Theme Feature

Rachid
Guerraoui
and
André
Schiper

Swiss Federal
Institute of
Technology

Software-Basetl
Replication for
Fault Tolerance

hsmg ,spéaallzed hardware. Alt ;
requires sophlstlcated: echmques
communlcatlon provnde an adequa

called one-copy. equivalence lineafizability gives
chents the 111u51on of nonrephcated servers, a hlghly

ne solution for achieving fault tolerance is to
g build software on top of specialized hardware.
Companies such as Tandem and Stratus have

ccessfully pursied this solution for some applica-
nomic factors, however, motivate the Supposé €

heaper software-based fault tolerance;
tion handled entirely by software on
ardware. Although rephcatmn is-an

semantics;

0018-9162/97/$10.00 © 1097 IEEE

Computér

from p,. The dequeue() invocation from p; causes
response ok(a) to be sent to p; Finally, the
dequeue() invocation from p; causes response
ok(b) to be sent to p;.

* Replica x? receives the enqueue(b) invocation from
p; then the enqueue(a) invocation from p;. The
dequeue() invocation from p; leads to ok(b).
Finally, the dequeue() invocation from p, leads to

ok{a).

If p; selects ok(b) from x? (because it receives this
response first), and p; selects ok(b) from x! the result
is the incorrect execution that appears to enqueue &
once and dequeue it twice.

We cannot linearize this execution because replicas
x! and x? receive and handle invocations enqueue(a)
from p; and enqueue(b) from p; in a different order.
To ensure linearizability, client invocations must sat-
isfy the following properties:

® Order. Given invocations op(arg) by client p, and
op’ (arg’) by client p; on replicated server x, if x*
and x’ handle both invocations, they handle them
in the same order.

* Atomicity. Given invocation op(arg) by client p,
on replicated server x, if one replica of x handles
the invocation, then every correct (noncrashed)
replica of x also handles op(arg).

REPLICATION TECHNIQUES

Two fundamental classes of replication techniques
ensure linearizability: primary-backup and active.
Due to space constraints, we do not cover hybrid tech-
niques that combine these techniques.

Replicated server x

Figure 1. Interaction with a replicated server.

Primary-backup replication

. This technique? uses one replica, the primary, that
plays a special role: it receives invocations from client
processes and returns responses. Server x’s primary
replica is denoted prim(x); other replicas are backups.
Backups interact directly only with the primary replica,
not the client processes. Figure 2 illustrates how the
primary replica handles the invocation of op(arg) by
client p, (assuming the primary replica does not crash).

* Process p; sends op(arg) to prim(x) (primary replica
x?) together with unique invocation identifier snvID.
* Prim(x) invokes op(arg), which generates
response res. Prim(x) updates its state and sends
the update message (invID,res,state-update) to
its backups. Value invld identifies the invocation,
res the response, and state-update, the state
update performed by the primary. Upon receiving

Server x

Primary replica x’

Backup replica x?

Backup replica x°

Update

Figure 2. Primary-
backup technigue.

April 1997

Replica x’

Replica x* ——1T—

Replica x*

the update message, the backups update their
 state and return an acknowledgment to prim(x).
* Once the primary replica receives the acknowl-
edgment from all correct (noncrashed) backups,
it sends the response to p;.

This scheme obviously ensures linearizability
because the order in which the primary replica receives

invocations defines the total order of all server invo-

cations. The reception of the state-update message by
all the backups ensures the atomicity property.

Ensuring linearizability despite the crash of the pri-
mary replica is more difficult. We can distinguish three
cases, in which the primary replica crashes

¢ before sending the update message to the backups
(point A in Figure 2)

e after (or while) sending the update message, but
before the client receives the response (point B), or

e after the client receives the response (point C).

In all three cases, we must select a new primary replica.
In the third case, the crash is transparent to the client.
In the first and second cases, the client will not receive a
response to its invocation and will suspect a failure. After
having learned the identity of the new primary replica,
the client will reissue its invocation. In the first case, the
new primary replica considers the invocation as new.
The second case is the most difficult to handle. The
solution must ensure atomicity: either all or none of
the backups must receive the update message. If none
of the backups receive the message, the second case
becomes similar to the first case. If all receive the

Figure 3. Aclive-replication technigue.

Computer

update message, the operation of client process p;
updates the state of the backups, but the client does
not receive a response and will reissue its invocation.
The new primary replica needs invID and res to avoid
handling the same invocation twice, which would pro-
duce an inconsistent state if the invocation is not idem-
potent. When the new primary replica receives
invocation invID, it immediately returns response res
to the client, rather than handling the invocation.

If we assume a perfect failure detection mechanism,
the primary-backup replication technique is relatively
easy to implement, apart from the atomicity issue just
discussed. The implementation becomes much more
complicated in an asynchronous system model
because the failure detection mechanism is not reli-
able (that is, we have to handle the case in which a
client incorrectly suspects the primary replica has
crashed). The view-synchronous paradigm presented
later defines the communication semantics that ensure
correctness of the primary-backup technique despite
an unreliable failure detection mechanism.

Active replication

Also called the state-machine approach,? this tech-
nique gives all replicas the same role without the cen-
tralized control of the primary-backup technique.
Consider replicated server x and the invocation
oplarg) issued by p,. As shown in Figure 3,

¢ Invocation op(arg) goes to all the replicas of x.
e Fach replica processes the invocation, updates its
own state, and returns the response to client p;.
¢ Client p; waits until it receives the first response
* or a majority of identical responses. If the repli-
cas do not behave maliciously, ther p; only waits
for the first response.

Active replication requires noncrashed replicas to
receive the invocations of client processes in the same
ordet. This requires a communication primitive that sat-
isfies the order and the atomicity properties introduced
eatlier. We discuss this primitive, called total-order mul-
ticast (also called atomic multicast), in detail later.

Gomparing replication technigues

Active replication requires operations on the repli-
cas to be deterministic, which is not the case in the
primary-backup technique. Determinism means that
an operation’s outcome depends only on a replica’s
initial state and the sequence of operations it has
already performed. Multithreaded servers typically
lead to nondeterminism.

In active replication, the crash of a replica is trans-
parent to the client process: The client never needs to
reissue a request. In primary-backup replication,

although a backup’s crash is transparent to the client,
that of the primary replica is not. In that event, the client
can experience a significant increase in latency—the time
between invocation and the reception of the response,

GROUP CONMMUNICATION

The group abstraction, as depicted in Figure 4, is
an adequate framework for providing the multicast
primitives required to implement both active and pri-
mary-backup replication. Several distributed systems
provide this abstraction (see the “Group Communi-
cation Systems” sidebar). Group g,, for example, can
abstractly represent the set of server x’s replicas. The
members of g, are the replicas of x, and g, can be used
to send a message to X’s replicas without naming them
explicitly.

Static versus dynamic groups

There are two fundamentally different types of
groups, static and dynamic. A static group’s mem-
bership does not change during the system’s lifetime.
Although we still expect static-group members to
crash, a static group does not change its membership
to reflect a member’s crash. That is, replica x* remains
a member of group g, after it crashes and before a
possible recovery.

A dynamic group’s membership changes during the
system’s lifetime. A group’s membership changes, for
example, when one of its members crashes. The sys-
tem removes crashed replica x* from the group. If x*
recovers latet, it rejoins g,. We use the notion of view
to model the evolving membership of g,. The initial
membership of g, is v,(g,), and the ith membership of
8 is vi(g,). Sequence of views vo(g,), Vi(g); -, Vi(8,)
thus represents a history of group g,.*”

Primary-backup replication requires the group’s
membership to change. If the primary replica crashes.

Application

Replication techniques

Operating system

Figure 4. Group communication: the infrastructure for imple-
menting replication.

the group must elect a new primary replica. Therefore,
this technique uses dynamic groups. In contrast, active
replication ‘does not require specific action when a
replica crashes, so it can employ static groups. Most
existing group communication systems, however,
implement active replication using dynamic groups.
This is because most of these systems rely on an imple-
mentation of total-order multicast that requires
dynamic groups. We discuss one exception later.

Group communication and active replication

Active replication requires a total-order multicast
primitive. TOCAST (m,g,) is the total-order multicast of
message m to group g,. Order, atomicity, and termi-
nation properties formally define this primitive.

¢ Order. Consider TOCAST (m,,g,) and TOCAST
(my,g.). If ¥ and x* in g, deliver m; and m,, they
deliver both messages in the same order.

* Atomicity. TOCAST(m,g,) ensures that, if replica
¥ in g, delivers m, then every correct replica of
g, also delivers m.

o Termination. Process p; executes TOCAST(m,g,).
If p; is correct (does not crash), then every correct
replica in g, eventually delivers m. Termination is
a liveness property and ensures system progress.

April 1997

Primary replica x'

Backup replica x*

Backup replica x>

Figure 5. Primary-backup fechnique; the atomicity prabiem. Vertical dotted lines represent the time at which replicas deliver

new views.

These properties refer to message delivery and not to
reception: A process sends a message, which is
received by a replica that coordinates with other repli-
cas to guarantee these properties. Finally, the replica
delivers the message. The replica performs the opera-
tion only after delivery of the message cantaining the
operation. We discuss TOCAST implementations in a
later section.
Atomicity and termination properties refer to cor-
- rect replicas. The notion of correct replicas is a tricky
issue in a system model in which replicas can crash and
later recover. If replica x* crashes at some time ¢, it has
no obligation to deliver any message. Later at time
¥ > 1, if x* recovers, it should deliver all messages mul-
ticast to g, before time #. Yet how can it do so? The
state transfer mechanism handles this problem. When
replica x* recovers from a crash, the state transfer
mechanism allows x* to get (from another operational
replica ¥/ in g,) an up-to-date state, which includes
delivery of all messages multicast to g,. We can use the
TOCAST primitive to implement state transfer.

Group communication and primary-backup repllcation

At first glance, the primary-backup technique
appears easier to implement than active replication.
Primary-backup replication does not require a TOCAST
primitive because the primary replica defines the invo-
cation order. Nevertheless, to correctly handle invo-
cations when the primary replica crashes, the
primary-backup technique requires a group commu-
nication primitive. This primitive is as difficult to
implement as TOCAST. Furthermore, the group must
define a new primary replica whenever the current one
crashes, so the primary-backup technique requires
dynamic groups, which active replication does not.

Computer

The sequence of views of group g, help define the
successive primary replicas for server x. For example,
for every view, we can define the primary replica as
the one with the smallest identification number. Given
v{g,) = {x%, %2, %%}, the primary replica is x!. In the later
view v,,,(g,), which consists of x? and x3, x> becomes
the new primary replica. As the system delivers every
view to the correct members of g,, every replica can
determine the primary replica’s identity.

Having a sequence of views defining a group’s his-
tory actually makes it irrelevant (from a consistency
point of view) whether a replica removed from a view
has actually crashed or was incorrectly suspected of
doing so. In other words, whether the failure detec-
tion mechanism is reliable or not is irrelevant.
Unjustified exclusion of a replica decreases the ser-
vice’s fault-tolerance capability, but does not cause
inconsistency. If a member of g, suspects primary
replica x* in view vy(g,) of having crashed, and the
group defines new view v,,,(g,), x* can no longer act
as a primary replica. Interaction of x* with the backup
replicas in view v,,(g,) reveals the new view (and new
primary replica) to x*.

To summarize, the primary-backup technique uses
the primary replica to order invocations, but requires-
a mechanism that permits group members to agree on
a unique sequence of views. This agreement, however,
is insufficient to ensure the technique’s correctness.

Figure 5 illustrates an example that has an initial
view v{g,) = {x!, x, x%}; the primary replica is x'.

¢ Primary replica x! receives an invocation, han-
dles it, and crashes while sending the update mes-
sage to backups x? and x*. Only x? receives the
update message.

¢ The group defines new view v,,,(g,) = {x*x*}; and
x2 becomes the new primary replica. The states
of x? and x? are inconsistent, however.

The inconsistency stems from the nonatomicity of
the update multicast sent by the primary to the backup
replicas. Some, but not all, of the backups might
receive the update message. We avoid this inconsis-
tency if, whenever the primary replica sends the update
message to the backups, either all or none of the cor-
rect (noncrashed) backups receive the message. This
atomicity semantics, in the context of a dynamic
group, is called view-synchronous multicast.>#

View-synchronous mutticast (VSGAST)

Dynamic group g, has sequence of views vy(g,), ...,
vi{g.)s v:.1(g,), and so on. Let #4(:) be the local time at
which replica x* delivers view v{g,). From #*({) on, and
unti] x* delivers next view v,,,(g,), x* time stamps all
its messages with current-view number i. Message
m{z) is message m with a time stamp for view 1.

Let replica x* multicast message m(7) to all members
of view v{g,). View-synchronous multicast (provided
by primitive VSCAST) ensures that either all replicas of
v{g,) eventually deliver m(7) or that the system defines
a new view, v,,,(g,). In the latter case, VSCAST ensures
that either all of the replicas in v(g,) M v, (g,) deliver
m(z) before delivering v,,,(g,) or none deliver m(s).

Figure 6 illustrates the definition. In the first sce-
nario, the sender does not crash, and all the replicas
deliver m(3). In scenarios 2 and 3, the primary replica
crashes, and the system defines a new view. In sce-
nario 2, all the replicas in v{g,) N v,,,(g,) deliver m(s)
before delivering new view v,,,(g,). In scenario 3, no
replica in v{g,) N v,,,(g,) delivers m(3). In scenario 4,

one replica delivers m(i) in v,(g,) and one delivers it in
V,1(g,). VSCAST semantics prevent scenario 4.

GROUP COMMUNICATION
AND CONSENSUS

Several papers have described various implementa-
tions of the TOCAST and VSCAST primitives.
Nevertheless, most of these implementations neglect
liveness issues; that is, they do not specify the assump-
tions under which the given algorithms terminate. This
is unsatisfactory in many applications, including
safety-critical applications. Liveness is a difficult issue,
directly related to the impossibility of solving the con-
sensus problem in asynchronous distributed systems.
Implementing TOCAST and VSCAST comes down to
solving this problem. For more information, see the
“Consensus in Asynchronous Systems with Unreliable
Failure Detectors” sidebar, next page.

With failure detectors, we can use the solution to
the consensus problem to implement TOCAST and
VSCAST primitives. This leads to implementations that
clearly specify the minimal conditions that guarantee
termination.

One algorithm implements TOCAST based on con-
sensus.” This algorithm launches multiple, independent
instances of the consensus problem, identified by integer
k. Each of these k consensus instances decides on a batch
of messages, batch(k). The processes deliver batch(k)
messages before batch(k+1) messages. They also deliver
the messages of batch(k) in some deterministic order
(the order defined by their identifiers, for example).

The transformation from view-synchronous multi-
cast (VSCAST) to consensus is more complicated than
the transformation from TOCAST to consensus. The
solution also consists of launching multiple, indepen-

Figure 6. View-
synchronous
muificast. VSCAST
allows scenarios 1
(a),2(h), and 3 (c),
but prevents scenario
4(d).

April 1997 /

dent instances of consensus. However, consensus k
decides not only on a batch(k), but also on the next
view’s membership. Each process, after learning the
decision of consensus &, delivers the remaining, unde-
livered messages of batch(k) and then delivers the next
view. We discuss the details in an earlier work.?

example, primary-backup replication and view-

synchronous multicast, illustrate the convergence
of replication techniques and group communications.
These relationships clarify some important issues in
fault-tolerant distributed systems. Combined with the
link between group communications and the consensus
problem, they will certainly lead to interesting devel-
opments and new modular implementations. %

T he relationships we have discussed between, for

References

1. M. Herlihy and J. Wing, “Linearizability: A Correctness
Condition for Concurrent Objects,” ACM Trans. Pro-
gramming Languages and Systems, July 1990, pp. 463-
492.

2. N. Budhiraja et al., “The Primary-Backup Approach,”
in Distributed Systems, S. Mullender, ed., ACM Press,
New York, 1993, pp. 199-216.

3. EB. Schneider, “Replication Management Using the
State-Machine Approach,” in Distributed Systems, S.
Mullender, ed., ACM Press, New York, 1993, pp. 169-
197.

4. AM. Ricciardi and K.P. Birman, “Using Process Groups
to Implement Failure Detection in Asynchronous Envi-
ronments,” Proc. 10th ACM Symp. Principles Distributed
Computing, ACM Press, New York, 1991, pp. 341-352.

5. K. Birman, A. Schiper, and P. Stephenson, “Lightweight
Causal and Atomic Group Multicast,” ACM Trans.

Computer

Computer Systems, Aug. 1991, pp. 272-314.

6. A. Schiper and A. Sandoz, “Uniform Reliable Multicast
in a Virtually Synchronous Environment,” Proc. IEEE
13th Int’l Conf. Distributed Computing Systems, IEEE
CS Press, Los Alamitos, Calif., 1993, pp. 561-568.

7. T.D. Chandra and S. Toueg, “Unreliable Failure Detec-
tors for Reliable Distributed Systems,” J. ACM, Mar.
1996, pp. 225-267.

8. R. Guerraoui and A. Schiper, “Consensus Service: A
Modular Approach for Building Agreement Protocols
in Distributed Systems,” Proc. IEEE 26th Int’l Symp.
Fault-Tolerant Computing, JEEE CS Press, Los Alami-
tos, Calif., 1996, pp. 168-177.

Rachid Guerraoui is a lecturer and research associate
at the Federal Institute of Technology in Lausanne
(EPFL). His current research interests are fault-tol-
erant distributed systems, transactional systems, and
object-oriented computing. Guerraoui received a PhD
in computer science from the University of Orsay,
France.

Andyé Schiper is a professor of computer science at the
EPFL and leads the Operating Systems Laboratory.
His current research intevests are in fault-tolerant dis-
tributed systems and group communication, which
have led to development of the Phoenix group com-
munication middleware. He is a member of the ESPRIT
Basic Research Network of Excellence in Distributed
Computing Systems Architectures (CaberNet).

Contact Guerraoui or Schiper at Département d’In-
formatique, Ecole Polytechnique Fédérale de Lau-
sanne, 1015 Lausanne, Switzerland; guerraoui@

di.epfl.ch; schiper@di.epfl.ch.

