-

~

Secure Programming, Continued

CS 136

Computer Security
Peter Rether
March 11, 2008

4 N

{ Outline }

* Major problem areas

* Evaluating program security

Lecture 16
CS 136, Winter 2008 Page 2

o

'Race Conditions:

7/

* Another common cause of security
bugs

» Usually involve multiprogramming or
multithreaded programs

» Caused by different threads of control
operating 1n unpredictable fashion

—When programmer thought they’d
work 1n a particular order

~

Lecture 16

CS 136, Winter 2008

Page 3

4 N

What Is a Race Condition?

* A situation 1n which two (or more)
threads of control are cooperating or
sharing something

* If their events happen in one order, one
thing happens

* If their events happen 1n another order,
something else happens

e Often the results are unforeseen /

Lecture 16
CS 136, Winter 2008 Page 4

/ Security Implications of Race \

Conditions

» Usually you checked privileges at one
point

* You thought the next lines of code
would run next

—So privileges still apply

happen 1n between

CS 136, Winter 2008

* But multiprogramming allows things to

4 N

The TOCTOU Issue

e Time of Check to Time of Use

* Have security conditions changed
between when you checked?

* And when you used it?

* Multiprogramming 1ssues can make
that happen

e Sometimes under attacker control /

Lecture 16
CS 136, Winter 2008 Page 6

4 N

An Example

* Code from Unix involving a temporary
file

res = access(“/tmp/userfile”, R OK);
If (res != 0)

die (“access”) ;
fd = open(“/tmp/userfile, O RDONLY) ;

/

Lecture 16
CS 136, Winter 2008 Page 7

4 N

A Short Detour

* In Unix, processes can have two associated user
IDs

— Effective ID
— Real ID
Real ID 1is the ID of the user who actually ran 1t

Effective ID 1s current ID for access control
purposes

* Setuid programs run this way
» System calls allow you to manipulate 1t /

Lecture 16
CS 136, Winter 2008 Page 8

/ Effective UID and Access \
Permissions

* Unix checks accesses against effective
UID, not real UID

* So setuid program uses permissions for
the program’s owner

—Unless relinquished

« Remember, root has universal access
privileges /

Lecture 16
CS 136, Winter 2008 Page 9

/ What’s (Supposed to Be) Going\
on Here?

e (Code ran as setuid root

* Checked accesson /tmp/userfile to make sure user
was allowed to read it

— User can use links to control what this file 1s
e access () checks real user ID, not effective one

— So checks access permissions not as root, but as actual
user

« So if user can read it, open file for read
— Which root is definitely allowed to do
* Otherwise exit /

Lecture 16
CS 136, Winter 2008 Page 10

-

CS 136, Winter 2008

What’s Really Going On Here?

This program might not run
uninterrupted

* OS might schedule something else 1n

the middle

* In particular, between those two lines

of code

~

Page 11

cture 16

4 N

How the Attack Works

» Attacker puts innocuous file 1n
/tmp/userfile
 Calls the program

* Quickly deletes file and replaces it
with link to secret file

—One only readable by root

 If timing works, he gets secret contentsLem/ .

CS 136, Winter 2008 Page 12

/ The Dynamics of the Attack \
Driesrioye

Success!

——©@

_ 1. Run program
2. Change file

res = access (“/tmp/userfile”, R OK);
1f (res != 0)

die (Yaccess”);
fd = open (“/tmp/userfile, O RDONLY) ; .

1!

/

Lecture 16
CS 136, Winter 2008 Page 13

4 N

How Likely Was That?

Not very
— The timing had to be just right
But the attacker can try it many times

— And may be able to influence system to make 1t
more likely

And he only needs to get it right once
Timing attacks of this kind can work

s

I'he longer between check and use, the more
dangerous /

Lecture 16
CS 136, Winter 2008 Page 14

4 h

Some Types of Race Conditions

 File races

— Which file you access gets changed
* Permissions races

— File permissions are changed
* Ownership races

— Who owns a file changes

e Directory races
— Directory hierarchy structure changes /

Lecture
CS 136, Winter 2008 Page 15

16

-

CS 136, Winter 2008

Preventing Race Conditions
Minimize time between security
checks and when action 1s taken

Be especially careful with files that
users can change

* Use locking and features that prevent

interruption, when possible

Avoid designs that require actions
where races can occur

~

Lecture 16

Page 16

e N

'Randomness and Determmlsm

* Many pieces of code require some
randomness 1n behavior

* Where do they get 1t?

* As key discussion showed, 1t’s not that
casy to get

CS 136, Winter 2008

Lecture 16
Page 17

/ Pseudorandom Number \
Generators

« PRNG

* Mathematical methods designed to
produce strings of random-like
numbers

» Actually deterministic

—But share many properties with true
random streams of numbers /

Lecture 16
CS 136, Winter 2008 Page 18

-

CS 136, Winter 2008

Attacks on PRNGs

* Cryptographic attacks

—QObserve stream of numbers and try
to deduce the function

e State attacks

— Attackers gain knowledge of or

influence the internal state of the
PRNG

~

Page 19

cture 16

4 N

An Example

 ASF Software’s Texas Hold’Em Poker

* Flaw 1n PRNG allowed cheater to
determine everyone’s cards

—Flaw 1n card shuftling algorithm

—Seeded with a clock value that can
be easily obtained

Lecture 16
CS 136, Winter 2008 Page 20

-

Another Example

* Netscape’s early SSL implementation
* Another guessable seed problem

—Based on knowing time of day,
process ID, and parent process ID

—Process IDs readily available by
other processes on same box

* Broke keys 1in 30 seconds

CS 136, Winter 2008

~

Page 21

cture 16

-

How

available

* Use high qua!

to Do Better?

e Use hardware randomness, where

1ty PRNGs

—Preferably

pased on entropy

collection methods

 Don’t use seed values obtainable
outside the program

CS 136, Winter 2008

Page 22

cture 16

* Never write your own crypto functions 1f
you have any choice

* Never, ever, design your own encryption
algorithm

— Unless that’s your area of expertise
* Generally, rely on tried and true stuff

— Both algorithms and implementations

Lecture 16
CS 136, Winter 2008 Page 23

-

CS 136, Winter 2008

~

Proper Use of Crypto

* Even with good crypto algorithms (and

code), problems are possible

* Proper use of crypto 1s quite subtle

* Bugs possible 1n:

—Choice of keys
—Key management

— Application of cryptographic ops

/

Page 24

cture 16

4 N

An Example

* Microsoft’s PPTP system
— A planned competitor for IPSec

* Subjected to careful analysis by
Schneiler and Mudge

* With disappointing results

* Bugs in the implementation, not the
standard /

Lecture 16
CS 136, Winter 2008 Page 25

4 N

Bugs in PPTP Implementation

* Password hashing

— Weak algorithms allow eavesdroppers to learn
the user's password

* Challenge/reply authentication protocol

— A design flaw allows an attacker to masquerade
as the server

* Encryption bugs

— Implementation mistakes allow encrypted data
to be recovered)

Lecture 16
CS 136, Winter 2008 Page 26

4 N

More PPTP Bugs

* Encryption key choice

— Common passwords yield breakable keys, even
for 128-bit encryption

Control channel problems

— Unauthenticated messages let attackers crash
PPTP servers

* Don’t treat this case with contempt just because
it’s Microsoft

— They hire good programmers

/

— Who nonetheless screwed up Lectue 16

CS 136, Winter 2008 Page 27

-

CS 136, Winter 2008

~

Another Example

An application where RSA was used to
distribute a triple-DES key

Seemed to work fine

Someone noticed that part of the RSA
key exchange were always the same

—That’s odd . . .

Page 28

cture 16

What Was Happening?

Bad parameters were handed to the RSA
encryption code

It failed and returned an error
Which wasn’t checked for
— Since 1t “couldn’t fail”

As a result, RSA encryption wasn’t applied
at all

The session key was sent in plaintext . . .

CS 136, Winter 2008

~

/

Lecture 16
Page 29

P e e e e i

/ ‘Trust Management and Input ; \

program

* Don’t trust anything you don’t need to

__

Validation

* Don’t trust other programs

* Don’t trust other components of your

 Don’t trust users

* Don’t trust the data users provide you

CS 136, Winter 2008

Lecture 16
Page 30

4 N

Trust

* Some trust required to get most jobs done

* But determine how much you must trust the
other

— Don’t trust things you can independently
verify

* Limit the scope of your trust
— Compartmentalization helps

* Be careful who you trust)

Lecture 16
CS 136, Winter 2008 Page 31

4 N

An Example of Misplaced Trust

* A Unix system from 1990s
* Supposed to only be used for email
* Menu-driven system
— From which you selected the mailer
* But the mailer allowed you to edit messages

—Via vi

* And vi1 allowed you to fork a shell

* So anyone could run any command /

Lecture 16
CS 136, Winter 2008 Page 32

4 N

What Was the Trust Problem?

* The menu system trusted the mail program
— Not to do anything but handle mail
* The mail program trusted vi
— To do proper editing
— Probably unaware of menu system’s
expectations

e vi1did more

— It wasn’t evil, but it wasn’t doing what was
eXpeCted Lecture 16

o CS 136, Winter 2008 Page 33

-

CS 136, Winter 2008

~

Validating Input

* Never assume users followed any rules

in providing you mnput

They can provide you with anything

* Unless you check it, assume they’ve

given you garbage
—Or worse

Just because the last input was good
doesn’t mean the next one will be

Lecture 16
Page 34

-

Treat Input as Hostile

* If 1t comes from outside your control

and reasonable area of trust

* Probably even if 1t doesn’t

There may be code paths you haven’t
considered

* New code paths might be added

* Input might come from new sources

CS 136, Winter 2008

~

/

Lecture 16

Page 35

4 N

For Example

* Shopping cart exploits

* Web shopping carts sometimes handled
as a cookie delivered to the user

* Some of these weren’t encrypted

* So users could alter them

* The shopping cart cookie included the
price of the goods . . . /

Lecture 16
CS 136, Winter 2008 Page 36

-

CS 136, Winter 2008

~

What Was the Problem?

The system trusted the shopping cart cookie when
it was returned

— When there was no reason to trust it
Either encrypt the cookie

— Making the input more trusted

— Can you see any problem with this approach?
Or scan the input before taking action on 1t

— To find refrigerators being sold for 3 cents

Lecture 16
Page 37

/ General Issues of Untrusted \

Inputs
e Check all inputs to be sure they are what
you expect
— Format

— Range of values
— Matching previous history

* Especially important for inputs coming
straight from the user

— Extra especially 1f over the network /

Lecture 16
CS 136, Winter 2008 Page 38

-

* What 1f your problem 1sn’t writing secure
code?

~

{Evaluating Program Security}

 It’s determining 1f someone else’s code 1s
secure?

— Or, perhaps, their overall system

* How do you go about evaluating code for
security?

* Much of this material from “The Art of Software Security /
Assessment,” Dowd, McDonald, and Schuh Ll

CS 136, Winter 2008 Page 39

-

~

Stages of Review

* You can review a program’s security at

different stages 1n its life cycle
—During design
—Upon completion of the coding

—When the program 1s 1n place and
operational

e Different 1ssues arise 1n each case

CS 136, Winter 2008

/

Lecture 16
Page 40

* Done perhaps before there’s any code
 Just a design
* Clearly won’t discover coding bugs

* Clearly could discover fundamental
flaws

* Also useful for prioritizing attention
during later code review /

Lecture 16
CS 136, Winter 2008 Page 41

-

CS 136, Winter 2008

Purpose of Design Review

To 1dentify security weaknesses 1n a
planned software system

Essentially, identifying threats to the
system

Performed by a process called threat
modeling

Usually (but not always) performed
before system 1s built

~

Page 42

cture 16

-

CS 136, Winter 2008

A

Threat Modeling

* Done 1n various ways

* One way uses a five step process:
1.

Information collection
Application architecture modeling
Threat 1dentification
Documentation of findings

Prioritizing the subsequent
implementation review

Lecture 16
Page 43

-

CS 136, Winter 2008

1. Information Collection

* Collect all available information on design
e Try to identify:

— Assets

— Entry points

— External entities

— External trust levels
— Major components

— Use scenarios

~

Lecture 16

Page 44

-

Source

* Interviewing

* Source profil

—If source a

s of Information

e Documentation

developers

e Standards documentation

Ing

ready exists

e System profi.

ing

—If a working version 1s available

CS 136, Winter 2008

Lecture 16
Page 45

/ 2. Application Architecture \
Modeling

» Using information gathered, develop
understanding of the proposed
architecture

* To identify design concerns
* And to prioritize later efforts

» Useful to document findings using
some type of model /

Lecture 16
CS 136, Winter 2008 Page 46

/ Modeling Tools for Design \
Review

« Markup languages (e.g., UML)
— Particularly diagramming features

— Used to describe OO classes and their
Interactions

— Also components and uses

* Data flow diagrams

— Used to describe where data goes and
what happens to i1t T

CS 136, Winter 2008 Page 47

-

 Based on models and other information

~

3. Threat Identification

gathered

Identify major security threats to the
system’s assets

Typically done with attack trees

Lecture 16

CS 136, Winter 2008 Page 48

-

CS 136, Winter 2008

~

Attack Trees

* A way to codify and formalize possible

attacks on a system

 Makes 1t easier to understand relative

levels of threats
—In terms of possible harm

— And probability of occurring

Lecture 16
Page 49

4 N

A Sample Attack Tree

* For a web application

1. Attacker gains access to user’s
personal information

1.1 Gain 1.2 Login 1.3 Hijack 1.4
direct as target user Intercept
access to user session personal
database data
/ / 4 N 4 ™
1.1.1 1.2.1 Brute 1.2.2 Steal 1.3.1 1.4.1 ID 1.4.2
Exploit force user Steal user Snifft
application password credentials user connection network

hole attack cookie
\ 4 _mﬁl{e 16

CS 136, Winter 2008 Page 50

-

CS 136, Winter 2008

4. Documentation of Findings

« Summarize threats found

—G1ve recommendations on
addressing each

* Generally best to prioritize threats

—How do you determine priorities?

~

Lecture 16

Page 51

4 N

DREAD Risk Ratings

Assign number from 1-10 on these
categories:

Damage potential
Reproducibility
Exploitability
Affected users
Discoverability

Gives better picture of important 1ssues for)
cach threat Lecture 16

CS 136, Winter 2008 Page 52

/ 5. Prioritizing Implementation \
Review

* Review of actual implementation
should follow review of design

» Immediately, 1f implementation already
available

 Later, if implementation not mature yet

* Need to determine how to focus your
efforts in this review /

Lecture 16
CS 136, Winter 2008 Page 53

-

CS 136, Winter 2008

Why Prioritize?

There are usually many threats

* Implementation reviews require a lot of

IesSources

* So you probably can’t look very

closely at everything

 Need to decide where to focus limited

amount of attention

~

Lecture 16

Page 54

-

CS 136, Winter 2008

One Prioritization Approach

* Make a list of the major components
 Identify which component each risk

(identified earlier) belongs to

 Total the risk scores for categories

» Use the resulting numbers to prioritize

~

Lecture 16

Page 55

e e e e e e e e e e e e e e e e e e e Em e e e e e e m e e e m e e e e e e e e e e e e

* Reviewing a mature (possibly complete)
application

* A daunting task if the system 1s large
* And often you know little about it
— Maybe you performed a design review

— Maybe you read design review docs

— Maybe less than that
 How do you get started? Lecture 16

CS 136, Winter 2008 Page 56

-

CS 136, Winter 2008

Need to Detfine a Process

* Don’t just dive into the code
* Process should be:

—Pragmatic

—Flexil

vle

—Resu

—Which is a skill one must develop

ts oriented

* Will require code review

~

/

Lecture 16

Page 57

-

1.

2.

3.
4,

CS 136, Winter 2008

Review Process Outline

Preassessment
— Get high level view of system
Application review

— Design review, code review, maybe live
testing

Documentation and analysis
Remediation support
— Help them fix the problems

~

Lecture 16

Page 58

-

* You start off knowing little about the code

Reviewing the Application

* You end up knowing a lot more

* You’ll probably find the deepest problems
related to logic after you understand things

* A design review gets you deeper quicker

— So worth doing, 1f not already done

* The application review will be an iterative
process

~

Lecture 16

CS 136, Winter 2008

Page 59

/ General Approaches To Design \
Reviews

* Top-down
— Start with high level knowledge,
gradually go deeper
* Bottom-up

— Look at code details first, build model of
overall system as you go

 Hybnd
_ Switch back and forth, as useful /

Lecture 16
CS 136, Winter 2008 Page 60

-

CS 136, Winter 2008

~

Code Auditing Strategies

e Code comprehension (CC) strategies

— Analyze source code to find vulnerabilities and
increase understanding

« (Candidate point (CP) strategies

— Create list of potential issues and look for them
in code

* Design generalization (DGQG) strategies

— Flexibly build model of design to look for high
and medium level flaws

/

Lecture 16
Page 61

4 N

Some Example Strategies

Trace malicious mput (CC)

— Trace paths of data/control from points where
attackers can inject bad stuff

* Analyze a module (CC)
— Choose one module and understand it

Simple lexical candidate points (CP)
— Look for text patterns (e.g., strcpy ())

Design conformity check (DG)
— Determine how well code matches design Lecture 16

CS 136, Winter 2008 Page 62

-

CS 136, Winter 2008

~

Guidelines for Auditing Code

* Perform flow analysis carefully within

functions you examine

» Re-read code you’ve examined
* Desk check important algorithms

» Use test cases for important algorithms

—Using real system or desk checking

—Choosing 1nputs carefully

Lecture 16
Page 63

-

CS 136, Winter 2008

Useful Auditing Tools

* Source code navigators
* Debuggers
* Binary navigation tools

* Fuzz-testing tools

— Automates testing of range of
important values

~

Lecture 16

Page 64

-

CS 136, Winter 2008

{Conclusion}

Many computer security problems are
rooted 1n Insecure programming

We have scratched the surface of the
topic here

Similarly, we’ve scratched the surface
of auditing 1ssues

* If your job 1s coding or auditing, you’ll

need to dig deeper yourself

~

/

Lecture 16

Page 65

