it’s not that

easy to get

Lecture 16
Page 18 CS 136, Winter 2008

Pseudorandom Number
Generators

• PRNG
• Mathematical methods designed to

produce strings of random-like
numbers

• Actually deterministic
– But share many properties with true

random streams of numbers

Lecture 16
Page 19 CS 136, Winter 2008

Attacks on PRNGs

• Cryptographic attacks
– Observe stream of numbers and try

to deduce the function
• State attacks

– Attackers gain knowledge of or
influence the internal state of the
PRNG

Lecture 16
Page 20 CS 136, Winter 2008

An Example

• ASF Software’s Texas Hold’Em Poker
• Flaw in PRNG allowed cheater to

determine everyone’s cards
– Flaw in card shuffling algorithm
– Seeded with a clock value that can

be easily obtained

Lecture 16
Page 21 CS 136, Winter 2008

Another Example

• Netscape’s early SSL implementation
• Another guessable seed problem

– Based on knowing time of day,
process ID, and parent process ID

– Process IDs readily available by
other processes on same box

• Broke keys in 30 seconds

Lecture 16
Page 22 CS 136, Winter 2008

How to Do Better?

• Use hardware randomness, where
available

• Use high quality PRNGs
– Preferably based on entropy

collection methods
• Don’t use seed values obtainable

outside the program

Lecture 16
Page 23 CS 136, Winter 2008

Proper Use of Cryptography

• Never write your own crypto functions if
you have any choice

• Never, ever, design your own encryption
algorithm
– Unless that’s your area of expertise

• Generally, rely on tried and true stuff
– Both algorithms and implementations

Lecture 16
Page 24 CS 136, Winter 2008

Proper Use of Crypto

• Even with good crypto algorithms (and
code), problems are possible

• Proper use of crypto is quite subtle
• Bugs possible in:

– Choice of keys
– Key management
– Application of cryptographic ops

Lecture 16
Page 25 CS 136, Winter 2008

An Example

• Microsoft’s PPTP system
– A planned competitor for IPSec

• Subjected to careful analysis by
Schneier and Mudge

• With disappointing results
• Bugs in the implementation, not the

standard

Lecture 16
Page 26 CS 136, Winter 2008

Bugs in PPTP Implementation
•  Password hashing

–  Weak algorithms allow eavesdroppers to learn
the user's password

•  Challenge/reply authentication protocol
– A design flaw allows an attacker to masquerade

as the server
•  Encryption bugs

– Implementation mistakes allow encrypted data
to be recovered

Lecture 16
Page 27 CS 136, Winter 2008

More PPTP Bugs
•  Encryption key choice

–  Common passwords yield breakable keys, even
for 128-bit encryption

•  Control channel problems
– Unauthenticated messages let attackers crash

PPTP servers
•  Don’t treat this case with contempt just because

it’s Microsoft
– They hire good programmers
– Who nonetheless screwed up

Lecture 16
Page 28 CS 136, Winter 2008

Another Example

• An application where RSA was used to
distribute a triple-DES key

• Seemed to work fine
• Someone noticed that part of the RSA

key exchange were always the same
– That’s odd . . .

Lecture 16
Page 29 CS 136, Winter 2008

What Was Happening?
•  Bad parameters were handed to the RSA

encryption code
•  It failed and returned an error
• Which wasn’t checked for

– Since it “couldn’t fail”
• As a result, RSA encryption wasn’t applied

at all
•  The session key was sent in plaintext . . .

Lecture 16
Page 30 CS 136, Winter 2008

Trust Management and Input
Validation

• Don’t trust anything you don’t need to
• Don’t trust other programs
• Don’t trust other components of your

program
• Don’t trust users
• Don’t trust the data users provide you

Lecture 16
Page 31 CS 136, Winter 2008

Trust
•  Some trust required to get most jobs done
•  But determine how much you must trust the

other
– Don’t trust things you can independently

verify
•  Limit the scope of your trust

– Compartmentalization helps
•  Be careful who you trust

Lecture 16
Page 32 CS 136, Winter 2008

An Example of Misplaced Trust
• A Unix system from 1990s
•  Supposed to only be used for email
• Menu-driven system

– From which you selected the mailer
•  But the mailer allowed you to edit messages

– Via vi
• And vi allowed you to fork a shell
•  So anyone could run any command

Lecture 16
Page 33 CS 136, Winter 2008

What Was the Trust Problem?

•  The menu system trusted the mail program
– Not to do anything but handle mail

•  The mail program trusted vi
– To do proper editing
– Probably unaware of menu system’s

expectations
•  vi did more

– It wasn’t evil, but it wasn’t doing what was
expected

• 

Lecture 16
Page 34 CS 136, Winter 2008

Validating Input
• Never assume users followed any rules

in providing you input
• They can provide you with anything
• Unless you check it, assume they’ve

given you garbage
– Or worse

•  Just because the last input was good
doesn’t mean the next one will be

Lecture 16
Page 35 CS 136, Winter 2008

Treat Input as Hostile

•  If it comes from outside your control
and reasonable area of trust

• Probably even if it doesn’t
• There may be code paths you haven’t

considered
• New code paths might be added
•  Input might come from new sources

Lecture 16
Page 36 CS 136, Winter 2008

For Example

• Shopping cart exploits
• Web shopping carts sometimes handled

as a cookie delivered to the user
• Some of these weren’t encrypted
• So users could alter them
• The shopping cart cookie included the

price of the goods . . .

Lecture 16
Page 37 CS 136, Winter 2008

What Was the Problem?

•  The system trusted the shopping cart cookie when
it was returned
– When there was no reason to trust it

•  Either encrypt the cookie
– Making the input more trusted
– Can you see any problem with this approach?

•  Or scan the input before taking action on it
– To find refrigerators being sold for 3 cents

Lecture 16
Page 38 CS 136, Winter 2008

General Issues of Untrusted
Inputs

•  Check all inputs to be sure they are what
you expect
– Format
– Range of values
– Matching previous history

•  Especially important for inputs coming
straight from the user
– Extra especially if over the network

Lecture 16
Page 39 CS 136, Winter 2008

Evaluating Program Security
• What if your problem isn’t writing secure

code?
•  It’s determining if someone else’s code is

secure?
– Or, perhaps, their overall system

• How do you go about evaluating code for
security?

•  Much of this material from “The Art of Software Security
Assessment,” Dowd, McDonald, and Schuh

Lecture 16
Page 40 CS 136, Winter 2008

Stages of Review

• You can review a program’s security at
different stages in its life cycle
– During design
– Upon completion of the coding
– When the program is in place and

operational
• Different issues arise in each case

Lecture 16
Page 41 CS 136, Winter 2008

Design Reviews

• Done perhaps before there’s any code
•  Just a design
• Clearly won’t discover coding bugs
• Clearly could discover fundamental

flaws
• Also useful for prioritizing attention

during later code review

Lecture 16
Page 42 CS 136, Winter 2008

Purpose of Design Review
• To identify security weaknesses in a

planned software system
• Essentially, identifying threats to the

system
• Performed by a process called threat

modeling
• Usually (but not always) performed

before system is built

Lecture 16
Page 43 CS 136, Winter 2008

Threat Modeling
• Done in various ways
• One way uses a five step process:

1.  Information collection
2.  Application architecture modeling
3.  Threat identification
4.  Documentation of findings
5.  Prioritizing the subsequent

implementation review

Lecture 16
Page 44 CS 136, Winter 2008

1. Information Collection
•  Collect all available information on design
•  Try to identify:

– Assets
– Entry points
– External entities
– External trust levels
– Major components
– Use scenarios

Lecture 16
Page 45 CS 136, Winter 2008

Sources of Information

• Documentation
•  Interviewing developers
• Standards documentation
• Source profiling

– If source already exists
• System profiling

– If a working version is available

Lecture 16
Page 46 CS 136, Winter 2008

2. Application Architecture
Modeling

• Using information gathered, develop
understanding of the proposed
architecture

• To identify design concerns
• And to prioritize later efforts
• Useful to document findings using

some type of model

Lecture 16
Page 47 CS 136, Winter 2008

Modeling Tools for Design
Review

• Markup languages (e.g., UML)
– Particularly diagramming features
– Used to describe OO classes and their

interactions
– Also components and uses

• Data flow diagrams
– Used to describe where data goes and

what happens to it

Lecture 16
Page 48 CS 136, Winter 2008

3. Threat Identification

• Based on models and other information
gathered

•  Identify major security threats to the
system’s assets

• Typically done with attack trees

Lecture 16
Page 49 CS 136, Winter 2008

Attack Trees

• A way to codify and formalize possible
attacks on a system

• Makes it easier to understand relative
levels of threats
– In terms of possible harm
– And probability of occurring

Lecture 16
Page 50 CS 136, Winter 2008

A Sample Attack Tree

• For a web application
1. Attacker gains access to user’s

personal information

1.1 Gain
direct

access to
database

1.2 Login
as target

user

1.3 Hijack
user

session

1.4
Intercept
personal

data

1.2.1 Brute
force

password
attack

1.2.2 Steal
user

credentials

1.1.1
Exploit

application
hole

1.3.1
Steal
user

cookie

1.4.1 ID
user

connection

1.4.2
Sniff

network

Lecture 16
Page 51 CS 136, Winter 2008

4. Documentation of Findings

• Summarize threats found
– Give recommendations on

addressing each
• Generally best to prioritize threats

– How do you determine priorities?

Lecture 16
Page 52 CS 136, Winter 2008

DREAD Risk Ratings
• Assign number from 1-10 on these

categories:
• Damage potential
• Reproducibility
•  Exploitability
• Affected users
• Discoverability
• Gives better picture of important issues for

each threat

Lecture 16
Page 53 CS 136, Winter 2008

5. Prioritizing Implementation
Review

• Review of actual implementation
should follow review of design

•  Immediately, if implementation already
available

• Later, if implementation not mature yet
• Need to determine how to focus your

efforts in this review

Lecture 16
Page 54 CS 136, Winter 2008

Why Prioritize?

• There are usually many threats
•  Implementation reviews require a lot of

resources
• So you probably can’t look very

closely at everything
• Need to decide where to focus limited

amount of attention

Lecture 16
Page 55 CS 136, Winter 2008

One Prioritization Approach

• Make a list of the major components
•  Identify which component each risk

(identified earlier) belongs to
• Total the risk scores for categories
• Use the resulting numbers to prioritize

Lecture 16
Page 56 CS 136, Winter 2008

Application Review

•  Reviewing a mature (possibly complete)
application

• A daunting task if the system is large
• And often you know little about it

– Maybe you performed a design review
– Maybe you read design review docs
– Maybe less than that

• How do you get started?

Lecture 16
Page 57 CS 136, Winter 2008

Need to Define a Process

• Don’t just dive into the code
• Process should be:

– Pragmatic
– Flexible
– Results oriented

• Will require code review
– Which is a skill one must develop

Lecture 16
Page 58 CS 136, Winter 2008

Review Process Outline
1.  Preassessment

– Get high level view of system
2.  Application review

– Design review, code review, maybe live
testing

3.  Documentation and analysis
4.  Remediation support

–  Help them fix the problems

Lecture 16
Page 59 CS 136, Winter 2008

Reviewing the Application

• You start off knowing little about the code
• You end up knowing a lot more
• You’ll probably find the deepest problems

related to logic after you understand things
• A design review gets you deeper quicker

– So worth doing, if not already done
•  The application review will be an iterative

process

Lecture 16
Page 60 CS 136, Winter 2008

General Approaches To Design
Reviews

•  Top-down
– Start with high level knowledge,

gradually go deeper
•  Bottom-up

– Look at code details first, build model of
overall system as you go

• Hybrid
– Switch back and forth, as useful

Lecture 16
Page 61 CS 136, Winter 2008

Code Auditing Strategies

•  Code comprehension (CC) strategies
– Analyze source code to find vulnerabilities and

increase understanding
•  Candidate point (CP) strategies

– Create list of potential issues and look for them
in code

•  Design generalization (DG) strategies
– Flexibly build model of design to look for high

and medium level flaws

Lecture 16
Page 62 CS 136, Winter 2008

 Some Example Strategies

•  Trace malicious input (CC)
– Trace paths of data/control from points where

attackers can inject bad stuff
•  Analyze a module (CC)

– Choose one module and understand it
•  Simple lexical candidate points (CP)

– Look for text patterns (e.g., strcpy())
•  Design conformity check (DG)

– Determine how well code matches design

Lecture 16
Page 63 CS 136, Winter 2008

Guidelines for Auditing Code

• Perform flow analysis carefully within
functions you examine

• Re-read code you’ve examined
• Desk check important algorithms
• Use test cases for important algorithms

– Using real system or desk checking
– Choosing inputs carefully

Lecture 16
Page 64 CS 136, Winter 2008

Useful Auditing Tools

• Source code navigators
• Debuggers
• Binary navigation tools
• Fuzz-testing tools

– Automates testing of range of
important values

Lecture 16
Page 65 CS 136, Winter 2008

Conclusion
• Many computer security problems are

rooted in insecure programming
• We have scratched the surface of the

topic here
• Similarly, we’ve scratched the surface

of auditing issues
•  If your job is coding or auditing, you’ll

need to dig deeper yourself

